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Abstract

We prove constructively that every uniformly continuous convex func-
tion f : X → R+ has positive infimum, where X is the convex hull of
finitely many vectors. Using this result, we prove that a separating hyper-
plane theorem, the fundamental theorem of asset pricing, and Markov’s
principle are constructively equivalent. This is the first time that impor-
tant theorems are classified into Markov’s principle within constructive
reverse mathematics.

Constructive mathematics in the tradition of Errett Bishop [2, 3] is charac-
terised by not using the law of excluded middle as a proof tool. As a major
consequence, properties of the real number line like the limited principle of om-
niscience

LPO ∀x, y ∈ R (x < y ∨ x > y ∨ x = y),

the lesser limited principle of omniscience

LLPO ∀x, y ∈ R (x ≤ y ∨ x ≥ y),

and Markov’s principle

MP ∀x ∈ R (¬ (x = 0) ⇒ |x| > 0)

are no longer provable propositions but rather considered additional axioms.
In this context, reverse mathematics attempts on deciding which axioms of

this kind are necessary and sufficient to prove certain theorems. For example,
the Hahn-Banach theorem is equivalent to LLPO [8]. Many properties of the
reals still hold constructively, and will be freely used in the sequel:

• x ≥ y ⇔ ¬ (x < y)

• x = y ⇔ ¬¬ (x = y)

• |x| · |y| > 0 ⇔ |x| > 0 & |y| > 0 (1)

• |x| > 0 ⇔ x > 0 ∨ x < 0
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We cannot prove constructively that every nonempty bounded set of reals has
an infimum. This gives rise to the following definition. Fix ε > 0 and sets
D ⊆ C ⊆ X where (X, d) is a metric space. The set D is an ε-approximation of
C if for every x ∈ C there exists y ∈ D with d(x, y) < ε. C is totally bounded
if for every n there exist elements x1, . . . , xm of C such that {x1, . . . , xm} is a
1/n-approximation of C. In particular, any inhabited1 totally bounded subset
C of X is located [5, Proposition 2.2.9], which means that

d(x,C) = inf {d(x, y) | y ∈ C}

exists for all x ∈ X. If C is totally bounded, and f : C → R is uniformly
continuous, then

inf f = inf {f(y) | y ∈ C}

does exist [5, Corollary 2.2.7]. In this context, Brouwer’s fan theorem can be
stated as follows [10].

FAN If f : [0, 1]→ R+ is uniformly continuous, then inf f > 0.

Note that FAN can be deduced from LLPO [9]. There are many propositions
which are equivalent to principles like LLPO or the fan theorem. In this paper,
for the first time, we prove that important classical theorems are classified into
Markov’s principle.

Set

Yn =

{
(x1, . . . , xn) ∈ Rn |

n∑
i=1

xi > 0 and 0 ≤ xi for all i

}
,

Xn =

{
(x1, . . . , xn) ∈ Rn |

n∑
i=1

xi = 1 and 0 ≤ xi for all i

}
,

and

Pn =

{
(x1, . . . , xn) ∈ Rn |

n∑
i=1

xi = 1 and 0 < xi for all i

}
.

The following results on convexity, which are used for the announced classi-
fication later on, are interesting on their own.

Let C be an inhabited convex set. A function f : C → R is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all λ ∈ [0, 1] and x, y ∈ C.

The following Proposition can be considered a constructive version of the
fan theorem.

1A set is inhabited if it contains an element, which is classically equivalent to being
nonempty.
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Proposition 1. Every uniformly continuous convex function f : Xm → R+ has
positive infimum, i.e. inf f > 0.

Proof. We use induction on m to show the following statement: fix elements
A1, . . . , Am of a normed space V and a positive valued uniformly continuous
convex function f on

C(A1, . . . , Am) =

{
m∑
i=1

λiAi | λ ∈ Xm

}
. (2)

Then f has positive infimum.

