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Abstract

We introduce a generalised subgradient for law-invariant closed convex
risk measures on L1 and establish its relationship with optimal risk alloca-
tions and equilibria. Our main result gives sufficient conditions ensuring
a non-empty generalised subgradient.
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1 Introduction

In [17] we established that every law-invariant convex risk measure on L∞

is σ(L∞, L∞)-lower semi-continuous and thus canonically extended to a law-
invariant closed convex risk measure on L1. There are several advantages of the
model space L1: in contrast to L∞, the model space L1 includes important risk
models such as normally distributed. Moreover, L1 is in some sense maximal
amongst the law-invariant model spaces bearing a locally convex topology and
thus allowing for convex duality. Other attempts to extending the model space
beyond L∞ suggest spaces which depend on the risk measure, in terms of being
chosen such that some given risk measure stays real valued. But when studying
optimal risk allocations and equilibria which involves more than one risk mea-
sure, the model space should preferably be independent of these risk measures.
Otherwise one would have to shift to some kind of intersection of the respective
model spaces, and thus would exclude a lot of possible positions that might be
acceptable to at least one of the risk sharing agents, hence reducing the set of
potential allocations. In sum, in case of law-invariant convex risk measures the
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model space L1 proves suitable, at least when studing optimal capital and risk
allocations involving a larger number of risk measures.

In [16] it is shown that any risk in L1 admits an optimal allocation when-
ever the preferences of the agents are determined by law-invariant closed convex
risk measures. However, the problem of subgradients of law-invariant convex
risk measures on L1 has not been addressed yet. There is a close link between
subgradients and optimal risk allocations and equilibria (see [15, 19]). This so-
called first order condition guarantees the existence of optimal risk allocations
and gives a pricing rule under which the involved agents trade in a state of equi-
librium. On L∞ this relationship is if and only if because convex risk measures
on L∞ are automatically continuous and thus everywhere subdifferentiable. In
contrast, convex risk measures on L1 may have empty subgradients. E.g. the
entropic risk measure has empty subgradients for any risk which is unbounded
from below, although these risks may be acceptable. Hence, for such risks we
do have optimal allocations but we do not have a first order condition. But it
turns out that if we generalise the notion of a subgradient and if we restrict to
law-invariant closed convex risk measures which satisfy certain continuity prop-
erties, then we obtain non-empty generalised subgradients for a large class of
risks, and we have a first order condition for optimal risk allocations and equilib-
ria similar to the one for ordinary subgradients. Therefore, we are in particular
interested in characterising those points at which a law-invariant closed convex
risk measure ρ on L1 is subdifferentiable in that generalised sense. Our main
result is theorem 2.9 which states that under a tail continuity condition on ρ,
the generalised subgradient at X ∈ L1 is non-empty whenever there is ε > 0
such that ρ((1 + ε)X) <∞.

When proving our results we will introduce a class of auxiliary sub-spaces
of L1 which are induced by law-invariant convex risk measures. These Banach
spaces are a generalisation of Orlicz spaces. Hence, as a byproduct we also
enlighten the connection between law-invariant convex risk measures and Orlicz
spaces. On the level of examples, the existence of some relationship between
law-invariant convex risk measures and Orlicz spaces has already been observed
by several authors (e.g. see [6]).

The structure of the paper is as follows: in section 2 we introduce the gener-
alised subgradient and compare this notion to the ordinary subgradient, as well
as stating the existence result theorem 2.9. The proof of this theorem will need
some preparation, and in this context we will introduce and study the auxiliary
spaces mentioned above in section 3. The proof of theorem 2.9 is then given in
section 4. In section 5 we present the connection between generalised subgradi-
ents and optimal risk allocations and equilibria. Our results are illustrated by
several examples which are collected in section 6. Finally, the appendix A–C
collects some auxiliary results which are needed throughout this paper.
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2 Subgradients and Generalised Subgradients

Throughout this paper (Ω,F ,P) is an atom-less probability space, i.e. a proba-
bility space supporting a random variable with continuous distribution. (Note
that we do not require standardness of the probability space as in [16] and [17].
This is justified in [29].) All equalities and inequalities between random variables
are understood in the P-almost sure (a.s.) sense. We write Lp = Lp(Ω,F ,P),
p ∈ [0,∞], and ‖ · ‖p = ‖ · ‖Lp for p ∈ [1,∞]. The topological dual space of Lp

is denoted by Lp∗. It is well known that Lp∗ = Lq with q = p
p−1 for p < ∞,

and that L∞∗ ⊃ L1 can be identified with ba, the space of all bounded finitely
additive signed measures µ on (Ω,F) such that P(A) = 0 implies µ(A) = 0.
For any random variable X, we denote by FX(x) := P(X ≤ x), x ∈ R, its
distribution function and by qX(s) := inf{x ∈ R | FX(x) ≥ s}, s ∈ (0, 1), its
(left-continuous) quantile function.

We suppose the reader is familiar with standard terminology and basic du-
ality theory for convex functions as outlined in [13] or [24]. Let V be a locally
convex vector space such that R ⊂ V ⊂ L1. We call a function F : V → [−∞,∞]

(i) convex if F (λX+(1−λ)Y ) ≤ λF (X)+(1−λ)F (Y ) for all λ ∈ [0, 1] (here
∞−∞ :=∞),

(ii) proper if F > −∞ and the (effective) domain domF := {F <∞} 6= ∅,

(iii) cash-invariant if F (0) = 0 and F (X +m) = F (X)−m for all m ∈ R,

(iv) monotone if X ≥ Y implies F (X) ≤ F (Y ),

(v) positively homogeneous if F (tX) = tF (X) for all t ≥ 0 (here 0 · ∞ := 0),

(vi) law-invariant if F (X) = F (Y ) for all identically distributed X ∼ Y ,

(vii) closed if F is lower semi-continuous (l.s.c.), i.e. the level sets Ek = {X ∈
V | F (X) ≤ k} are closed for all k ∈ R, and proper, or if F ≡ −∞ or
F ≡ ∞.

With some facilitating abuse of notation, we shall write (X,Z) 7→ E[XZ] for
the dual pairing on (V, V ∗) even if V does not equal some Lp for p ∈ [1,∞), for
instance also for V = L∞. The dual function

F ∗(Z) = sup
X∈V

(E[ZX]− F (X)), Z ∈ V ∗,

and the bidual function

F ∗∗(X) := sup
Z∈V ∗

(E[ZX]− F ∗(Z)), X ∈ V,

of F are closed convex on V ∗ or V respectively. The Fenchel–Moreau theorem
(proposition 4.1 in [13]) states that F ∗∗ = F if and only if F is closed convex.
The subgradient of F at X ∈ V , denoted by ∂F (X), is the set

∂F (X) = {Z ∈ V ∗ | F (Y ) ≥ F (X) + E[Z(Y −X)] ∀Y ∈ V },
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and is characterised by

Z ∈ ∂F (X) ⇔ F (X) = E[ZX]− F ∗(Z). (2.1)

Definition 2.1. A convex risk measure on V is a convex monotone cash-
invariant function ρ : V → (−∞,∞]. A coherent risk measure is a convex
risk measure which in addition is positively homogeneous.

If ρ is a convex risk measure on Lp, then

dom ρ∗ ⊂ Pp∗ := {Z ∈ Lp∗− | E[Z1] = −1} (see e.g. [14]). (2.2)

The set PR := −P∞∗ ∩ L1 is the set of pricing rules. Since we will work with
law-invariant convex risk measures, our model space will be L1. This choice
is justified in [17] where it is proved that there is a one-to-one correspondence
between law-invariant closed convex risk measures on L1 and L∞. This means
that every law-invariant convex risk measure ρ∞ on L∞ is the restriction to L∞

of a unique law-invariant closed convex risk measure ρ on L1, i.e. ρ∞ = ρ|L∞ .
Regarding the dual functions we have

ρ∗ = ρ∗∞ on L1∗ (2.3)

where ρ∗ is the dual of ρ in the (L1, L1∗)-duality whereas ρ∗∞ is the dual function
of ρ∞ in the (L∞, L∞∗)-duality. Note that throughout this text we will keep
this notational convention, that is given any convex risk measure ρ on L1 we
denote by ρ∞ its restriction to L∞.

It is well-known that any proper closed convex function on a Banach space
is continuous and subdifferentiable on the interior of its domain (see e.g. [13]
corollary 2.5 and proposition 5.2 ). Moreover, it is proved in [28] that for
every convex risk measure ρ on L1 (which is proper by definition) we have
int dom ρ 6= ∅ if and only if ρ is real-valued (dom ρ = L1) and continuous. We
summarise these results on subdifferentiability in the following lemma. A more
general version of this lemma is proved in [6].

Lemma 2.2. Let ρ be a convex risk measure on L1. Equivalent are:

(i) ρ is everywhere subdifferentiable.

(ii) ρ is real-valued and continuous.

(iii) int dom ρ 6= ∅.

An example of a continuous convex risk measure on L1 is the Average Value
at Risk (see example 6.2). But closed convex risk measures are not continuous
on L1 in general. For instance the entropic risk measure

ρ(X) =
1

β
logE[e−βX ], X ∈ L1,
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where β > 0, is a closed, but not continuous, convex risk measure on L1. It is
show in lemma 6.1 below (also see [18] lemma 3.29) that

ρ(X) = E[ZX]− ρ∗(Z) ⇒ Z =
−e−βX

E [e−βX ]
.

Hence, in view of (2.1), we infer that ∂ρ(X) = ∅ for every X ∈ L1 with
essinf X = −∞, even though dom ρ includes such X (see example 6.4 and [18]
example 4.33).

This motivates the following extension of the notion of a subgradient.

Definition 2.3. The generalised subgradient of a convex risk measure ρ on L1

at X ∈ L1 is defined as

δρ(X) := {Z ∈ L1 | (XZ) ∈ L1, ∀Y ∈ L∞ : ρ(Y ) ≥ ρ(X) + E[Z(Y −X)]}.

Lemmas 2.4 and 2.7 below show that δρ is indeed a generalisation of ∂ρ.

Lemma 2.4. Let ρ be a convex risk measure on L1. The following conditions
hold:

(i) for all X ∈ L1: ∂ρ(X) ⊂ δρ(X) ⊂ dom ρ∗∞ ∩ L1,

(ii) for all X ∈ L∞: δρ(X) = ∂ρ∞(X) ∩ L1,

(iii) for all X ∈ L1: δρ(X) 6= ∅ ⇒ X ∈ dom ρ.

Proof. We only prove the inclusion δρ(X) ⊂ dom ρ∗∞ ∩ L1, because the rest is
obvious by definition of δρ(X). However, this inclusion follows from the fact
that Z ∈ δρ(X) implies

∞ > E[ZX]− ρ(X) ≥ sup
Y ∈L∞

E[ZY ]− ρ(Y ) = ρ∗∞(Z).

