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Abstract

We show how risk measures originally defined in a model free framework in terms of
acceptance sets and reference assets imply a meaningful underlying probability structure.
Hereafter we construct a maximal domain of definition of the risk measure respecting the
underlying ambiguity profile. We particularly emphasise liquidity effects and discuss the
correspondence between properties of the risk measure and the structure of this domain as
well as subdifferentiability properties.
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1 Introduction

There is an ongoing debate on the right model space for financial risk measures, i.e. about
what an ideal domain of definition for risk measures would be. Typically—as risk occurs
in face of randomness—the risks which are to be measured are identified with real-valued
random variables on some measurable space (Ω,F). The question which causes debate,
however, is which space of random variables one should use as model space.
Since risk is often understood as Knightian [21] uncertainty about the underlying proba-
bilistic mechanism, many scholars argue that model spaces should be robust in the sense of
not depending too heavily on some specific probabilistic model. We refer to this normative
viewpoint as paradigm of minimal model dependence. The literature usually suggests one of
the following model spaces:

(i) L0 or L0
P, the spaces of all random variables or P-almost sure (P-a.s.) equivalence

classes of random variables for some probability measure P on (Ω,F), respectively, see
[6, 7];

(ii) L∞ or L∞P , the spaces of all bounded random variables or P-a.s. equivalence classes
of bounded random variables, respectively, see [6, 7, 15, 16, 23, 25] and the references
therein;

(iii) LpP, p ∈ [1,∞), the space of P-a.s. equivalence classes of random variables with finite
p-th moment, or more generally Orlicz hearts, see e.g. [3, 5, 17, 29].

The spaces in (i) and (ii) satisfy minimal model dependence in that L0 and L∞ are com-
pletely model free, whereas L0

P and L∞P in fact only depend on the null sets of the probability
measure P. The problem with choosing L0 or L0

P, however, is that these spaces are in general
too large to reasonably define aggregation based risk measures on them. The latter would
require some kind of integral to be well-defined. Moreover, if (Ω,F) is not finite, L0 or L0

P

∗E-mail: liebrich@math.lmu.de
†E-Mail: svindla@math.lmu.de

1



do not allow for a locally convex topology which make them unapt for optimisation. Impor-
tant applications of risk measures, however, use them as objective functions or constraints
in optimisation problems. Since L∞ and L∞P are Banach spaces—so in particular locally
convex spaces—and satisfy minimal model dependence, these model spaces have become
most popular in the literature, and amongst them in particular L∞P due to nicer analytic
properties; see [6, 7, 15, 16, 23, 25] and the references therein. In applications, however,
unbounded models for risks are standard, like the log-normal distribution in Black-Scholes
market models, etc. Assuming frictionless markets, there is no upper bound on the volumes
and thus value of financial positions. Hence unbounded distributions appear quite naturally
as limiting objects of bounded distributions, and in statistical modeling of random payoffs,
where no upper bound can be assumed a priori. Also, risks with unbounded support and
potentially heavy-tailed distributions are commonly employed in the insurance business.
From this point of view model spaces should satisfy the paradigm of maximal domain in
that they should at least be sufficiently large to include these standard unbounded models,
and the model spaces in (iii) have been proposed to resolve this issue. Problematic though
is the strong dependence of LpP, p ∈ [1,∞), (or in general hearts) on the probability measure
P in that it is not invariant under equivalent changes of measure anymore. Consequently,
maximal domain and minimal model dependence seem to be conflicting paradigms.
In the special case of law-invariant risk measures the measured risk is fully determined by
the distribution of the risk under a probability measure P on (Ω,F). Thus law-invariance
already entails the existence of a meaningful reference probability model P, and the risk
measurement is fully depending on P. Hence, the ambiguity structure is such that it is no
conceptual problem to define these risk measures on, for instance, L1

P (see [14]).1 The latter
observation shows that the paradigms of minimal model dependence and maximal domain
may not be as conflicting as they seem, as long as the underlying probability structure is
determined by the considered risk measure. Clearly, a model space like L∞P is sufficiently
robust to carry any kind of risk measure. But given a specific risk measure—say defined
on L∞P —and the corresponding ambiguity attitude reflected by it, a model space which re-
spects this ambiguity attitude, which also carries the risk measure, and which is probably
larger than L∞P , is also a reasonable model space for that particular risk measure—like in
the (unambiguous) case of a law-invariant risk measure and the model space L1