For m = 1, the statement is trivial. Suppose that the statement holds for
m ≥ 1. Fix A1, . . . , Am+1 ∈ V . Since the function

Xm+1 → C(A1, . . . , Am+1), (λ1, . . . , λm+1) 7→
m+1∑
i=1

λiAi

is uniformly continuous, its image C(A1, . . . , Am+1) is totally bounded [5, Propo-
sition 2.2.6]. Now fix a uniformly continuous convex function

f : C(A1, . . . , Am+1)→ R+

and set α = inf f. We define a decreasing sequence of subintervals [an, bn] of
[0, 1] such that

• bn − an ∈ {0, 2−n}

• an = bn ⇒ 0 < α

• 0 < α ∨ α = inf {f(P ) | P ∈ Cn}

for every n ∈ N, where

Cn = C(A1 + an(A2 −A1), A1 + bn(A2 −A1), A3, . . . , Am+1).

Set a0 = 0 and b0 = 1 and suppose that an and bn have been defined.

case 1 If an = bn, set an+1 = bn+1 = an.

case 2 Suppose that an < bn. Set c = an+bn
2 .

case 2.1 If 0 < α, set an+1 = bn+1 = c.

case 2.2 Suppose that α = inf {f(P ) | P ∈ Cn}. Set

ε =
1

2
inf {f(P ) | P ∈ C(A1 + c(A2 −A1), A3, . . . , Am+1)} .

By the induction hypothesis, ε > 0.

case 2.2.1 If 0 < α, set an+1 = bn+1 = c.
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case 2.2.2 If α < ε, there is

X = λ1(A1 + an(A2 −A1)) + λ2(A1 + bn(A2 −A1)) +

m+1∑
i=3

λiAi ∈ Cn

with
f(X) < ε. (3)

We show that

d(X,C(A1 + c(A2 −A1), A3, . . . , Am+1)) > 0. (4)

Suppose that

d(X,C(A1 + c(A2 −A1), A3, . . . , Am+1)) < δ,

where δ > 0 is such that

‖P − P ′‖ < δ ⇒ |f(P )− f(P ′)| < ε (P, P ′ ∈ C(A1, . . . , Am+1)).

Then there is P ∈ C(A1 + c(A2 − A1), A3, . . . , Am+1) such that ‖X − P‖ < δ
and hence

f(X) > f(P )− ε ≥ 2ε− ε = ε,

in contradiction to (3). This completes the proof of (4), which implies that
|λ1 − λ2| > 0 and therefore we have either λ1 > λ2 or λ1 < λ2.

case 2.2.2.1 If λ1 > λ2, then for any

P = µ1(A1 + an(A2 −A1)) + µ2(A1 + bn(A2 −A1)) +

m+1∑
i=3

µiAi ∈ Cn

such that µ1 < µ2 there is ν ∈ (0, 1) such that ν(λ1−λ2)+(1−ν)(µ1−µ2) = 0,
and hence

νX + (1− ν)P ∈ C(A1 + c(A2 −A1), A3, . . . , Am+1).

We therefore obtain

2ε ≤ f(νX + (1− ν)P ) ≤ νf(X) + (1− ν)f(P ) < νε+ (1− ν)f(P ),

which implies that f(P ) > ε. Hence, points like P are irrelevant for the calcu-
lation of α, and we may proceed by setting an+1 = an and bn+1 = c.

case 2.2.2.2 Similarly, if λ1 < λ2, set an+1 = c and bn+1 = bn.

Let a be the limit of (an) (and thus also of (bn)). If 0 < α, we are done. If

α < inf {f(P ) | P ∈ C(A1 + a(A2 −A1), A3, . . . , Am+1)} ,

by the uniform continuity of f , we can find an n such that

α < inf {f(P ) | P ∈ Cn} ,

thus 0 < α.
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Note that the proof of Proposition 1 is given for normed spaces. Indeed,
Proposition 1 is corresponds to the following seemingly stronger result:

Corollary 1. Suppose that f : C(A1, . . . , Am) → R+ is convex and uniformly
continuous, where A1, . . . , Am are points in a normed space, and C(A1, . . . , Am)
is given by (2). Then f has positive infimum.