We remark that δρ(X) = ∅ is possible even for X ∈ L∞ (see example 6.1).
In order to have δρ(X) 6= ∅ on L∞ at least, we will have to require that ρ is con-
tinuous from below. This property is defined and characterised in the following
proposition (see also [20],[18], [10]). It is in fact a property of the restriction
ρ∞ of ρ to L∞ only. Note that proposition 2.5(iv) shows that continuity from
below is satisfied by most law-invariant convex risk measures of interest!

Proposition 2.5. Let ρ be a law-invariant closed convex risk measure on L1.
Then

ρ∞ is σ(L∞, L1)-l.s.c. (2.4)

Moreover, the following conditions are equivalent:

(i) ρ is continuous from below, i.e. for every X ∈ L∞ and every sequence
(Xn)n∈N ⊂ L∞ with Xn ↑ X we have ρ(Xn) ↓ ρ(X).
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(ii) dom ρ∗∞ ⊂ L1.

(iii) The level sets Qk := {Z ∈ L1|ρ∗∞(Z) ≤ k}, k ∈ R, are σ(L1, L∞)-compact.

(iv) {X ∈ L1 | essinf X = −∞} ∩ dom ρ 6= ∅.

Proof. Property (2.4) and the equivalences (i)⇔ (ii)⇔ (iii) are well-known and
e.g. proved in [20]. These equivalences are also partially proved in [18] proposi-
tion 4.21 and [15] theorem C.1. Moreover, (iv)⇒ (ii) is proved in [10] theorem 3.

(i)⇒ (iv): Fix a decreasing sequence of sets An ∈ F , n ∈ N, such that P(An) > 0
and

⋂
n∈NAn = ∅. Since ρ is continuous from below and −1An ↑ 0, there is a

n1 ∈ N such that ρ(−1An1
) ≤ 1

2 . Then again, as −1An1
−1Al ↑ −1An1

for l→∞,

there is a n2 > n1 such that ρ(−1An1
− 1An2

) ≤ ρ(−1An1
) + 1

4 . Continuing
this construction inductively, we find for each k ∈ N a nk+1 > nk such that

ρ(
∑k+1
i=1 −1Ani ) ≤ ρ(

∑k
i=1−1Ani ) + 1

2k+1 . The sequence Xk :=
∑k
i=1−1Ani

converges monotonously to X :=
∑∞
i=1−1Ani which is unbounded from below.

By the monotone convergence theorem, and since ρ∗(−1) = 0 (see (B.3)), we
deduce that

E[|X|] = lim
k→∞

E[−Xk] ≤ lim inf
k→∞

ρ(Xk) ≤ lim inf
k→∞

k∑
i=1

1

2i
≤ 1.

Hence, X ∈ L1 and by l.s.c. of ρ we have that ρ(X) ≤ lim infk→∞ ρ(Xk) ≤ 1,
i.e. X ∈ dom ρ.

In the following we will often make use of the next lemma.

Lemma 2.6. Let ρ be a law-invariant closed convex risk measure on L1. Then
X ∈ dom ρ if and only if −X− ∈ dom ρ.

Proof. ”⇐” follows from X ≥ −X− and monotonicity of ρ. As for ”⇒”, let
X ∈ dom ρ and suppose that P(X > 0) > 0, otherwise the assertion is trivial.
By (B.1) we know that E[X|X1{X<0}] ∈ dom ρ. Clearly,

E[X|X1{X<0}] = X1{X<0} +
E[X1{X≥0}]

P(X ≥ 0)
1{X≥0}.

Hence, by cash-invariance and monotonicity we infer that

ρ(X1{X<0}) = ρ

(
X1{X<0} +

E[X1{X≥0}]

P(X ≥ 0)

)
+
E[X1{X≥0}]

P(X ≥ 0)

≤ ρ(E[X|X1{X<0}]) +
E[X1{X≥0}]

P(X ≥ 0)
<∞.

We now establish a characterisation of the generalised subgradient which is
analogous to (2.1).
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Lemma 2.7. Let ρ be a law-invariant closed convex risk measure on L1 which is
continuous from below, and let X ∈ L1. The following conditions are equivalent:

(i) Z̃ ∈ δρ(X),

(ii) Z̃ ∈ {Z ∈ L1 | (XZ) ∈ L1, ∀Y ∈ L1 : ρ(Y ) ≥ ρ(X) +E[Z(Y −X)]} with
the convention that ∞−∞ :=∞,

(iii) Z̃ ∈ L1 such that (XZ̃) ∈ L1 and ρ(X) = E[Z̃X]− ρ∗∞(Z̃).

Moreover, if Z ∈ L1 is such that (XZ) ∈ L1, then E[XZ]− ρ∗∞(Z) ≤ ρ(X).

Proof. (i) ⇒ (ii): Suppose that (i) holds. We will prove that

ρ(U) ≥ ρ(X) + E[Z̃(U −X)] (2.5)

for all U ∈ L1 with the convention that∞−∞ =∞. Note that lemma 2.4(i) and

(2.2) imply Z̃ ∈ L1
−. Let U ∈ L1 such that E[−Z̃U−] <∞ or E[Z̃U+] > −∞ or

both, then by (i), monotone convergence and lemma 2.8 below we obtain that

ρ(U) = lim
m→∞

lim
n→∞

ρ((U+ ∧ n)− (U− ∧m))

≥ lim
m→∞

lim
n→∞

(ρ(X)− E[Z̃X] + E[Z̃(U+ ∧ n)] + E[−Z̃(U− ∧m)])

= ρ(X) + E[Z̃(U −X)],

so (2.5) holds. If U ∈ L1 is such that E[−Z̃U−] =∞ and E[Z̃U+] = −∞, then
according to our convention, the right hand side of (2.5) equals ∞, so we have
to show that ρ(U) =∞ too. However, this follows from lemma 2.6 and the first
case.

(ii) ⇒ (iii): Since, in particular, (2.5) is true for all U ∈ L∞, we have E[XZ̃]−
ρ(X) ≥ ρ∗∞(Z̃). Moreover, lemma 2.8 below and monotone convergence imply
that

E[XZ̃]− ρ∗∞(Z̃) = lim
m→∞

lim
n→∞

E[(−m ∨X ∧ n)Z̃]− ρ∗∞(Z̃)

≤ lim
m→∞

lim
n→∞

ρ∞(−m ∨X ∧ n) = ρ(X). (2.6)

Hence, we obtain E[XZ̃]− ρ(X) = ρ∗∞(Z̃).

(iii) ⇒ (i): is obvious.

The final statement of the lemma follows from a computation similar to (2.6).

The proof of lemma 2.7 relied on the following crucial lemma. We remark
that a regularity result similar to (2.7) is stated in [21] for real-valued convex
risk measures on Stonean lattices.

Lemma 2.8. Let ρ be a law-invariant closed convex risk measure on L1 which
is continuous from below and let H ∈ L∞, then

ρ(H +X) = sup
m∈N

inf
n∈N

ρ(H + (X+ ∧ n)− (X− ∧m)). (2.7)
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Proof. Let, H ∈ L∞+ , and X ∈ L1 be bounded from below. Then, H+(X∧n) ∈
dom ρ for all n ∈ N ∪ {∞} due to monotonicity of ρ. Again by monotonicity,
the sequence ρ(H + (X ∧ n)), n ∈ N, is decreasing and bounded from below by
ρ(H +X). We claim that

ρ(H +X) = lim
n→∞

ρ(H + (X ∧ n)). (2.8)

In order to prove this, suppose for the moment that there is a K > 0 such that
limn→∞ ρ(H+ (X ∧n)) > K > ρ(H+X). Note that since H ≥ 0, we have that

lim
n→∞

ρ(H +X ∧ n) = lim
n→∞

ρ((H +X) ∧ n).

Since (H + X) ∧ n ∈ L∞, and as ρ∞ is everywhere subdifferentiable with
dom ρ∗∞ ⊂ L1, we have that for each n ∈ N there is a Zn ∈ ∂ρ∞((H+X)∧n) ⊂
L1, i.e.

ρ((H +X) ∧ n) = E[Zn((H +X) ∧ n)]− ρ∗∞(Zn).

By (B.1) we have ρ∗∞(E[Zn | (H +X) ∧ n]) ≤ ρ∗∞(Zn), so we may assume that
Zn is σ((H+X)∧n)-measurable. Moreover, lemmas C.1, C.2 and law-invariance
of ρ∗∞ imply that

ρ∞((H +X) ∧ n) = E[Zn((H +X) ∧ n)]− ρ∗∞(Zn)

≤
∫ 1

0

q(H+X)∧n(s)qZn(s)ds− ρ∗∞(Zn)

≤ ρ∞((H +X) ∧ n)

which can only hold if

E[Zn((H +X) ∧ n)] =

∫ 1

0

q(H+X)∧n(s)qZn(s)ds.

According to lemma C.1, we may assume that Zn = fn(X+H) for a measurable
function fn : R→ R− which is increasing on {FH+X > 0}. As X+H is bounded
from below we infer that

ρ∗∞(Zn) ≤ E[((H +X) ∧ n)Zn]− ρ((H +X) ∧ n)

≤ − essinf(H +X)− ρ(H +X) =: r,

so Zn ∈ Qr for all n ∈ N. Since Qr is weakly sequentially compact (propo-
sition 2.5) and L1(Ω, σ(H + X),P) is weakly complete, we may assume, by
considering a subsequence if necessary, that (Zn)n∈N converges weakly to some
Z ∈ Qr and that Z = f(H + X) for a measurable function f : R → R−. Since
the Hahn-Banach separation theorem implies that there is a sequence of convex
combinations of the Zn which converges P-a.s. to Z ([30] corollary III.3.9), we
may also assume that f is increasing on {FX+H > 0}. Let Gk, k ∈ N, be a
sequence of sub-σ-algebras of F such that E[X +H|Gk] ∈ L∞ for all k ∈ N and
limk→∞E[X+H|Gk] = X+H in L1 and P-a.s. The following estimation shows
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that the sequence (ZE[X + H|Gk])k∈N is uniformly integrable. To this end let
a ∈ R such that FX+H(a) > 0. Then,

|ZE[X +H|Gk]| ≤ |Z|‖(X +H) ∧ a‖∞ + |f(a)|E[|X +H| |Gk] =: Yk,

because |f | is decreasing on {FX+H > 0}. Since (Yk)k∈N is uniformly integrable,
so is (ZE[X +H|Gk])k∈N. Consequently, we obtain

E[Z(H +X)]− ρ∗∞(Z) = lim
k→∞

E[ZE[H +X|Gk]]− ρ∗∞(Z)

≤ lim
k→∞

ρ∞(E[H +X|Gk])

= ρ(H +X) < K (2.9)

in which the last equality is due to (B.2). On the other hand, we observe that
for all k ≥ n we have E[Zk((H+X)∧n)]−ρ∗∞(Zk) > K (because (H+X)∧k ≥
(H +X) ∧ n). Hence, by monotone convergence and l.s.c. of ρ∗∞ we obtain

E[Z(H +X)]− ρ∗∞(Z) = lim
n→∞

E[Z((H +X) ∧ n)]− ρ∗∞(Z)

≥ lim
n→∞

lim sup
k→∞

E[Zk((H +X) ∧ n)]− ρ∗∞(Zk)

≥ K. (2.10)

Clearly, (2.10) contradicts (2.9), and thus (2.8) is proved. For general H ∈ L∞,
and X ∈ L1 monotonicity and l.s.c. of ρ imply that ρ(H+X) = limm→∞ ρ(H+
(X ∨ −m)). In conjunction with (2.8) and cash-invariance we obtain

ρ(H +X) = lim
m→∞

ρ((H + ‖H‖∞) + (X ∨ −m)) + ‖H‖∞
= lim

m→∞
lim
n→∞

ρ(H + (n ∧X ∨ −m)).