P.
Our starting point is an a priori completely model free setting on the model space L∞ and
a generalised notion of risk measurement adopted from Farkas, Koch-Medina and Munari
in, e.g., [13] and Munari in [26]: all it requires is a notion of acceptability of losses (encoded
by an acceptance set A ⊆ L∞), a portfolio of liquidly traded securities allowed for hedging
(represented by a subspace S ⊆ L∞), and a set of observable prices for these securities (a
linear functional p on S). Using such a risk measurement regime R = (A,S, p), we can
define the risk ρR(X) to be the minimal price one has to pay in order to secure the loss
X ∈ L∞ with a portfolio in S. This approach has the indisputable advantage of a clear op-
erational interpretation. Section 2 introduces this kind of risk measurement in a unifyingly
general framework. In Section 3, we observe that under a standard approximation property
of finite risk measures—continuity from above—they automatically imply a reference proba-
bility measure P which allows us to view the risk measure as defined on L∞P without any loss
of information. The observation that this often assumed property necessarily implies that
the framework is dominated sheds new and critical light on the current discussion on model
free and robust finance. Next, we demonstrate that under some further conditions, e.g.,
sensitivity and strict monotonicity, we can even find a strong reference probability measure
P∗ ≈ P such that additionally

∀X ∈ L∞P : ρR(X) ≥ cEP∗ [X]

holds for a suitable constant c > 0. These strong reference probability measures serve as a
class of benchmark models in that risk estimation with ρR is uniformly more conservative
than using the linear risk estimation rules X 7→ cEP∗ [X].
In Section 4.1, we discuss how these considerations lead to a Banach space LR typically

1 In fact, law-invariant risk measures are completely unambiguous.
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much larger than L∞P , which has a multitude of desirable properties, such as

• invariance under all strong and weak reference probability models;

• a geometry completely determined by the risk measure ρR;

• robustness in that it carries an extension of the initial risk criterion ρR, denoted by ρR̃,
which preserves the functional form of ρR, the dual representation, and thus convexity
and lower semicontinuity. Moreover, this extension ρR̃ is a capital requirement in
terms of unchanged hedging securities and pricing functionals, but with a notion of
acceptability obtained by consistently extending constraints defining A to LR.

In the latter sense, LR can be seen as a natural maximal domain of definition of the initial
risk criterion on which the ambiguity attitude is preserved.
We also consider the following monotone extensions of ρR to unbounded loss profiles in LR

given by

ξ(X) = lim
m→∞

lim
n→∞

ρR((−n) ∨X ∧m) = sup
m∈N

inf
n∈N

ρR((−n) ∨X ∧m)

and
η(X) = lim

n→∞
lim
m→∞

ρR((−n) ∨X ∧m) = inf
n∈N

sup
m∈N

ρR((−n) ∨X ∧m)

which have been studied in for instance [7, 31]. One would maybe expect that always
ρR̃ = ξ = η, but it turns out that ρR̃ = ξ always holds, whereas ρR̃ 6= η is possible,
see Example 5.2. We characterise the often desirable regular situation when monotone
approximation of risks in the following sense

ρR̃(X) = η(X) = lim
n→∞

ρR((−n) ∨X ∧ n) (1.1)

is possible, see Theorem 4.7, and show that (1.1) holds if ρR̃ shows sufficient continuity in
the tail of the risk X. For instance, any risk measure to which some kind of monotone or
dominated convergence rule can be applied will satisfy (1.1). In Section 4.2, we decompose
LR into subsets with a clear interpretation in terms of liquidity risk and show how LR allows
to view properties of the risk measure ρR̃ through a topological lens. Finally, in Section 4.4,
we address the issue of subdifferentiability of ρR̃ on LR based on a brief treatment of the
dual of LR in Section 4.3. Subgradients play an important role in risk optimisation and
appear as pricing rules in optimal risk sharing schemes, see e.g. [20, 31]. We shall see that
the topology on LR being determined by ρR is fine enough to guarantee a rich class of points
where ρR̃ is subdifferentiable, thereby further illustrating how suited the model space LR is
to ρR. Beside their mere existence, we also aim for reasonable conditions guaranteeing that
subgradients correspond to measures on (Ω,F)—which means ruling out singular elements
that may exist in the dual space of LR. The motivation for this is the same as in case
of L∞P which in general also admits singular elements in its dual space. It is questionable
whether such singular dual elements are reasonable as, for instance, pricing rules, because
their effect lies mostly in the tails of the distribution, and the lack of countable additivity
contradicts the paradigm of diminishing marginal risk. Also, measures show a by far better
analytic behavior which may prove to be crucial when solving optimisation problems. Our
findings suggest that singular elements do not really matter in a wide range of instances.
In particular, we will also see that the local equality (1.1) characterised in Theorem 4.7
is closely related to regular subgradients of ρR̃ and η. In Section 5 we collect illustrating
examples. Some cumbersome proofs are outsourced to the appendices A and B.