The immediate correspondence between Proposition 1 and Corollary 1 fol-
lows from the fact that for any function f as in Corollary 1 the composition
f ◦ κ satisfies the requirements of Proposition 1, where

κ : Xm → C(A1, . . . , Am), (λ1, . . . , λm) 7→
m∑
i=1

λiAi.

The closure Y of a set Y is the set of all limits of sequences in Y.

Lemma 1. Let Y be an inhabited convex subset of a Hilbert space (H, 〈 , 〉). Fix
x ∈ H and assume that d = d(x,Y) exists. Then there exists a unique a ∈ Y
such that ‖a− x‖ = d. Furthermore, we have

〈a− x, c− a〉 ≥ 0

and therefore
〈a− x, c− x〉 ≥ d2

for all c ∈ Y.

Proof. Fix a sequence (cl) in Y such that ‖cl − x‖ → d. Since

‖cm − cl‖ 2 = ‖(cm − x)− (cl − x)‖ 2 =

2 ‖cm − x‖ 2 + 2 ‖cl − x‖ 2 − 4 ‖cm + cl
2

− x‖ 2︸ ︷︷ ︸
≥4d2

≤

2
(
‖cm − x‖ 2 − d2

)
+ 2

(
‖cl − x‖ 2 − d2

)
,

(cl) is a Cauchy sequence and therefore converges to an a ∈ Y. Since ‖cl − x‖ →
‖a− x‖ , we obtain ‖a− x‖ = d. Now fix b ∈ Y with ‖b− x‖ = d. Then

‖a− b‖ 2 = ‖(a− x)− (b− x)‖ 2 =

2 ‖a− x‖ 2 + 2 ‖b− x‖ 2 − 4 ‖a+ b

2
− x‖ 2︸ ︷︷ ︸

≥4d2

≤ 0 ,

thus a = b.

Fix c ∈ Y and λ ∈ (0, 1). Since

‖a− x‖ 2 ≤ ‖(1− λ)a+ λc− x‖ 2 = ‖(a− x) + λ(c− a)‖ 2 =
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‖a− x‖ 2 + λ2 ‖c− a‖ 2 + 2λ〈a− x, c− a〉,

we obtain
0 ≤ λ ‖c− a‖ 2 + 2〈a− x, c− a〉 .

Since λ can be arbitrarily small, we can conclude that

〈a− x, c− a〉 ≥ 0 .

This also implies that

〈a− x, c− x〉 = 〈a− x, c− a〉+ 〈a− x, a− x〉 ≥ d2 .

Proposition 1 and Lemma 1 imply the following constructive separating hy-
perplane theorem; compare to [5, Theorem 5.2.9].

Corollary 2. Let C be a convex closed located subset of a Hilbert space (H, 〈 , 〉).
Moreover, let x1, . . . , xn ∈ H such that d(x, c) > 0 for all x ∈ C(x1, . . . , xn) and
c ∈ C. Then there exist ε > 0 and p ∈ H such that

〈p, x− c〉 ≥ ε

for all x ∈ C(x1, . . . , xn) and c ∈ C.

Proof. Since
|d(x, C)− d(y, C)| ≤ d(x, y)

for all x, y ∈ H, the function

κ : C(x1, . . . , xn)→ R, x 7→ d(x, C)

is uniformly continuous. Since C is closed, κ is positive valued, see Lemma 1.
Since C is convex, κ is convex as well. By Corollary 1, inf κ > 0. The set

Y = {x− c | x ∈ C(x1, . . . , xn), c ∈ C}

is convex. Note that d(0,Y) = inf κ and apply Lemma 1.