The following theorem gives sufficient conditions ensuring the existence of a
non-empty generalised subgradient. It is proved throughout sections 3 and 4.

Theorem 2.9. Let ρ be a law-invariant closed convex risk measure on L1 which
is continuous from below. If X ∈ L1 is bounded from below, then δρ(X) 6= ∅.
Otherwise, if ρ and X ∈ L1 satisfy the following conditions

there is an ε > 0 such that (1 + ε)X ∈ dom ρ, (2.11)

and
lim
n→∞

ρ(X + εX1{X≤−n}) = ρ(X), (2.12)

then δρ(X) 6= ∅. In both cases we may assume that Z ∈ δρ(X) is of type Z =
f(X) for a measurable function f : R→ R− which is increasing on {FX > 0}.
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Remark 2.10. Note that if ρ satisfies the following tail continuity condition

lim
n→∞

ρ(Y +H1{H≤−n}) = ρ(Y ) for all Y,H ∈ L1

s.t. (Y −H−) ∈ dom ρ, (2.13)

then (2.12) is automatically satisfied, so we obtain δρ(X) 6= ∅ for every X ∈ L1

for which there is an ε > 0 such that (1 + ε)X ∈ dom ρ. If ρ is coherent, then
condition (2.13) is equivalent to

lim
n→∞

ρ(X1{X≤−n}) = 0 for all X ∈ dom ρ

and (2.11) is equivalent to X ∈ dom ρ. ♦

In examples 6.2, 6.3 and 6.4 we illustrate theorem 2.9 by means of well-
known risk measures such as Average Value at Risk, the Semi-deviation Risk
Measures, and the Entropic Risk Measure. All these risk measures satisfy the
tail continuity condition (2.13). In particular, in example 6.4 we show that we
cannot expect any better characterisation of the points at which ρ is generalised
subdifferentiable than the one given in theorem 2.9. Moreover, example 6.6
provides a law-invariant closed coherent risk measure ρ on L1 which is continuous
from below and a risk X ∈ dom ρ such that (2.12) does not hold, so in particular
ρ does not satisfy (2.13).

The proof of theorem 2.9 involves a kind of generalised Orlicz space which
is induced by the law-invariant closed convex risk measure examined. These
spaces are introduced and studied during section 3. We like to point out that
a (1 + ε)–condition similar to (2.11) appears in other works such as [5] solving
optimisation problems by means of Orlicz space theory.

3 The Space Lρ

Throughout this section let ρ be a law-invariant closed convex risk measure on
L1.

Definition 3.1. For C > 0 let

‖X‖C,ρ := inf{λ > 0 | ρ(−|X|/λ) ≤ C}, X ∈ L1,

with the usual convention that inf ∅ =∞, and define

Lρ := {X ∈ L1 | ‖X‖C,ρ <∞}.

Clearly, we adopted this idea from Orlicz space theory.

Lemma 3.2. (i) ‖ · ‖C,ρ : L1 → [0,∞] is a law-invariant sub-linear closed
function on (L1, ‖ · ‖1).
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(ii) Lρ is well-defined, i.e. independent of C > 0. Moreover, if C ∈ (0, 1),
then

C‖ · ‖C,ρ ≤ ‖ · ‖1,ρ ≤ ‖ · ‖C,ρ, (3.1)

and if C ≥ 1, then

‖ · ‖C,ρ ≤ ‖ · ‖1,ρ ≤ C‖ · ‖C,ρ. (3.2)

If ρ is coherent, then for all C > 0:

C‖ · ‖C,ρ = ‖ · ‖1,ρ = ρ(−| · |). (3.3)

(iii) C · ‖X‖C,ρ ≤ ‖X‖∞ for all X ∈ L∞ and C · ‖X‖C,ρ ≥ ‖X‖1 for all
X ∈ L1.

(iv) (Lρ, ‖ · ‖C,ρ) is a law-invariant Banach space such that L∞ ⊆ Lρ ⊆ L1.
The inclusion L∞ ⊂ Lρ is strict if and only if ρ is continuous from below.
In particular, we have that {−X− | X ∈ dom ρ} ⊂ Lρ.

(v) If G is a sub-σ-algebra of F and X ∈ Lρ, then E[X|G] ∈ Lρ.

Proof. We define ΛC(X) := {λ > 0 | ρ(−|X|/λ) ≤ C}.
(i): The law-invariance of ‖ · ‖C,ρ follows immediately from law-invariance of ρ.
Moreover, it is easily verified that ‖tX‖C,ρ = |t| · ‖X‖C,ρ for all t ∈ R. In order
to show that ‖X + Y ‖C,ρ ≤ ‖X‖C,ρ + ‖Y ‖C,ρ it suffices to consider X,Y ∈ Lρ
because if either ‖X‖C,ρ = ∞ or ‖Y ‖C,ρ = ∞ or both, the assertion is trivial.
To this end let α ∈ ΛC(X) and β ∈ ΛC(Y ) for some X,Y ∈ Lρ. Then, by
monotonicity and convexity

ρ

(
−|X + Y |

α+ β

)
≤ ρ

(
− α

α+ β

|X|
α
− β

α+ β

|Y |
β

)
≤ α

α+ β
· ρ
(
−|X|

α

)
+

β

α+ β
· ρ
(
−|Y |
β

)
≤ C,

so ΛC(X)+ΛC(Y ) ⊂ ΛC(X+Y ) which proves the triangle inequality. We claim
that ‖ · ‖C,ρ is l.s.c. on (L1, ‖ · ‖1). In order to verify this, denote the level sets
of ‖ · ‖C,ρ by Ek = {Y | ‖Y ‖C,ρ ≤ k}, k ≥ 0, and let (Xn)n∈N ⊂ Ek for some
k ≥ 0 be a sequence converging to X ∈ L1 w.r.t. ‖ · ‖1. Note that ‖Y ‖C,ρ ≤ k
if and only if ρ(−|Y |/(k + ε)) ≤ C for all ε > 0. Since Xn ∈ Ek for all n ∈ N,
l.s.c. of ρ yields

ρ(−|X|/(k + ε)) ≤ lim inf
n→∞

ρ(−|Xn|/(k + ε)) ≤ C

for any ε > 0, and thus X ∈ Ek. Hence, Ek is closed in (L1, ‖ · ‖1) for every
k ≥ 0, i.e. ‖ · ‖C,ρ is l.s.c. on (L1, ‖ · ‖1). Hence, we have proved that ‖ · ‖C,ρ is
a law-invariant closed sublinear function on L1.

(ii): Clearly, if (3.1) and (3.2) hold, then Lρ is well-defined. We only prove (3.1)
since the proof of (3.2) is similar and (3.3) is obvious by positive homogeneity.
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To this end, let C ∈ (0, 1), X ∈ L1 and λ ∈ Λ1(X), i.e. ρ(−|X|/λ) ≤ 1. Then,
convexity of ρ yields ρ(−C|X|/λ) ≤ Cρ(−|X|/λ) ≤ C. Hence, 1

CΛ1(X) ⊂
ΛC(X), so C‖X‖C,ρ ≤ ‖X‖1,ρ. On the other hand, since C < 1, we have
ΛC(X) ⊂ Λ1(X) and thus ‖X‖1,ρ ≤ ‖X‖C,ρ, and (3.1) is proved.

(iii) and (iv): (i) and (B.1) yield for all X ∈ L1:

‖X‖C,ρ = ‖|X|‖C,ρ ≥ E[|X|] · ‖1‖C,ρ =
1

C
E[|X|] =

1

C
‖X‖1. (3.4)

Consequently, ‖X‖C,ρ = 0 if and only if X = 0. Apparently, the properties of
‖ · ‖C,ρ ensure that (Lρ, ‖ · ‖C,ρ) is a normed space. In order to prove that this
space is complete and thus a Banach space, let (Xn)n∈N be a Cauchy-sequence
in (Lρ, ‖ · ‖C,ρ). Then by (3.4), (Xn)n∈N is a Cauchy-sequence in (L1, ‖ · ‖1).
Let X ∈ L1 be the unique ‖ · ‖1-limit of (Xn)n∈N. Since ‖ · ‖C,ρ is l.s.c. on
(L1, ‖ · ‖1), we obtain ‖X‖C,ρ ≤ lim infn→∞ ‖Xn‖C,ρ < ∞, i.e. X ∈ Lρ. Let
ε > 0 and N(ε) ∈ N such that ‖Xn − Xk‖C,ρ ≤ ε for all k, n ≥ N(ε). As
(Xn −Xk) converges to X −Xk w.r.t. ‖ · ‖1 for n→∞, we obtain

‖X −Xk‖C,ρ ≤ lim inf
n→∞

‖Xn −Xk‖C,ρ ≤ ε for k ≥ N(ε).

Thus we may conclude that X is the ‖ · ‖C,ρ-limit of Xn, i.e. (Lρ, ‖ · ‖C,ρ) is
complete. For every 0 6= X ∈ L∞ we obtain

ρ

(
− C|X|
‖X‖∞

)
≤ ρ(−C) = C

by monotonicity and cash-invariance. Therefore, ‖X‖C,ρ ≤ 1
C ‖X‖∞ and L∞ ⊂

Lρ. Now let X ∈ dom ρ, then ρ(−X−) < ∞ according to lemma 2.6, which
implies that −X− ∈ Lρ. Hence, if ρ is continuous from below, then, by propo-
sition 2.5, there is a X ∈ dom ρ such that essinf X = −∞, and −X− ∈ Lρ,
so Lρ \ L∞ 6= ∅. Conversely, suppose that X ∈ Lρ \ L∞, then, by defini-
tion of ‖ · ‖C,ρ, there is a k > 0 such that ρ(−k|X|) < ∞. Since X 6∈ L∞,
we have either essinf X = −∞ or esssupX = ∞ or both, which implies that
(−k|X|) ∈ {Y ∈ L1 | essinf Y = −∞} ∩ dom ρ. But then ρ must be continuous
from below (proposition 2.5).