2 Some preliminaries

Notation and terminology: Given a set M 6= ∅ and a function f : M → [−∞,∞], we define
the domain of f to be the set dom(f) = {m ∈ M | f(m) < ∞}. f is called proper if it
does not attain the value −∞ and dom(f) 6= ∅.
For a subset A of a topological space (X , τ), we denote by clτ (A) and intτ (A) the closure
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and interior of A, respectively, with respect to the topology τ . If (X , τ) is a topological
vector space and τ is generated by a norm ‖ · ‖ on X , we will replace the subscript τ by ‖ · ‖.
A triple (X , τ,�) is called ordered topological vector space if (X, τ) is a topological
vector space and � is a partial vector space order compatible with the topology in that
the positive cone of X , denoted by X+ := {X ∈ X | 0 � X}, is τ -closed. We define
X++ := X+\{0}, and X− and X−− analogously. If (X , τ,�) is a Riesz space and X,Y ∈ X ,
we set X ∨ Y := sup{X,Y }, X ∧ Y := inf{X,Y }, X+ := X ∨ 0, and X− := (−X) ∨ 0.2

In this section we define risk measurement regimes and risk measures, discuss some properties
a risk measure may enjoy, and introduce the building blocks for a duality theory.

Definition 2.1. Let (X , τ,�) be an ordered topological vector space. An acceptance set
is a non-empty proper and convex subset A of X which is monotone, i.e. A − X+ ⊆ A.
A security space is a finite-dimensional linear subspace S ( X containing a non-null
positive element U ∈ S ∩ X++. We refer to the elements Z ∈ S as security portfolios, or
simply securities. A pricing functional on S is a positive linear functional p : S → R
such that p(Z) > 0 for all Z ∈ S ∩ X++.
A triple R := (A,S, p) is a risk measurement regime if A is an acceptance set, S is a
security space and p is a pricing functional on S such that

∀X ∈ X : sup{p(Z) | Z ∈ S, X + Z ∈ A} <∞. (2.1)

The risk measure associated to a risk measurement regime R is the functional

ρR : X → (−∞,∞], X 7→ inf {p(Z) | Z ∈ S, X − Z ∈ A} . (2.2)

Our definition of risk measures is inspired by [13, 26]. Note that:

(a) The elements X ∈ X model losses, not gains. Thus ρR(X) is the minimal amount
which has to be invested in some security portfolio Z ∈ S with payoff −Z today in
order to reduce the loss X tomorrow to an acceptable level.

(b) We prescribe convexity of the acceptance set A which means that diversification is
not penalised: if X and Y are acceptable so is the diversified λX + (1 − λ)Y for any
λ ∈ (0, 1).

(c) The notion of a risk measurement regime depends on the interplay of A, S and p by
means of (2.1); this condition guarantees that ρR is a proper function. [13, Propositions
1 and 2] yield criteria for R to be a risk measurement regime in our sense.

If S = R · U for some U ∈ X++ and p(mU) = m, m ∈ R, the setting of [11, 12] with a
single liquid eligible asset can be recovered from Definition 2.1. If X is a Riesz space with
weak unit 1, S = R · 1 and p(m1) = m, m ∈ R, the definition covers convex monetary risk
measures as comprehensively discussed in [16].3 The following is easily verified:

Lemma 2.2. Let R = (A,S, p) be a risk measurement regime on an ordered topological
vector space X . Then ρR is convex, monotone, i.e. X � Y implies ρR(X) ≤ ρR(Y ), and
S-additive, i.e. ρR(X + Z) = ρR(X) + p(Z) holds for all X ∈ X and all Z ∈ S.

In the same abstract setting we introduce further properties a risk measure can enjoy.

Definition 2.3. Let R = (A,S, p) be a risk measurement regime on an ordered topological
vector space (X , τ,�) and let ρR be the associated risk measure.

• ρR is called finite if it only takes finite values, or equivalently A+ S = X . 4

2 For details concerning ordered vector spaces, we refer to Chapters 5 and 7 of [1]. Since risk measures will
appear in this treatment on different domains of definition—in all cases spaces of random variables endowed
with a pointwise or almost sure order and with varying topologies—we define them as functionals on ordered
topological vector spaces. However, the reader may think of X as a space of random variables and of � as a
pointwise or almost sure order on the latter.

