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Abstract

Recently Heyde, Kou and Peng (2007) proposed the notion of a natural
risk statistic associated with a finite sample that relaxes the subadditivity
assumption in the classical coherent risk statistics. In this note we use
convex analysis to provide alternate proofs of the representation results
regarding natural risk statistics.
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1 Introduction

Over the past years the field of risk measurement has become of great importance
to financial industry. In their seminal paper on risk measures, Artzner et al. [1]
introduced the notion of a coherent risk statistic, defined as a function ρ : Rn →
R satisfying the following axioms:

C1 Translation-invariance: ρ(X + a1) = ρ(X) + a for all a ∈ R, where 1 :=
(1, . . . , 1) ∈ Rn.

C2 Positive homogeneity: ρ(tX) = tρ(X) for all t ≥ 0.

C3 Monotonicity: ρ(X) ≤ ρ(Y ) whenever X ≤ Y which means that xi ≤ yi
for all i = 1, . . . , n where xi denotes the i-th coordinate of X and yi the
i-th coordinate of Y .

C4 Subadditivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for all X,Y ∈ Rn.
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and Business Administration, Heiligenstädter Strasse 46–48, 1190 Wien, Austria
‡Mathematics Institute, University of Munich, Theresienstrasse 39, 80333 München, Ger-

many
§Corresponding author, email: Gregor.Svindland@mathematik.uni-muenchen.de

1



The above axioms imply the well-known representation theorem [1] that a risk
statistic ρ is coherent if and only if

ρ(X) = sup
W∈W

〈W,X〉, ∀X ∈ Rn (1.1)

where W ⊆ P := {W ∈ Rn |
∑n
i=1 wi = 1 , wi ≥ 0, i = 1, . . . , n} is a closed,

convex set.
In a recent fundamental work, Heyde, Kou and Peng [2] extended the notion

of coherence, and introduced a new data-based class of risk measures called
natural risk statistics which prove to be robust and thus particularly suitable
for external risk measurement. A natural risk statistic is a function ρ̂ : Rn → R
that satisfies axioms C1–C3 along with:

C4’ Comonotonic subadditivity: ρ̂(X +Y ) ≤ ρ̂(X) + ρ̂(Y ) whenever X and Y
are comonotonic (X and Y are comonotonic if (xi − xj)(yi − yj) ≥ 0 for
any i, j ∈ {1, . . . , n}).

C5 Permutation invariance: ρ̂(X) = ρ̂(Xπ) for every permutation π ∈ Sn,
where Sn is the set of all permutations of {1, . . . , n} and Xπ denotes the
permuted vector, i.e. Xπ = (xπ(1), . . . , xπ(n)).

A natural risk statistic serves as a risk measure of the observed data X =
(x1, . . . , xn). For a justification of the concept and a thorough comprehensive
study of natural risk statistics as well as a detailed comparison to other classes
of risk measures we refer to [2]. Among the main results of [2] we have the
following two representation theorems.

Theorem 1. Let D := {X ∈ Rn | x1 ≤ x2 ≤ . . . ≤ xn} and denote by Xos the
order statistics of X, i.e. Xos := (x(1), . . . , x(n)) := Xπ for some π ∈ Sn such
that Xπ ∈ D.

(i) For an arbitrarily given set of weights W ⊂ P, the function

ρ̂(X) := sup
W∈W

〈W,Xos〉, ∀X ∈ Rn (1.2)

is a natural risk statistic.

(ii) Conversely, if ρ̂ is a natural risk statistic, then there exists a closed convex
set of weights W ⊂ P such that

ρ̂(X) := sup
W∈W

〈W,Xos〉, ∀X ∈ Rn. (1.3)

Theorem 2. Let D be as in Theorem 1.

(i) For an arbitrarily given set of weights W ⊂ P ∩D, the function

ρ̂(X) := sup
W∈W

〈W,Xos〉, ∀X ∈ Rn (1.4)

is a subadditive natural risk statistic, i.e. satisfies C4.
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(ii) Conversely, suppose the natural risk statistic ρ̂ is subadditive. Then there
exists a closed convex set of weights W ⊂ P ∩D such that

ρ̂(X) := sup
W∈W

〈W,Xos〉, ∀X ∈ Rn. (1.5)

The above theorems correspond to Theorems 1 and 4 of [2] respectively.
However note that the original statements in [2] did not specify the conditions
of closedness and convexity on the set W. Using the representation (1.1) for
a coherent risk statistic via supremum over a closed convex set of weights and
from Theorem 1 we observe the following important connection between natural
and coherent risk statistics:

A function ρ̂ is a natural risk statistic if and only if there exists a
coherent risk statistic ρ such that ρ̂(X) = ρ(Xos) for all X ∈ Rn.