(v): Let X ∈ Lρ and let G be a sub-σ-algebra of F . Then, (i) and (B.1) imply
that ‖E[X|G]‖C,ρ ≤ ‖X‖C,ρ, so E[X|G] ∈ Lρ.

The reason for introducing the Banach spaces (Lρ, ‖ · ‖C,ρ) is that we will
prove that the domain of ρ|Lρ has a non-empty interior. Hence, we obtain non-
empty subgradients at these interior points. The role of the variable C > 0 in
the norms ‖ · ‖C,ρ will become clear in (the proof of) lemma 3.4 in which we
characterise the interior points of dom ρ|Lρ .

Lemma 3.3. Let ρ be continuous from below. Denote by Lρ∗ the dual space of
Lρ and by ‖ · ‖C,ρ∗ the operator norm corresponding to ‖ · ‖C,ρ.
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(i) L∞ ⊂ Lρ∗ and Lρ∗∞ ⊂ L1 where Lρ∗∞ := {l|L∞ | l ∈ Lρ∗}. In particular,
if l ∈ Lρ∗ and Z ∈ L1 such that l(X) = E[ZX] for all X ∈ L∞, then
E[Z ·] ∈ Lρ∗.

(ii) Lρ∗ ∩ L1 and ‖ · ‖C,ρ∗|L1 are law-invariant.

(iii) For every Z ∈ Lρ∗ ∩ L1 and any sub-σ-algebra G ⊂ F we have E[Z|G] ∈
Lρ∗.

Proof. (i): Since Lρ ⊂ L1 and C‖ · ‖C,ρ ≥ ‖ · ‖1, every element Z ∈ L∞ = L1∗

defines a continuous linear functional on Lρ via X 7→ E[XZ]. Thus, we may
view L∞ as a subset of Lρ∗. By L∞ ⊂ Lρ and C‖ · ‖C,ρ ≤ ‖ · ‖∞ on L∞ we
must have Lρ∗∞ ⊂ L∞∗. Recall the general property of normed spaces (see e.g.
[2] lemma 6.14)

‖X‖C,ρ = sup
‖Z‖C,ρ∗=1

|E[ZX]|. (3.5)

Suppose we had Zµ ∈ Lρ∗ such that Zµ|L∞ ∈ Lρ∗∞ \ L1. W.l.o.g. ‖Zµ‖C,ρ∗ = 1.
This Zµ viewed as a continuous linear functional on L∞ corresponds to a finitely
additive but not σ-additive bounded signed measure µ on (Ω,F) such that
P(A) = 0 implies µ(A) = 0 (see [18] theorem A.50). Consider the bounded
finitely additive measure |µ| on (Ω,F) given by

|µ|(A) = sup

{
k∑
i=1

|µ(Ai)| | A1, . . . , Ak ∈ F are disjoint subsets of A, k ∈ N

}
,

A ∈ F (for details on |µ| consult e.g. [12] section III.1). Since
∑k
i=1±1Ai ∈ Lρ

for any (disjoint) sets A1, . . . , Ak ∈ F , we infer from (3.5) that

|µ|(A) ≤ ‖1A‖C,ρ for every A ∈ F . (3.6)

As |µ| is not σ-additive, there exists a decreasing sequence of sets Bn ↓ ∅ such
that |µ|(Bn) ↓ ε > 0. We will show that

‖1Bn‖C,ρ → 0 (3.7)

which contradicts (3.6) and thus shows that Lρ∗∞ ⊂ L1. To this end, note that
for every δ > 0 there is an N(δ) ∈ N such that ρ(−1Bn/δ) ≤ C for n ≥ N(δ)
because −1Bn ↑ 0 and ρ is continuous from below. Hence, if n ≥ N(δ), then
‖1Bn‖C,ρ ≤ δ and (3.7) is proved.

Let l ∈ Lρ∗ and Z ∈ L1 such that l(X) = E[ZX] for all X ∈ L∞. By
monotonicity of ‖ · ‖ρ it follows that for any Y ∈ Lρ with Y ≥ 0 we have

E[Z+(Y ∧ n)] = l((Y ∧ n)1{Z≥0}) ≤ ‖l‖ρ∗‖Y ‖ρ ∀n ∈ N.

Hence, E[Z+Y ] ≤ ‖l‖ρ∗‖Y ‖ρ, and noting that Y ∈ Lρ if and only if Y ± ∈
Lρ, and that ‖Y ‖ρ = ‖|Y |‖ρ, we infer that E[Z+·] defines a continuous linear
functional on Lρ. Similarly we find that E[Z−·] ∈ Lρ∗, which yields E[Z ·] ∈
Lρ∗.
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(ii): We claim that

Z ∈ Lρ∗ ∩ L1 if and only if Z+, Z− ∈ Lρ∗ ∩ L1. (3.8)

To this end, note that for every A ∈ F and X ∈ Lρ monotonicity of ρ yields ‖±
1AX‖C,ρ ≤ ‖X‖C,ρ and thus ±1AX ∈ Lρ. Now let Z ∈ Lρ∗∩L1. Choosing A =
{Z ≥ 0} shows that Z+ ∈ Lρ∗, because Lρ 3 X 7→ E[Z+X] = E[Z1{Z≥0}X] is
a real-valued linear function, and

|E[Z+X]| = |E[Z1{Z≥0}X]| ≤ ‖Z‖C,ρ∗‖X1{Z≥0}‖C,ρ ≤ ‖Z‖C,ρ∗‖X‖C,ρ.

Similar arguments yield Z− ∈ Lρ∗. The converse implication of (3.8) is trivial.
By (3.8) it suffices to prove the law-invariance property of Lρ∗ ∩ L1 for the

positive cone Lρ∗+ = {Z ∈ Lρ∗ ∩ L1 | Z ≥ 0} only. Hence, let Z ∈ Lρ∗+ . By
law-invariance of ‖ · ‖C,ρ, lemma C.2, and ‖X‖C,ρ = ‖|X|‖C,ρ we obtain

∞ > ‖Z‖C,ρ∗ = sup
‖X‖C,ρ=1

|E[ZX]|

= sup
‖X‖C,ρ=1

sup
Y∼|X|

E[ZY ]

= sup
‖X‖C,ρ=1

∫ 1

0

qZ(s)q|X|(s)ds (3.9)

in which the latter expression depends on the distribution of Z only. Now it
is easily verified that every Z̃ such that Z̃ ∼ Z defines a continuous linear
functional on Lρ too. The law-invariance of ‖Z‖C,ρ∗ for general Z ∈ Lρ∗ ∩
L1 follows from a calculation similar to (3.9), using the fact that ‖X‖C,ρ =
‖|X|1{Z≥0} − |X|1{Z<0}‖C,ρ.
(iii): Let G be a sub-σ-algebra of F and Z ∈ Lρ∗+ . Then, lemma 3.2 (v) and
(B.1) yield E[E[Z|G]X] = E[ZE[X|G]] ≤ ‖Z‖C,ρ∗‖X‖C,ρ for every X ∈ Lρ+.
Since X ∈ Lρ if and only if X+, X− ∈ Lρ, we conclude that E[Z|G] ∈ Lρ∗+
which, in view of (3.8), completes the proof.

Lemma 3.4. Let ρ be continuous from below.

(i) The function ρ|Lρ is a law-invariant closed convex risk measure on Lρ.
Moreover, if ρ is coherent, then ρ|Lρ is a real-valued continuous coherent
risk measure on Lρ.

(ii) For all X ∈ int dom ρ|Lρ , which is for all X ∈ Lρ in case ρ is coherent,
we have ∂ρ|Lρ(X) 6= ∅. In particular,

if for X ∈ L1 there is ε > 0 such that −(1 + ε)|X| ∈ dom ρ, (3.10)

then X ∈ int dom ρ|Lρ . Moreover, if ρ is coherent and X ∈ L1, then
X ∈ int dom ρ|Lρ = Lρ if and only if −|X| ∈ dom ρ.
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Proof. (i): Obviously, ρ|Lρ is law-invariant, convex, cash-invariant and mono-
tone. Moreover, ρ|Lρ is l.s.c. because, according to lemma 3.2(iii), if a sequence
converges in (Lρ, ‖·‖C,ρ), then this sequence converges in (L1, ‖·‖1) and ρ is l.s.c.
on (L1, ‖·‖1). Suppose that ρ is coherent. Then, ρ|Lρ is coherent too. Moreover,
for every X ∈ Lρ there is a k > 0 such that ρ(−|X|/k) ≤ 1. Hence, by positive
homogeneity and monotonicity we obtain that ρ(X) ≤ ρ(−|X|) ≤ k < ∞. In
other words,

dom ρ|Lρ = int dom ρ|Lρ = Lρ.

We recall that any real-valued closed convex function on a Banach space is
continuous (see [13] corollary 2.5).

(ii) Recall that any closed convex function on a Banach space is subdifferentiable
on the interior of its domain ([13] corollary 2.5 and proposition 5.2). If ‖X‖C,ρ <
1, then there exists a λ ∈ (0, 1) such that ρ(−|X|/λ) ≤ C, and by convexity

1

λ
ρ(−|X|) ≤ ρ(−|X|/λ) ≤ C.

Thus ρ(X) ≤ ρ(−|X|) ≤ λC <∞, that is

B :=
⋃
C>0

{X ∈ Lρ | ‖X‖C,ρ < 1} ⊂ int dom ρ|Lρ .

If there is a ε > 0 such that −(1+ ε)|X| ∈ dom ρ, then for λ := 1/(1+ ε) ∈ (0, 1)
we have ρ(−|X|/λ) = ρ(−(1 + ε)|X|) =: C < ∞, so X ∈ B. If ρ is coherent,
then by (3.3) X ∈ Lρ if and only if −|X| ∈ dom ρ.

Remark 3.5. In view of lemma 2.2 the reader might wonder why on the Banach
space (Lρ, ‖ · ‖C,ρ) it is possible that int dom ρ|Lρ 6= ∅ without ρ|Lρ being real-
valued and continuous and thus subdifferentiable on all of Lρ. The reason is
that the proof of lemma 2.2 relies on the fact that L∞ is dense in (L1, ‖·‖1) (see
[28]). This, however, need not be true for (Lρ, ‖ · ‖C,ρ). In example 6.4 we show
that for the entropic risk measure Lρ corresponds to an Orlicz space for which
it is known that L∞ is not dense. That is one of the reasons why many authors
prefer Orlicz hearts (see e.g. [6]) which are closed sub-spaces of Orlicz spaces
such that L∞ is dense. However, Orlicz hearts are in general much smaller than
the corresponding Orlicz space. But we can imitate Orlicz hearts, i.e. shift to
the subspace Mρ ⊂ Lρ given by

Mρ := {X ∈ L1 | ρ(−c|X|) <∞ ∀c > 0}.