3 In the following, we will refer to this particular case with the term monetary risk measures.
4 [13, Propositions 1-3] give further criteria to decide whether ρR is finite or not.
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• ρR is normalised if ρR(0) = 0, or equivalently supZ∈A∩S p(Z) = 0.

• ρR is coherent if for any X ∈ X and for any t > 0 ρR(tX) = tρR(X) holds.

• ρR is sensitive if it satisfies ρR(X) > ρR(0) for all X ∈ X++.

• ρR is lower semicontinuous (l.s.c.) if every lower level set {X ∈ X | ρR(X) ≤ c},
c ∈ R, is τ -closed.

• ρR is continuous from above if it is finite and for any (Xn)n∈N ⊆ X with Xn ↓ X
in order ρR(X) = limn ρR(Xn) holds.

Remark 2.4. (i) Normalisation implies that the negative cone X− (no losses) will be
acceptable, which is economically sound. Every risk measure satisfying ρR(0) ∈ R can
be normalised by translating the acceptance set. Indeed, let U ∈ S ∩ X++ and define

r := ρR(0)
p(U) and Ǎ := {X + rU | X ∈ A}. If R is a risk measurement regime, then so

is Ř := (Ǎ,S, p). Moreover,

−ρŘ(0) = sup{p(Z) | Z ∈ S, Z − rU ∈ A} = sup{p(W ) + p(rU) |W ∈ S ∩ A}.
This implies that −ρŘ(0) = −ρR(0) + ρR(0) = 0 holds.

(ii) Recall that, in contrast to a large share of the literature on risk measures, random
variables model losses, not gains, in our setting. Consequently, our notion of continuity
from above is not the same as continuity from above in the sense of Föllmer and Schied
(c.f. [16, Lemma 4.21]). The equivalent notion in the aforementioned monograph
would be continuity from below (c.f. [16, Theorem 4.22]), which together with lower
semicontinuity of a risk measure implies the Lebesgue property—see [16].

(iii) Our notion of continuity from above means that approximating the risk of complex
payoffs by the one of potentially easier but worse financial instruments is meaningful
as long as the payoffs range in a bounded regime.

(iv) Lower semicontinuity of ρR implies that {X ∈ X | ρR(X) ≤ 0} = clτ (A+ ker(p)). In
particular, it is implied byA+ker(p) being closed (see [13, Proposition 4]) and invariant
under translations of the acceptance set along S. From an economic perspective this
property is not too demanding: security spaces are always finite-dimensional in our
setting, hence lower semicontinuity is, e.g., implied by the condition A∩ ker(p) = {0}
(cf. [13, Proposition 5]). The latter is sometimes referred to as absence of good deals
of the first kind (cf. [19]).

(v) Note that in the case of X being a Banach lattice with norm ‖ · ‖, every finite risk
measure is norm-continuous and therefore also norm-l.s.c. This follows from [30, Propo-
sition 1]: Suppose X is a Banach lattice and f : X → (−∞,∞] is a proper convex and
monotone function. Then f is continuous on int dom(f). We will make frequent use
of this fact throughout the paper.

For many questions a dual point of view on risk measures is crucial. In our case, its formu-
lation requires the following concepts:

Definition 2.5. Assume R = (A,S, p) is a risk measurement regime on an ordered topo-
logical vector space (X , τ,�) with topological dual X ∗. We define the support function
of A by

σA : X ∗ → (−∞,∞], ` 7→ sup
Y ∈A

`(Y ), (2.3)

and B(A) := dom(σA). Moreover, the extension set will refer to the set of positive,
continuous extensions of p to X , namely Ep := {` ∈ X ∗+ | `|S = p}.

3 Model spaces of bounded random variables, and weak
and strong reference probability models

3.1 The model space L∞ and weak reference probability measures

Fix a measurable space (Ω,F) and let L∞ := L∞(Ω,F) be the set of bounded measur-
able real-valued functions. We recall that L∞ is a Banach lattice with norm |X|∞ :=
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supω∈Ω |X(ω)| when equipped with the pointwise order ≤, so in particular an ordered topo-
logical vector space. On the level of Riesz spaces, Ω 3 ω 7→ 1 is an order unit of L∞.5 The
dual space of L∞ may be identified with ba, the space of all finitely additive set functions
µ : F → R. As usual ca denotes the countably additive set functions in ba, and ca+ is the
set of finite measures. In the following, the notation will not distinguish between m ∈ R
and the function Ω 3 ω 7→ m.
In this section we study risk measures on L∞. First of all, note that in the 〈L∞,ba〉-
duality monotonicity of A implies that B(A) ⊆ ba+ has to hold, and an application of the
Hahn-Banach Separation Theorem shows

cl|·|∞(A) = {X ∈ L∞ | ∀µ ∈ B(A) :