The assertions of Theorems 1 (i) and 2 (i) are easily verified. The non-trivial
parts are Theorem 1 (ii) and Theorem 2 (ii). In this note we give alternate proofs
of Theorems 1 (ii) and 2 (ii) using convex duality theory. This illustrates the
strength of convex duality theory when dealing with risk measures having some
kind of convexity property, in our case this is axiom C4’. The reader might find
our proofs a lot shorter than the original ones presented in [2], but this fact
most certainly does not disqualify the original approaches. To the contrary, we
like to point out that in our approach we draw heavily on fundamental results
from convex analysis, which themselves rely on comprehensive proofs, whereas
the authors of [2] prove things almost from scratch.

The remainder of this note is organized as follows. In Section 2 we collect
some fundamental results from convex analysis which form the basis of our
proofs of Theorems 1 (ii) and 2 (ii). These proofs are then presented in Sections
3 and 4 respectively.

2 Some Facts from Convex Analysis

An introduction to convex analysis can be found in Rockafellar’s book [3]. All
results presented in this section are stated therein.

Let f : Rn → (−∞,∞] be a convex function. f is said to be proper if its
domain is non-empty, i.e. dom f := {X ∈ Rn | f(X) < ∞} 6= ∅. Any proper
convex function is continuous over the interior of its domain. We call f lower
semi-continuous (l.s.c.) if f(X) ≤ lim infn→∞ f(Xn) whenever (Xn)n∈N ⊂ Rn
is a sequence converging to X ∈ Rn. Fenchel’s Theorem states that f is proper,
convex, and l.s.c. if and only if

f(X) = sup
Z∈Rn

〈Z,X〉 − f∗(Z), X ∈ Rn, (2.6)

where

f∗ : Rn → (−∞,∞], f∗(Z) = sup
X∈Rn

〈Z,X〉 − f(X), Z ∈ Rn, (2.7)
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is the so called dual (or conjugate) function of f and 〈·, ·〉 denotes the Euclidian
scalar product on Rn. Note that f∗ is itself a proper convex l.s.c. function and
that (2.6) is equivalent to f = f∗∗. For a proof of (2.6) we refer to [3] Theorem
12.2.

The set of maximizers of (2.6) is called the subgradient at X. It is denoted
by

∂f(X) := {Z ∈ Rn | f(X) + f∗(Z) = 〈Z,X〉} (2.8)

and may be empty, e.g. if X 6∈ dom f . However, it can be shown that

∂f(X) 6= ∅ for all X ∈ ri(dom f) (2.9)

where ri(A) denotes the relative interior of a set A ⊂ Rn. For a comprehensive
discussion of subdifferentiability and a proof of (2.9) we again refer to [3], in
particular Theorem 23.4.

3 Proof of Theorem 1 (ii)

From C1 and C3 it follows that ρ̂ is (Lipschitz) continuous with respect to the
maximum-norm ‖ · ‖∞, because for any X,Y ∈ Rn we have that

ρ̂(X) = ρ̂(X − Y + Y ) ≤ ρ̂(‖X − Y ‖∞ · 1 + Y ) = ‖X − Y ‖∞ + ρ̂(Y ),

so ρ̂(X)− ρ̂(Y ) ≤ ‖X−Y ‖∞, and similarly we obtain ρ̂(Y )− ρ̂(X) ≤ ‖X−Y ‖∞.
Recall that D = {X ∈ Rn | x1 ≤ x2 ≤ . . . ≤ xn}. Clearly, D is a translation-
invariant (i.e. X ∈ D ⇒ X + a · 1 ∈ D for all a ∈ R) closed convex cone. We
introduce the following auxiliary function

ρ(X) := ρ̂(X) + δ(X | D) ∈ (−∞,∞], X ∈ Rn,

where δ(· | D) denotes the indicator function, i.e. δ(X | D) = 0 if X ∈ D and
δ(X | D) =∞ if X 6∈ D. So ρ = ρ̂ on D. Moreover, ρ is a proper, strictly posi-
tive homogeneous, subadditive (thus convex), and translation-invariant function
which is monotone on dom ρ = D, and l.s.c. on Rn. Note that the subadditivity
follows from the fact that any X,Y ∈ D are comonotonic and that ρ = ∞
outside D, whereas l.s.c. is due to continuity of ρ̂ and the fact that D is closed
convex. Now by (2.6)

ρ(X) = sup
Z∈Rn

〈Z,X〉 − ρ∗(Z), X ∈ Rn.