Then ρ|Mρ is a law-invariant real-valued continuous convex risk measure on Mρ,
and thus everywhere subdifferentiable (on Mρ). ♦

Remark 3.6. Since X ∈ int dom ρ|Lρ implies that (1 + ε)X ∈ dom ρ|Lρ for
small enough ε > 0, we have

int dom ρ|Lρ ⊂ {X ∈ L1 | X satisfies condition (2.11)}

in which the inclusion is strict unless Lρ = L1. ♦
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4 Proof of Theorem 2.9

Proof of theorem 2.9. Let X ∈ L1 and suppose that there is an ε > 0 such that
(1 + ε)X ∈ dom ρ (which is always satisfied if X is bounded from below). Then,
in particular, −(1 + ε)X− ∈ dom ρ (lemma 2.6), and thus −X− ∈ int dom ρ|Lρ
(lemma 3.4). By cash-invariance we may w.l.o.g. assume that ρ(X) = 0. Let

ρX+(U) := ρ(X+ + U), U ∈ Lρ.

It is easily verified that ρX+ is a closed convex risk measure on (Lρ, ‖·‖C,ρ). Note
that monotonicity implies dom ρ|Lρ ⊂ dom ρX+ . Hence, −X− ∈ int dom ρX+

which implies that ∂ρX+(−X−) 6= ∅ ([13] corollary 2.5 and proposition 5.2).
Let µ ∈ ∂ρX+(−X−), i.e.

ρX+(−X−) = E[µ(−X−)]− ρ∗X+(µ), (4.1)

and let Zµ ∈ L1 such that E[µY ] = E[ZµY ] for all Y ∈ L∞ (see lemma 3.3).
We claim that

(ZµX
+) ∈ L1 and ρ∗X+(µ) ≥ E[−ZµX+] + ρ∗∞(Zµ), (4.2)

and
E[Zµ(−X−)] ≥ E[µ(−X−)]. (4.3)

Suppose we knew (4.2) and (4.3). Then, (4.1) yields

ρ(X) = ρX+(−X−) ≤ E[ZµX]− ρ∗∞(Zµ),

or in other words Zµ ∈ δρ(X). In order to verify (4.2), in a first step we compute

sup
U∈L∞

E[ZµU ]− ρ(X+ + U) = sup
U∈L∞

lim
n→∞

E[ZµU ]− ρ((X+ ∧ n) + U)

≤ lim inf
n→∞

sup
U∈L∞

E[ZµU ]− ρ((X+ ∧ n) + U)

≤ sup
U∈L∞

E[ZµU ]− ρ(X+ + U) (4.4)

in which the first equality follows from lemma 2.8. Hence, all inequalities in
(4.4) must in fact be equalities. Secondly, we obtain that

ρ∗X+(µ) ≥ sup
U∈L∞

E[ZµU ]− ρ(X+ + U)

= lim inf
n→∞

sup
U∈L∞

E[ZµU ]− ρ((X+ ∧ n) + U)

= lim inf
n→∞

sup
U∈L∞

E[Zµ(U − (X+ ∧ n))]− ρ(U)

= E[−ZµX+] + ρ∗∞(Zµ),

in which the first equality is due to our first step, and the last equality follows
from monotone convergence. Thus, as ρ∗X+(µ) <∞, we infer that E[−ZµX+] <
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∞ and ρ∗∞(Zµ) < ∞, and (4.2) is proved. As for (4.3), note that if X− is
bounded, then E[Zµ(−X−)] = E[µ(−X−)], and we are done. Now suppose
that X− is unbounded and that (2.12) holds, but δ := E[(µ− Zµ)(−X−)] > 0.
This implies

E[µ(−X−)1{X−≥n}] ≥ E[(µ− Zµ)(−X−)1{X−≥n}] = E[(µ− Zµ)(−X−)] = δ

because monotonicity of ρ implies that

µ,Zµ ∈ {ν ∈ Lρ∗ | ∀Y ∈ Lρ+ : E[νY ] ≤ 0},

and because (−X−)1{X−<n} ∈ L∞. Since ρ(X) = 0 by assumption, (4.1) yields

E[µ(−X−)] = ρ∗X+(µ) = sup
Y ∈Aρ

X+

E[µY ] (4.5)

for AρX+ = {Y ∈ Lρ | ρX+(Y ) ≤ 0} where the last step follows from cash-
invariance. Let Xn := −X− − εX−1{X−≥n}, n ∈ N. Then Xn ∈ dom ρX+ and
limn→∞ ρX+(Xn) = ρX+(−X−) = 0 due to (2.12). Hence, as cash-invariance
implies that E[µ1] = −1, we obtain by (4.5) that

E[µ(−X−)] ≥ E[µ(Xn + ρX+(Xn))]

= εE[µ(−X−)1{X−≥n}] + E[µ(−X−)]− ρX+(Xn)

≥ εδ + E[µ(−X−)]− ρX+(Xn) for all n ∈ N.

Passing to the limit for n → ∞ yields the desired contradiction to δ > 0.
Consequently, (4.3) is proved.

It remains to be shown that Zµ may be chosen as an increasing function of
X. To this end, note that according to lemma 2.7 we have ρ(X) = E[ZµX] −
ρ∗∞(Zµ). By (B.1), which implies that ρ(X) ≤ E[E[Zµ|X]X] − ρ∗∞(E[Zµ|X])
and thus E[Zµ|X] ∈ δρ(X) (lemma 2.7), we may assume that Zµ = f(X) for a
measurable function f : R → R−, and still Zµ ∈ Lρ∗ (lemma 3.3). Moreover,
since −X− ∈ Lρ, and Lρ∗ ∩ L1 is law-invariant (lemma 3.3) we have that

(−Z̃X−) ∈ L1 for all Z̃ ∼ Zµ. Consequently, E[Z̃X] is well-defined for all

Z̃ ∼ Zµ, so we may apply lemma C.2 in the following. Recalling that −(qX)− =
q−X− we obtain

−∞ < E[ZµX] ≤
∫ 1

0

qZµ(s)qX(s)ds ≤
∫ 1

0

qZµ(s)q−X−(s)ds <∞

in which we applied lemmas C.1 and C.2. If E[ZµX] <
∫ 1

0
qZµ(s)qX(s)ds, then

according to lemma C.2 there would be a Z̃ ∼ Zµ such that E[Z̃X] > E[ZµX].

Since Z̃X ∈ L1 (lemma C.1), by law-invariance of ρ∗∞, and by lemma 2.7, we
would have that

ρ(X) = E[ZµX]− ρ∗∞(Z) < E[Z̃X]− ρ∗∞(Z̃) ≤ ρ(X)

which is a contradiction. Therefore, E[XZµ] =
∫ 1

0
qZ(s)qX(s)ds, so f may be

chosen as an increasing function on {FX > 0} (lemma C.1).
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5 Optimal Risk Sharing

In this section we consider n agents with initial endowments (risks) Xi ∈ L1,
whose preferences are represented by law-invariant closed convex risk measures
ρi on L1 which are continuous from below, i = 1, . . . , n. We write

X := X1 + . . .+Xn

for the aggregate endowment. The aim of the agents is to minimise individ-
ual and total risk by sharing X optimally. An allocation of X is a n-tuple
(Y1, . . . , Yn) ∈ L1 × . . . × L1 such that

∑n
i=1 Yi = X. The risk minimisation

problem is equivalent to finding allocations (Y1, . . . , Yn) of X such that

�ni=1ρi(X) =

n∑
i=1

ρi(Yi) (5.1)

where �ni=1ρi denotes the convolution of the ρi as defined in (A.1) (for more
details on risk sharing and convolution, please consult [1, 4, 15, 16, 19]). Alloca-
tions solving (5.1) are called optimal. We are particularly interested in optimal
allocations which have the following structure.

Definition 5.1. An allocation (Y1, . . . , Yn) of X ∈ L1 is called comonotone if
there exist increasing functions f1, . . . , fn : R→ R such that

∑n
i=1 fi = IdR and

Yi = fi(X) for all i = 1, . . . , n. These functions fi are necessarily 1-Lipschitz-
continuous.

The following theorem is our main existence and characterisation result for
optimal risk sharing in L1.

Theorem 5.2. The convolution �ni=1ρi is a law-invariant closed convex risk
measure on L1 which is continuous from below. Its restriction to L∞ satisfies

(�ni=1ρi)∞ = �ni=1((ρi)∞). (5.2)

Moreover, for every X ∈ L1, there exists a comonotone optimal allocation, and
the first order condition

δ�ni=1ρi(X) =

n⋂
i=1

δρi(Yi) (5.3)

holds for every comonotone optimal allocation (Y1, . . . , Yn) of X. In particular,
if X is bounded from below or if X and �ni=1ρi satisfy conditions (2.11) and
(2.12), then δ�ni=1ρi(X) 6= ∅.

Proof. It is proved in [16] (and [29]) that �ni=1ρi is a law-invariant closed convex
risk measure on L1 admitting a comonotone optimal allocation (Y1, . . . , Yn) for
any X ∈ L1. The continuity from below of �ni=1ρi follows from proposition 2.5
and lemma A.1. As for (5.2), let X ∈ L∞ and (Y1, . . . , Yn) be any comonotone

18



allocation of X. Then, due to the 1-Lipschitz-continuity of fi in definition 5.1,
we have |Yi| = |fi(X)| ≤ |fi(0)|+ |X|. Hence Yi ∈ L∞, for all i = 1, . . . , n. Now
(5.2) follows from the first part of the proof.

As for (5.3), let (Y1, . . . , Yn) be any comonotone optimal allocation of X.
Suppose Z ∈ δ�ni=1ρi(X). Then

ρ1(Y1) + . . .+ ρn(Yn) = �ni=1ρi(X) = E[ZX]− (�ni=1ρi)
∗
∞(Z)

=

n∑
i=1

E[ZYi]− (ρi)
∗
∞(Z)

by (5.2), lemmas A.1 and 2.7, and the fact that ZYi ∈ L1 due to comonotonicity
of the allocation. Now lemma 2.7 implies that Z ∈

⋂n
i=1 δρi(Yi). Conversely,

let Z ∈
⋂n
i=1 δρi(Yi), then again by (5.2), and lemmas A.1 and 2.7

�ni=1ρi(X) =

n∑
i=1

ρi(Yi) =

n∑
i=1

E[ZYi]− (ρi)
∗
∞(Z)

= E[ZX]− (�ni=1ρi)
∗
∞(Z).

Whence Z ∈ δ�ni=1ρi(X). The final statement of theorem 5.2 is simply an
application of theorem 2.9.