Vectors x1, . . . , xn are linearly independent if for all λ ∈ Rn the implication

n∑
i=1

|λi| > 0 ⇒ ‖
n∑

i=1

λixi‖ > 0

is valid. Such vectors span located subsets [5, Lemma 4.1.2]:

Lemma 2. If x1, . . . , xm ∈ Rn are linearly independent, then the set{
m∑
i=1

ξixi | ξ ∈ Rm

}
is convex, closed, and located.
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Now we are ready for the fundamental theorem of asset pricing. Consider a
portfolio of m stocks and one bond. The prices of the assets at time 0 (=present)
are known and denoted by π ∈ Rm+1. The prices of the stocks at time 1
(=future) are unknown, but we know that there are n possible developments
and we know the prices for each case. All prices are positive and the price of
the bond is always 1, also at time 1.2 Let cij denote the price of the i-th asset
in case j and set C = (cij). We assume that the first coordinate corresponds to
the bond, i.e. π1 = 1 and also c1j = 1 for all j = 1, . . . , n.

A vector p ∈ Pn is called equivalent martingale measure if C · p = π.

A vector ξ ∈ Rm+1 is called arbitrage strategy if

ξ · π ≤ 0 and ξ · C ∈ Yn.

Note that every ξ ∈ Rm+1 corresponds to a trading strategy, where ξi, i =
1, . . . ,m+1, denotes the amount of shares of asset i that the trader buys. Hence,
the price of ξ is ξ · π and the payoff at time 1 over all possible future scenarios
is ξ · C. Thus arbitrage strategies are trading strategies which correspond to
riskless gains, since they do not cost anything (ξ ·π ≤ 0) and do not produce any
losses, and even a strict gain for at least one possible future scenario (ξ ·C ∈ Yn).

Lemma 3. The following are equivalent:

1) There exists an arbitrage strategy ξ.

2) There exists a vector µ ∈ Rm such that

µ · (C − π) ∈ Yn,

where C − π := (cij − πi)i=2,...,m+1;j=1,...,n.

Proof. 1) ⇒ 2) Just set µ = (ξ2, . . . , ξm+1).

2) ⇒ 1) Set ξ := (−
∑m

i=1 µiπi+1, µ1, . . . , µm). Since π1 = 1, we obtain

ξ · π = −
m∑
i=1

µiπi+1 +

m∑
i=1

µiπi+1 = 0.

Since c1j = 1, we obtain

(ξ · C)j =

m∑
i=1

µi(c(i+1)j − πi+1) = (µ · (C − π))j .

Thus ξ · C ∈ Yn.

2This means that the prices are discounted.
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The classically provable fundamental theorem of asset pricing states that
there exists an equivalent martingale measure if and only if there doesn’t exist
an arbitrage strategy. This is probably the most fundamental theorem of math-
ematical finance and means that in ‘fair’ markets, i.e. in arbitragefree markets,
the ‘fair’ prices are given by expectations under equivalent martingale measures.
There is a vast literature on this result; we refer to [7] for a comprehensive dis-
cussion of the fundamental theorem of asset pricing.

Let A := C−π. By Lemma 3, excluding the existence of arbitrage strategies
is the same as claiming that

{ξ ·A | ξ ∈ Rm} ∩ Yn = ∅.

Hence, the fundamental theorem of asset pricing reads as

{ξ ·A | ξ ∈ Rm} ∩ Yn = ∅ ⇔ ∃p ∈ Pn (A · p = 0) . (5)

The implication ‘⇐’ in (5) is easily verified, since for any ξ ∈ Rm it follows that

(ξ ·A) · p = ξ · (A · p) = 0,

which implies that ¬(ξ · A ∈ Yn). The non-trivial implication in (5) is ‘⇒’. In
what follows, for technical reasons, we will assume that the rows of the matrix A
are linearly independent. This is a standard assumption even classically, since
it simply means that there are no redundant stocks in the market, i.e. stocks
that can be hedged by others. Then the non-trivial implication of (5) reads as
follows:

FTAP For every Rm×n-matrix A with linearly independent rows we have

{ξ ·A | ξ ∈ Rm} ∩ Yn = ∅ ⇒ ∃p ∈ Pn (A · p = 0) .