In the following we show that dom ρ∗ ⊂ {Z ∈ Rn |
∑n
i=1 zi = 1} and ρ∗ = δ(· |

dom ρ∗). First of all, since the constant vector k1 ∈ D for any k ∈ R and by
translation-invariance, we derive for any Z ∈ Rn that

ρ∗(Z) = sup
X∈Rn

〈Z,X〉 − ρ(X) ≥ sup
k∈R

k(〈Z,1〉 − 1).
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So either 〈Z,1〉 = 1, i.e.
∑
i zi = 1, or ρ∗(Z) = ∞. Secondly, positive homo-

geneity yields

ρ∗(Z) = sup
X∈Rn

〈Z,X〉 − ρ(X) = sup
X∈Rn

〈Z, tX〉 − tρ(X) = tρ∗(Z)

for all t > 0. Hence,

ρ∗ = δ(· | dom ρ∗) and ρ(X) = sup
Z∈dom ρ∗

〈Z,X〉. (3.10)

According to (2.9) we have ∂ρ(X) 6= ∅ for all X ∈ intD. Now fix any X ∈ intD
and let Z ∈ ∂ρ(X). Then it follows from (3.10) that ρ(X) = 〈Z,X〉. Denoting
by e1, . . . , en the canonical basis of Rn, for each i there is an ε > 0 small enough
such that X − εei ∈ D. By monotonicity of ρ on D we obtain

〈Z,X − εei〉 ≤ ρ(X − εei) ≤ ρ(X) = 〈Z,X〉

or equivalently −εzi ≤ 0. The latter inequality implies that all coordinates of
Z must be non-negative. Since ρ∗ is l.s.c. the set W := dom ρ∗ ∩ Rn+ ⊂ P is
closed and convex. We obtain ρ(X) = supW∈W〈W,X〉 for all X ∈ intD. For
any boundary point X of D, we choose a sequence (Xk)k∈N ⊂ intD converging
to X. Then, recalling that ρ = ρ̂ on D and by continuity of ρ̂, we have

ρ(X) = lim
k→∞

ρ(Xk) = lim
k→∞

sup
W∈W

〈W,Xk〉 = sup
W∈W

lim
k→∞

〈W,Xk〉 = sup
W∈W

〈W,X〉

in which the third equality follows from the Cauchy-Schwartz-Inequality, be-
cause for all W ∈ W:

|〈W,Xk〉 − 〈W,X〉| ≤ ‖W‖2‖Xk −X‖2 ≤ ‖Xk −X‖2

where ‖ · ‖2 denotes the Euclidian norm. So finally we arrive at

ρ(X) = sup
W∈W

〈W,X〉 ∀X ∈ D.

Consequently, since ρ̂ is permutation invariant and Xos ∈ D for every X ∈ Rn,
we obtain

ρ̂(X) = ρ̂(Xos) = ρ(Xos) = sup
W∈W

〈W,Xos〉 for all X ∈ Rn.

�

4 Proof of Theorem 2 (ii)

Suppose the natural risk statistic ρ̂ is subadditive, so in particular it is convex.
Being a proper, continuous (see beginning of Section 3), translation-invariant,
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and convex function, we know from (2.6) and by arguments already presented
in the proof of Theorem 1 that

ρ̂(X) = sup
W∈dom ρ̂∗

〈W,X〉 ∀X ∈ Rn, (4.11)

where dom ρ̂∗ ⊂ {Z ∈ Rn |
∑n
i=1 zi = 1}. Suppose Z ∈ Rn is such that there is

a i ∈ {1, . . . , n} with zi < 0. Monotonicity yields

ρ̂∗(Z) ≥ sup
t>0
−t〈Z, ei〉 − ρ̂(−tei) ≥ sup

t>0
−tzi =∞

because ρ̂(−tei) ≤ 0. Consequently, we have dom ρ̂∗ ⊂ P. Next we show that
ρ̂∗ is permutation invariant. Let Z ∈ Rn. Then, for any π ∈ Sn we obtain

ρ̂∗(Zπ) = sup
X∈Rn

〈Zπ, X〉 − ρ̂(X) = sup
X∈Rn

〈Z,Xπ−1〉 − ρ̂(Xπ−1) = ρ̂∗(Z)

because ρ̂ is permutation invariant and thus ρ̂(Xπ−1) = ρ̂(X). Hence, dom ρ̂∗ is
a permutation invariant set. Therefore, as 〈Z,X〉 ≤ 〈Zos, Xos〉 for allX,Z ∈ Rn,
it follows from (4.11) that

ρ̂(X) = sup
W∈W

〈W,Xos〉 for all X ∈ Rn,

where W := dom ρ̂∗ ∩D is closed and convex. �
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