Remark 5.3. Note that the statement (5.3) may be void (∅ = ∅). As mentioned
in remark 2.10, if �ni=1ρi satisfies (2.13), then we only have to check whether
there is ε > 0 such that (2.11) holds. Condition (2.13) in turn is satisfied by
�ni=1ρi if e.g.

∑n
i=1 dom ρi(= dom�ni=1ρi) = L1 (lemma 2.2) or if all ρi, i =

1, . . . , n, are coherent and satisfy (2.13). In order to verify the latter statement,
let Y ∈ dom�ni=1ρi be unbounded from below and let (f1(Y ), . . . , fn(Y )) ∈
dom ρ1 × . . .× dom ρn be a comonotone allocation of Y such that fi(0) = 0 for
all i = 1, . . . , n. If fi(Y ) is bounded from below, then continuity from below
implies that limn→∞ ρi(fi(Y )1{Y≤−n}) = 0. Otherwise, if fi(Y ) is unbounded
from below, then there is an increasing sequence (mn)n∈N ⊂ N such that

fi(Y )1{Y≤−n} ≥ fi(Y )1{fi(Y )≤−mn} for all n ∈ N,

because fi is increasing and in this case unbounded from below. Hence, we
obtain

0 ≤ lim
n→∞

ρi(fi(Y )1{Y≤−n}) ≤ lim
n→∞

ρi(fi(Y )1{fi(Y )≤−mn}) = 0

by (2.13). Eventually, as (f1(Y )1{Y≤−n}, . . . , fn(Y )1{Y≤−n}) is an allocation of
Y 1{Y≤−n}, we arrive at

0 ≤ lim
n→∞

�ni=1ρi(Y 1{Y≤−n}) ≤ lim
n→∞

n∑
i=1

ρi(fi(Y )1{Y≤−n}) = 0.

♦
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The subgradients δ�ni=1ρi(X) induce equilibrium pricing rules as follows.
We identify each Z ∈ PR with the absolutely continuous probability measure
Q� P given by dQ/dP = Z, and with the corresponding pricing rule

L1(Q) := L1(Ω,F ,Q) 3 Y 7→ EQ[Y ].

Definition 5.4. An allocation (Ỹ1, . . . , Ỹn) of X together with a pricing rule

Q ∈ PR is called an equilibrium if Xi, Ỹi ∈ L1(Q), EQ[Ỹi] ≤ EQ[Xi], and

ρi(Ỹi) = inf{ρi(Yi) | Yi ∈ L1(Q) ∩ L1, EQ[Yi] ≤ EQ[Xi]}

for all i = 1, . . . , n.

For a thorough discussion of equilibria with respect to convex risk measures
we refer to [15]. The following theorem establishes the connection between
equilibria, optimal allocations and generalised subgradients.

Theorem 5.5. The following conditions are equivalent:

(i) There exists an equilibrium (Ỹ1, . . . , Ỹn;Q).

(ii) There exists a comonotone equilibrium (Ỹ1, . . . , Ỹn;Q).

(iii) There is Z ∈ δ�ni=1ρi(X) such that ZXi ∈ L1 for all i = 1, . . . , n.

Moreover, if (Ỹ1, . . . , Ỹn) is a comonotone optimal allocation of X and (iii)

holds, then (Ỹ1 +EQ[X1− Ỹ1], . . . , Ỹn +EQ[Xn− Ỹn];Q) where dQ/dP = −Z is
an equilibrium.

Proof. Let Q� P be a probability measure on (Ω,F) such that Xi ∈ L1(Q) for
all i = 1, . . . , n. We claim that

inf
Y∈L1(Q)∩L1

EQ[Y ]≤EQ[Xi]

ρi(Y ) = E[ZXi]− (ρi)
∗
∞(Z) (5.4)

where Z := −dQ/dP. In order to verify this, note that by cash-invariance of ρi
it is obvious that the infimum on the left-hand side of (5.4) equals the infimum
taken over those Y ∈ L1(Q) ∩ L1 satisfying EQ[Y ] = EQ[Xi]. Now for every
Y ∈ L1(Q)∩L1 such that EQ[Y ] = EQ[Xi] lemma 2.8 and monotone convergence
imply that

ρi(Y ) = lim
m→∞

lim
n→∞

ρi((Y
+ ∧ n)− (Y − ∧m))

≥ lim
m→∞

lim
n→∞

E[Z((Y + ∧ n)− (Y − ∧m))]− (ρi)
∗
∞(Z)

= E[ZY ]− (ρi)
∗
∞(Z) = E[ZXi]− (ρi)

∗
∞(Z).
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Hence, we have established ≥ in (5.4). Moreover, since EQ[Y + EQ[Xi − Y ]] =
EQ[Xi] for every Y ∈ L1(Q) and by cash-invariance we obtain

inf
Y∈L1(Q)∩L1

EQ[Y ]≤EQ[Xi]

ρi(Y ) = inf
Y ∈L1(Q)∩L1

ρi(Y + EQ[Xi − Y ])

= EQ[−Xi]− sup
Y ∈L1(Q)∩L1

(
EQ[−Y ]− ρi(Y )

)
≤ E[ZXi]− sup

Y ∈L∞

(
E[ZY ]− ρi(Y )

)
= E[ZXi]− (ρi)

∗
∞(Z),

and (5.4) is proved.

(i) ⇔ (ii): suppose there exists an equilibrium (Ỹ1, . . . , Ỹn;Q). Let (Y1, . . . , Yn)
be any comonotone optimal allocation of X, which exists according to theo-
rem 5.2. Then Yi ∈ L1(Q) by comonotonicity and the fact that X ∈ L1(Q)
by definition of an equilibrium. By rebalancing the cash, this is by adding
ci = EQ[Xi − Yi] to each Yi, we achieve that EQ[Yi + ci] = EQ[Xi] for all
i = 1, . . . , n, and the modified allocation (Y1+c1, . . . , Yn+cn) is still comonotone
and optimal due to

∑n
i=1 ci = 0 and cash-invariance of the ρi. Consequently,

we may w.l.o.g. assume that (Y1, . . . , Yn) satisfies EQ[Yi] = EQ[Xi]. But then,

ρi(Ỹi) ≤ ρi(Yi) for each i = 1, . . . , n (definition 5.4), which can only hold if

(Ỹ1, . . . , Ỹn) is itself optimal and ρi(Ỹi) = ρi(Yi). Hence, (Y1, . . . , Yn,Q) is a
comonotone equilibrium. The converse implication is trivial.

(ii)⇒ (iii): in the fist part of the proof, we established that the allocation given
by any equilibrium must be optimal. Hence, in view of (5.4), and lemma A.1
we conclude that

�ni=1ρi(X) =

n∑
i=1

ρi(Ỹi) =

n∑
i=1

E[ZXi]− (ρi)
∗
∞(Z)

= E[ZX]− (�ni=1ρi)
∗
∞(Z)

where Z := −dQ/dP. Consequently, we have proved that Z ∈ δ�ni=1ρi(X)
(lemma 2.7).

(iii) ⇒ (ii): suppose there is Z ∈ δ�ni=1ρi(X) and let Q be given by dQ/dP :=
−Z. Moreover, let (Y1, . . . , Yn) be any comonotone optimal allocation of X
such that EQ[Yi] = EQ[Xi] for all i = 1, . . . , n (theorem 5.2 and rebalancing the
cash). The equality (5.3) implies that Z ∈ δρi(Yi) for all i = 1, . . . , n. This in
conjunction with (5.4) and lemma 2.7 yields

ρi(Yi) = E[ZYi]− (ρi)
∗
∞(Z) = E[ZXi]− (ρi)

∗
∞(Z) = inf

Y∈L1(Q)∩L1

EQ[Y ]≤EQ[Xi]

ρi(Y ),

so we infer that
ρi(Yi) = inf

Y∈L1(Q)∩L1

EQ[Y ]≤EQ[Xi]

ρi(Y ).
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Consequently, (Y1, . . . , Yn;Q) is an equilibrium. This also proves the closing
statement of the theorem.

Finally, we provide sufficient conditions for the existence of an equilibrium.

Lemma 5.6. Suppose that X is bounded from below, or that X and �ni=1ρi
satisfy conditions (2.11) and (2.12). If either

∀ P̃ ∈ PR : X ∈ L1(P̃) ⇔ Xi ∈ L1(P̃) for all i = 1, . . . , n (5.5)

or
Xi ∈ L�ni=1ρi for all i = 1, . . . , n, (5.6)

then there exists an equilibrium.

Proof. In case of (5.5) combine theorems 5.2 and 5.5. In case of (5.6) we also
recall that according to the proof of theorem 2.9, under the stated conditions,
we do not only know that there is Z ∈ δ�ni=1ρi(X), but we may also assume
that this Z is an element of the dual space of L�ni=1ρi . Hence, if Xi ∈ L�ni=1ρi ,
then ZXi ∈ L1 for all i = 1, . . . , n, so theorem 5.5 (iii) applies.

Condition (5.5) is always satisfied if Xi ∈ L∞, i = 1, . . . , n, or if the initial
risks Xi may be somehow controlled by the aggregate risk X, which should be
satisfied in most interesting cases. Condition (5.6) will be applied in example 6.2.

6 Examples

In example 6.1 we show that a law-invariant closed convex risk measure ρ on L1

which is not continuous from below may have empty generalised subgradients
even for bounded risks. Examples 6.2, 6.3, and 6.4 illustrate our main results, in
particular theorems 2.9, and 5.5 by means of some well-known risk measures. In
examples 6.2 (Average Value at Risk) and 6.3 (Lp-Semi-Deviation Risk Measure)
the spaces Lρ will coincide with some Lebesgue space Lp which are a subclass
of Orlicz hearts. Orlicz hearts are proposed as model spaces for convex risk
measures in [6]. For a definition of Orlicz spaces/hearts and the details on
risk measures on Orlicz hearts please consult [6]. In example 6.4, in which we
study the entropic risk measure, we will see that Lρ corresponds to an Orlicz
space which is strictly larger than the corresponding Orlicz heart, and we will
find that the set of points at which the entropic risk measure is generalised
subdifferentiable is also strictly larger than this Orlicz heart. Example 6.5 then
shows that, although the above mentioned prominent examples of law-invariant
convex risk measures are all linked to certain Orlicz spaces, the class of Lρ-
spaces covers a far greater variety of law-invariant Banach spaces. This section
closes with example 6.6 which is linked to conditions (2.12) and (2.13).
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6.1 Essential Infimum

Let ρ = − essinf and let X ∈ L∞ be such that P(X = essinf X) = 0. Then
δρ(X) = ∅, because for every probability measure Q� P we have that Q(X =
essinf X) = 0. Supposing we had −dQ/dP ∈ δρ(X), then EQ[X− essinf X] = 0,
which would imply that X = essinf X Q-a.s., and thus would be a contradiction.
Hence, δρ(X) = ∅, although ∂ρ∞(X) 6= ∅.