We will show that FTAP is equivalent to Markov’s principle and indeed also
equivalent to the following version of a classically well-known separation result:

SEP Let (H, 〈 , 〉) be a Hilbert space and suppose that C ⊆ H is convex, closed,
and located. Moreover, let x1, . . . , xn ∈ H and suppose that

C ∩ C(x1, . . . , xn) = ∅.

Then there exists ε > 0 and p ∈ H such that

〈p, x− c〉 ≥ ε

for all x ∈ C(x1, . . . , xn) and c ∈ C.

The classical version of SEP says that any two nonempty closed convex sets
may be strictly separated by a hyperplane, provided that their intersection is
void and one of the sets is compact; see for instance [1, Theorem 5.79].
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Proposition 2. The following are equivalent:

a) SEP

b) FTAP

c) MP

Proof. a) ⇒ b): Assume SEP. Fix a Rm×n-matrix A with linearly independent
rows. By Lemma 2, the set

C = {ξ ·A | ξ ∈ Rm}

is convex, closed, and located. Assume that

C ∩ Yn = ∅.

Then in particular C ∩ Xn = ∅, and by SEP we obtain

∃ε > 0∃q ∈ Rn ∀x ∈ Xn, c ∈ C (〈q, x〉 ≥ 〈q, c〉+ ε) .

Let ei be the i-th unit vector in Rn. Since 0 ∈ C, we obtain 〈q, ei〉 ≥ ε. This
shows that all components of q are positive. Now fix c ∈ C and assume that
|〈q, c〉| > 0. Since C is a linear space, there exists d ∈ C such that

〈q, ei〉 < 〈q, d〉+ ε,

a contradiction which shows that A · q = 0. Therefore,

p =

(
q1∑n
i=1 qi

, . . . ,
qn∑n
i=1 qi

)
is an element of Pn with A · p = 0.

b)⇒ c): Now assume FTAP and fix a real number a with ¬ (a = 0). Consider
the Matrix A = (|a| ,−1). Suppose that there exists a ξ ∈ R with (ξ |a| ,−ξ) ∈
Y2. In the first case, we have ξ |a| > 0 and −ξ ≥ 0 and therefore ξ > 0 (see
(1)) and ξ ≤ 0. In the second case, we have ξ |a| ≥ 0 and −ξ > 0 and therefore
a = 0. So there cannot be such a ξ. Now FTAP yields the existence of a p ∈ P2

with p1 |a| = p2. This implies that |a| > 0.

c) ⇒ a): Finally assume MP. Since C ∩ C(x1, . . . , xn) = ∅, we obtain that
¬(d(x, c) = 0) for all x ∈ C(x1, . . . , xn) and c ∈ C. Now MP implies that indeed
d(x, c) > 0 for all x ∈ C(x1, . . . , xn) and c ∈ C. Apply Corollary 2.

Note that we obtain the following constructive version of the fundamental
theorem of asset pricing.

Corollary 3. Fix a Rm×n-matrix A with linearly independent rows such that
d(ξ · A, x) > 0 for all ξ ∈ Rm and x ∈ Xn. Then there exists p ∈ Pn with
A · p = 0.
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Remark 1. We remark that Proposition 2 implies that SEP and FTAP are
true in recursive constructive mathematics. For a discussion about the relation
of recursive constructive mathematics to constructive mathematics we refer to
[4].

Remark 2. In classical reverse mathematics, the Hahn-Banach theorem, which
implies the axiom SEP, is classified into WKL [6]. Although this paper does not
take account of set existence axioms, we claim that SEP and FTAP can be
proven in RCA0, since we did not use non-constructive choice axioms and MP
holds classically.
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