6.2 Average Value at Risk

Consider the Average Value at Risk (AVaRα) at level α ∈ (0, 1], i.e.

AVaRα(X) = − 1

α

∫ α

0

qX(s)ds, X ∈ L1.

It is well-known that AVaRα is continuous on L1 (for a proof see e.g. [28]) and
thus subdifferentiable by lemma 2.2. Clearly, LAVaRα = L1, and in view of
lemma 3.2 and continuity w.r.t. ‖ · ‖1 it is easily verified that ‖ · ‖C,AVaRα and
‖ · ‖1 are equivalent. Thus Lρ∗ = L∞. According to (the proof of) theorem 2.9
for every X ∈ L1 there is a fα : R→ R− which is increasing on {FX > 0} such
that fα(X) ∈ ∂AVaRα(X) ⊂ δAVaRα(X). It is proved in [18] theorem 4.47
and remark 4.48 that

fα(X) = − 1

α
(1{X<qX(α)} − κ1{X=qX(α)})

where κ is defined as

κ :=

{
0 if P(X = qX(α)) = 0,
α−P(X<qX(α))
P(X=qX(α)) otherwise

does the job. Note that fα is indeed increasing, does depend on X, and is not
continuous. Let βi ∈ (0, 1] for i = 1, . . . , n, and let γ := maxi=1,...,n βi. It is
well-known (see e.g. [16]) that

�ni=1 AVaRβi = AVaRγ .

Hence, as we are in the situation of (5.6), and assuming w.l.o.g. that β1 = γ, we
obtain that for any initial risks Xi ∈ L1 and X :=

∑n
i=1Xi an equilibrium is

given by (X + c1, c2, . . . , cn;Q) where dQ/dP = −fγ(X) and c1 = EQ[X1 −X],
ci = EQ[Xi] for i = 2, . . . , n.

6.3 Lp–Semi–Deviation Risk Measure

Let p ∈ [1,∞) and ρp(X) = E[−X] + δ‖(X − E[X])−‖p, X ∈ L1, for some
δ ∈ (0, 1]. Then ρp is a law-invariant closed coherent risk measure on L1 which
is continuous from below (proposition 2.5 (iv)) and satisfies (2.13). In fact ρp is
continuous if restricted to (Lp, ‖ · ‖p). It easily verified that Lρp = Lp, and that
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‖ · ‖C,ρp and ‖ · ‖p are equivalent. Thus we have that Lρp∗ = Lq for q ∈ (1,∞]
such that 1

p + 1
q = 1. By theorem 2.9, for every X ∈ dom ρ there is a f : R→ R−

which is increasing on {FX > 0} such that f(X) ∈ δρp(X) ∩ Lq (the fact that
f(X) ∈ Lρp∗ = Lq is shown in the proof of theorem 2.9). It is known (see e.g.
[1] or [14]) that

f(X) =

{
−1 if X = constant,

−1 + δE[((X−E[X])−)p−1]−((X−E[X])−)p−1

‖(X−E[X])−‖p−1
p

otherwise
(6.1)

does the job. Note that for 1 ≤ p ≤ r < ∞ we have ρp ≤ ρr due to Hölder’s
inequality. Consequently, dom ρ∗p ⊂ dom ρ∗r and in conjunction with theorem 2.5
in [16] we conclude that ρp�ρr = ρp. Hence, if the initial risks satisfy X1, X2 ∈
Lp, then (X + EQ[X1 − X], EQ[X2];Q) is an equilibrium provided that X =
X1 + X2 and −dQ/dP is given by (6.1). The extension of this two-agent case
to the n-agent case is obvious.

6.4 Entropic Risk Measure

The entropic risk measure with parameter β > 0 is

ρβ(X) =
1

β
logE[e−βX ], X ∈ L1.

It is a law-invariant closed convex risk measure on L1 which is continuous from
below (proposition 2.5 (iv)) and satisfies (2.13). For simplicity we consider
ρ := ρ1. Then, ρ∗∞(Z) = E[−Z log(−Z)] for every Z ∈ P∞∗ ∩ L1 (see [18]
example 4.33). In the following we illustrate the quality of condition (2.11). To
this end, assume that X ∈ L1 satisfies condition (2.11), i.e. there exists k > 1

such that kX ∈ dom ρ. Then we have Z := − e−X

E[e−X ]
∈ L1, and XZ ∈ L1 too,

because |X|e−X ≤ C + e−kX for some constant C > 0 and E[e−kX ] < ∞ by
assumption. It is proved in [18] lemma 3.29 and example 4.33 that

ρ(X) = E[ZX]− ρ∗∞(Z),

and thus Z ∈ δρ(X) by lemma 2.7. Obviously, Z = f(X) for an increasing
function f : R → R−. Now we show that condition (2.11) is in some sense the
best we can expect. For this purpose, consider an X ∈ L1 being distributed
according to

FX(x) = C ·
∫ −1∧x

−∞

eu

u2
du

for an appropriate constant C > 0. It is easily verified that X ∈ dom ρ and
X ∈ Lρ, but (1 + ε)X 6∈ dom ρ for all ε > 0. We claim that δρ(X) = ∅. Suppose
we had δρ(X) 6= ∅. Then, according to lemma 6.1 below, this would imply that

Z := − e−X

E[e−X ]
∈ δρ(X). But this cannot hold because

E[ZX] =
E[−Xe−X ]

E[e−X ]
=∞,
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so we must have δρ(X) = ∅.
Next we elaborate on the connection with Orlicz spaces and Orlicz hearts

(for a thorough discussion of Orlicz spaces and hearts we refer to [23]). To this
end, we let Φ(x) = exp(x)− 1, x ≥ 0, and define the spaces

LΦ := {X ∈ L1 | E[Φ(c|X|)] <∞ for some c > 0}

and
MΦ := {X ∈ L1 | E[Φ(c|X|)] <∞ for all c > 0}.

The Orlicz space LΦ is a Banach space if equipped with the Luxemburg norm

‖X‖Φ := inf

{
λ > 0 | E

[
Φ

(
|X|
λ

)]
≤ 1

}
(see e.g. [23] theorem 3.3.10).

It is well-known that L∞ ⊂ LΦ is not dense and that the Orlicz heart MΦ $ LΦ

is the ‖ · ‖Φ-closure of L∞ in LΦ, and thus itself a Banach Space. Note that
Lρ = LΦ, and that ‖·‖Φ = ‖·‖log 2,ρ. In search for subgradients, as an alternative
to the space Lρ, one could think of choosing the Orlicz heart MΦ, because ρ|MΦ

is closed and real-valued, and thus continuous and everywhere subdifferentiable
([13] corollary 2.5 and proposition 5.2). However, in doing so, we would neglect
a lot of points at which ρ is generalised subdifferentiable. In fact, we have that

MΦ $ int dom ρ|Lρ $ {X ∈ L1 | X satisfies condition (2.11)}. (6.2)

The fact that the first inclusion must be strict is easily verified by considering
any X being distributed according to

FX(x) = eλx ∧ 1 for λ > 1.

On the one hand, −k|X| ∈ dom ρ for every k ∈ (1, λ), so X ∈ int dom ρ|Lρ by
(3.10). On the other hand, for c ≥ λ we have E[Φ(c|X|)] = ∞, so X 6∈ MΦ.
The last strict inclusion in (6.2) is justified in remark 3.6.

As for equilibria, it is well-known (see e.g. [4], [16]) that

ρβ�ργ = ρα for α :=
βγ

β + γ
,

and that for every X ∈ L1 an optimal allocation is given by
(

γ
β+γX,

β
β+γX

)
,

which is unique up to rebalancing the cash (which in this case means that all

optimal allocations are of type
(

γ
β+γX + c, β

β+γX − c
)

, c ∈ R). Moreover,

lemma 6.1 shows that δρα contains at most one element. Consequently, in
view of theorem 5.5, we infer that given any initial risks X1, X2 ∈ L1 and
the aggregate endowment X := X1 + X2 such that there is Z ∈ δρα(X) and
(ZX1), (ZX2) ∈ L1, the unique equilibrium is(

γ

β + γ
X + EQ[X1 −

γ

β + γ
X],

β

β + γ
X + EQ[X2 −

β

β + γ
X];Q

)
in which Q is given by dQ

dP = e−αX

E[e−αX ]
.
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Lemma 6.1. Let ρβ be the entropic risk measure with parameter β > 0. Then,

∀Y ∈ L1 : Z ∈ δρβ(Y ) ⇒ Z = − e−βY

E[e−βY ]
.

Proof. Let Y ∈ dom ρβ and define the probability measure P̃ ≈ P by

dP̃
dP

=
e−βY

E[e−βY ]
.

Suppose there is a Z ∈ δρβ(Y ). Then, dQ
dP = −Z defines a probability measure

Q� P, and we have that

ρβ(Y ) = EQ[−Y ]− 1

β
EQ

[
log

dQ
dP

]
(6.3)

in which both EQ[−Y ] <∞ and EQ[log dQ
dP ] <∞ (lemma 2.7). Note that

log
dQ
dP

= log
dQ
dP̃

+ log
e−βY

E[e−βY ]
= log

dQ
dP̃
− βY − βρβ(Y ),

and thus

βY + βρβ(Y ) + log
dQ
dP

= log
dQ
dP̃

. (6.4)

Since the left hand side of (6.4) is Q-integrable, we obtain log dQ
dP̃
∈ L1(Q) and

ρβ(Y )−
(
EQ[−Y ]− 1

β
EQ

[
log

dQ
dP

])
=

1

β
EQ

[
log

dQ
dP̃

]
.

By (6.3) we conclude that EQ[log dQ
dP̃

] = 0 which is equivalent to Q = P̃.

6.5 The Variety of the Lρ-spaces

The spaces Lρ of the preceding examples all corresponded to Orlicz spaces. This
is no suprise since the presented risk measures are all closely connected to some
Orlicz space generating function. However, as we should expect, this is not the
case in general. In this example we will show that Lρ might almost be any
law-invariant Banach space of random variables. To this end, let (L, ‖ · ‖L) be
a Banach space satisfying the following conditions:

(i) ‖·‖L : L1 → [0,∞] is a law-invariant closed (w.r.t. ‖·‖1) sublinear function
such that ‖X‖L = ‖|X|‖L and |X| ≥ |Y | ⇒ ‖X‖L ≥ ‖Y ‖L,

(ii) R ⊂ L = {X ∈ L1 | ‖X‖L <∞}.

Consider the law-invariant closed coherent risk measure ρ on L1 given by

ρ(X) = E[−X] +
1

‖1‖L
‖(X − E[X])−‖L, X ∈ L1.
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It is easily verified that Lρ = L. Note that (L, ‖ ·‖L) is not necessarily an Orlicz
space. Conditions (i) and (ii) are for instance satisfied by any Lorentz space
(see e.g. [23] section 10.3 for a definition) which do not coincide with Orlicz
spaces in general (see e.g. [23] theorem 10.3.3 and [22]). A concrete example is
the space given by

‖X‖L =
1

2

∫ 1

0

q|X|(s)√
1− s

ds, X ∈ L1.

6.6 An Example of a Law-Invariant Closed Coherent Risk
Measure which is Continuous from Below but does
not satisfy (2.13)

Let (Ω,F ,P) = ((0, 1],B(0, 1], λ) where B(0, 1] is the Borel-σ-algebra over (0, 1]
and λ denotes the Lebesgue-measure restricted to B(0, 1]. Let the probability
measures Qn be given by

dQn
dP

= n1(0, 1
n2 ] +

n

n+ 1
1( 1

n2 ,1],

and let Z̃n := −dQn/dP, n ∈ N. Moreover, let

Q := {Z ∈ L∞ | ∃n ∈ N : Z ∼ Z̃n},

and define a law-invariant closed coherent risk measure on L1 by

ρ(X) := sup
Z∈Q

E[ZX] = sup
Z∈Q

∫ 1

0

qX(s)qZ(s) ds, X ∈ L1,

where the last equality, and thus the law-invariance of ρ, follows from law-
invariance of Q and lemma C.2. Note that the following computations also
imply that ρ is continuous from below (proposition 2.5). Consider the point
Y (ω) := − 1√

ω
, ω ∈ (0, 1], in L1. Since the function Y is increasing, it is

immediate that

sup
Z∼Z̃n

E[ZY ] = E[Z̃nY ] =
4n

n+ 1

and thus

ρ(Y ) = lim
n→∞

4n

n+ 1
= 4.

We notice that for every ε > 0

lim
n→∞

ρ(Y + εY 1{Y≤−n}) ≥ lim
n→∞

E[Z̃nY ] + εE[Z̃nY 1{Y≤−n}] = 4 + 2ε > ρ(Y ),

so ρ and Y do not satisfy (2.12), and in particular ρ does not satisfy (2.13).
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A The Convolution

Let F1, . . . , Fn : V → (−∞,∞] be proper convex functions on some locally
convex space V . The convolution of F1, . . . , Fn is the function

�ni=1Fi(X) := F1� . . .�Fn(X) := inf
Xi∈V,∑n
i=1

Xi=X

n∑
i=1

Fi(Xi), X ∈ V. (A.1)

The following properties are well-known (see e.g. [24]).

Lemma A.1. (i) �ni=1Fi : Lp → [−∞,∞] is a convex function,

(ii) dom�ni=1Fi =
∑n
i=1 domFi,

(iii) (�ni=1Fi)
∗ =

∑n
i=1 F

∗
i ,

(iv) dom(�ni=1Fi)
∗ =

⋂n
i=1 domF ∗i .

B Law-invariant Convex Functions

Throughout the paper we draw heavily on the following properties, which are
proved in [11] and [28]. Let p ∈ [1,∞] and q := p

p−1 where 1/0 := ∞ and

∞/(∞− 1) := 1. For every proper closed convex function F : Lp → (−∞,∞]
the following conditions are equivalent:

F is law-invariant⇔ F is σ(Lp, Lq)-closed and F ∗|L1 is law-invariant

⇔ X �c Y implies F (X) ≤ F (Y )

in which �c denotes the concave order defined by X �c Y if and only if
E[u(X)] ≥ E[u(X)] for all concave functions u : R → R. Since E[X|G] �c X
by Jensen’s inequality, if F is law-invariant, then

F (E[X|G]) ≤ F (X) for all sub-σ-algebras G ⊂ F . (B.1)

Hence, if (Gn)n∈N is a sequence of sub-σ-algebras of F and X ∈ Lp such that
E[X|Gn] converges to X w.r.t. ‖ · ‖p, then (B.1) and l.s.c. of F imply that

F (X) = lim
n→∞

F (E[X|Gn]). (B.2)

Now let ρ : Lp → (−∞,∞] be a law-invariant closed convex risk measure. Then
cash-invariance and (B.1) imply that

ρ(X) ≥ −E[X] .

Hence, as 0 ∈ Lp,

ρ∗(−1) = sup
X∈Lp

E[−X]− ρ(X) = 0 . (B.3)
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C Hardy-Littlewood Inequalities

Lemma C.1 (theorem A.24 in [18]). For any two random variables X and Z
we have ∫ 1

0

qX(1− s)qZ(s)ds ≤ E[XZ] ≤
∫ 1

0

qX(s)qZ(s)ds,

provided that the integrals are well-defined. Moreover, if Z = f(X) for a mea-
surable function f : R → R and the upper(lower) bound is finite, then the
upper(lower) bound is attained if and only if f can be chosen as an increas-
ing(decreasing) function on either {FX > 0} if Z is bounded from above, or on
{0 < FX < 1} else.

The following lemma is an extension of lemma 4.55 in [18]. For the sake of
completeness we provide a self-contained proof.

Lemma C.2. Let X,Z ∈ L1.

(i) If E[X̃Z] is well-defined for every X̃ ∼ X and if
∫ 1

0
|qX(s)qZ(s)|ds <∞,

then

sup
X̃∼X

E[ZX̃] =

∫ 1

0

qX(s)qZ(s)ds. (C.1)

(ii) In particular, condition (i) is satisfied if (X̃Z) ∈ L1 for all X̃ ∼ X.

Proof. step 1. Suppose the distribution function FZ of Z is continuous. Then
U := FZ(Z) has a uniform distribution on (0, 1) and Z = qZ(U) P-a.s.. For
X̄ := qX(U) ∼ X we have that

E[|X̄||Z|] = E[|qX(U)||qZ(U)|] =

∫ 1

0

|qX(s)||qZ(s)|ds. (C.2)

Thus, if E[X̃Z] is well-defined for every X̃ ∼ X and if
∫ 1

0
|qX(s)qZ(s)|ds <∞,

then (C.1) follows from

E[X̄Z] =

∫ 1

0

qX(s)qZ(s) ds

and lemma C.1. Moreover, if (X̃Z) ∈ L1 for all X̃ ∼ X, then E[X̃Z] is well-

defined for every X̃ ∼ X, and
∫ 1

0
|qX(s)qZ(s)|ds <∞ follows from (C.2).

step 2. Now suppose Z has no continuous distribution. Denote by D the
countable set of all z ∈ R such that P[Z = z] > 0. W.l.o.g. (by adding a constant
to Z if necessary) we may assume that 0 6∈ D. Let Az := {Z = z}, z ∈ D. Since
(Ω,F ,P) contains no atoms, for each z ∈ D there is a random variable Uz being

uniformly distributed on (0, |z|2 ∧ 1) under the measure P(· | Az). We claim that
the distributions of

Zn := Z − 1

n

∑
z∈D

sgn(z)Uz1Az , n ∈ N,
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are continuous. Indeed, for any y ∈ R

P(Zn = y) = P(Zn = y, Z 6∈ D) +
∑
z∈D

P(Z = z, Uz = sgn(z)n(z − y))

= P(Z = y, Z 6∈ D) +
∑
z∈D

P(Az)P(Uz = sgn(z)n(z − y) | Az)

= 0 .

Note that Z± − 1 ≤ Z±n ≤ Z±. Hence, for all n ∈ N and for every X̃ ∼ X

• E[X̃Z] is well-defined if and only if E[X̃Zn] is well-defined,

• (X̃Z) ∈ L1 if and only if (X̃Zn) ∈ L1, and

•
∫ 1

0
|qZ(s)qX(s)|ds <∞ if and only if

∫ 1

0
|qZn(s)||qX(s)|ds <∞.

Furthermore, we observe that Zn converges to Z P-a.s. and in L1. So in partic-
ular, the respective quantile functions converge almost everywhere. Therefore,
the sequence (qXqZn)n∈N converges almost everywhere to the integrable function
qXqZ , and we have |qXqZn | ≤ |qXqZ |. Consequently, the dominated convergence
theorem in combination with step 1 yields∫ 1

0

qX(s)qZ(s) ds = lim
n→∞

∫ 1

0

qX(s)qZn(s) ds

= lim
n→∞

sup
X̃∼X

E[X̃Zn] = sup
X̃∼X

E[X̃Z]

where the last equality follows from

|E[X̃Zn]− E[X̃Z]| ≤ 1

n
‖X‖1 for all X̃ ∼ X such that X̃Z ∈ L1.

Hence, (i) is proved. In order to prove (ii) let

Z := Z +
∑
z∈D

sgn(z)Uz1Az

and note that Z has a continuous distribution and Z± ≤ Z± ≤ Z± + 1. Hence,
for all X̃ ∼ X we have (X̃Z) ∈ L1 if and only if (X̃Z) ∈ L1, and∫ 1

0

|qZ(s)qX(s)|ds ≤
∫ 1

0

|qZ(s)qX(s)|ds

which, in view of step 1, completes the proof.

References

[1] Acciaio, B. (2007), Optimal Risk Sharing with Non-monotone Monetary
Functionals, Finance and Stochastics, 11, 267–289.

30



[2] Aliprantis, C.D. and Border, K.C. (1999), Infinite Dimensional Analysis,
Springer.

[3] Artzner, P., Delbaen, F., Eber, J.M. and Heath, D. (1999), Coherent mea-
sures of risk, Mathematical Finance, 9, 203–228.

[4] Barrieu, P. and El Karoui, N. (2005), Inf-convolution of Risk Measures and
Optimal Risk Transfer, Finance and Stochastics, 9, 269–298.

[5] Biagini, S. and Frittelli, M. (2008), A unified framework for utility maxi-
mization problems: an Orlicz space approach, Annals of Applied Probabil-
ity, Vol. 18/3, pp. 929–966.

[6] Cheridito, P. and Li, T. (2009) Risk Measures on Orlicz Hearts, Mathemat-
ical Finance, 19, 189-214.

[7] Cherny, A. and Kupper, M. (2008), Divergence Utilities, preprint.

[8] Delbaen, F. (2000), Coherent Risk Measures, Cattedra Galileiana. Scuola
Normale Superiore di Pisa.

[9] Delbaen, F. (2002), Coherent Risk Measures on General Probability Spaces,
Advances in Finance and Stochastics, 1–37, Springer.

[10] Delbaen, F. (2009), Risk Measures for Non-integrable Random Variables,
Mathematical Finance, 19, 329-333

[11] Dana, R-A. (2005), A Representation Result for Concave Schur Concave
Functions, Mathematical Finance, 15, 613–634.

[12] Dunford, N. and Schwartz, J. (1976), Linear Operators. Part I: General
theory, Interscience Publishers.

[13] Ekeland, I. and Témam, R. (1999), Convex Analysis and Variational Prob-
lems, Chapter I, SIAM.
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