∫
X dµ ≤ σA(µ)}. (3.1)

We will mostly assume finiteness of ρR, which is justified by the domain of definition L∞—
that is bounded losses which typically should be hedgeable at potentially large, but finite
cost. ρR is for instance finite whenever the security space S contains some U ∈ L∞++ being
uniformly bounded away from 0, i.e. U ≥ δ for some constant δ > 0. In [11, 12], such
securities are called non-defaultable. We will show that if the acceptance set is “nice
enough”, then any finite risk measure arising from it in an a priori model-free framework like
L∞ indeed implies a probabilistic model, a so-called weak reference model; see Theorem 3.3.
As a first step towards this result, we show now that continuity from above mainly depends
on the geometry of the acceptance set A. To this end, let us recall the notion of the dual
conjugate of ρR being defined as

ρ∗R : ba→ (−∞,∞], µ 7→ sup
X∈L∞

∫
X dµ− ρR(X). (3.2)

Proposition 3.1. Assume R = (A,S, p) is a risk measurement regime such that ρR(0) ∈ R.

(i) If ρR is l.s.c., B(A) ∩ Ep is non-empty and for all µ ∈ ba it holds that

ρ∗R(µ) =

{
σA(µ) if µ ∈ B(A) ∩ Ep,
∞ otherwise.

(3.3)

For all X ∈ L∞ we have

ρR(X) = sup
µ∈dom(ρ∗R)

∫
X dµ− ρ∗R(µ). (3.4)

Moreover, if ρR is coherent, then

ρ∗R(µ) =

{
0 if µ ∈ B(A) ∩ Ep,
∞ otherwise,

(3.5)

and

ρR(X) = sup
µ∈dom(ρ∗R)

∫
X dµ, X ∈ L∞. (3.6)

(ii) Assume R = (A,S, p) is a risk measurement regime such that ρR is finite, then for
every c ∈ R the lower level set Ec := {µ ∈ ba | ρ∗R(µ) ≤ c} of ρ∗R is σ(ba,L∞)-
compact.

(iii) Suppose the risk measure ρR associated to the risk measurement regime R = (A,S, p)
is finite. Then ρR is continuous from above if and only if every lower level set Ec,
c ∈ R, of ρ∗R is σ(ca,L∞)-compact. Hence, if B(A) ⊆ ca, then ρR is continuous from
above.

(iv) In the situation of (iii), if S is constrained to be one-dimensional, then ρR is continuous
from above if and only if B(A) ⊆ ca.

5 Recall that e ∈ X+ is an order unit of a Riesz space (X ,�) if {X ∈ X | ∃λ > 0 : |X| � λe} = X .
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Corollary 3.2. Assume R = (A,S, p) is a risk measurement regime such that ρR is finite.
Then ρR is continuous from above if and only if B(A) ∩ ker(p)⊥ ⊆ ca. Here,

ker(p)⊥ :=

{
µ ∈ ba

∣∣∣∀Z ∈ ker(p) :

∫
Z dµ = 0

}
denotes the annihilator of ker(p).

For the special case of a monetary risk measure, parts of Proposition 3.1 are well-known,
see e.g. [16, Theorem 4.22 and Corollary 4.35]. However, to our knowledge, so far there is
no proof of Proposition 3.1 and Corollary 3.2 in this general form in the literature. As the
proofs of these results are quite technical and thus lengthy we provide them in Appendix A.
Note that the representation (3.4) is in terms of pricing rules consistent with (S, p) in that
µ ∈ dom(ρ∗R) only if µ|S = p. If S = R and p = idR, these pricing rules can be identified
with probability measures. Finally, we remark that continuity from above is indeed mainly
a property of the acceptance set as Proposition 3.1(iii) and (iv) and Corollary 3.2 show: If
A is regular in the sense that B(A) ⊆ ca, then every finite risk measure is continuous from
above. In particular, taking a single hedging asset or multiple ones will have no effect on
continuity from above provided A is properly chosen. Non-regularity of the acceptance set
in that B(A)\ca 6= ∅, however, is equivalent to the fact that no finite risk measure with
a single security is continuous from above; higher-dimensional security spaces may smooth
out the irregularity of A, as illustrated in Example 5.1.
The following theorem is the already advertised main result of this section. As facilitating
notation, for non-empty sets of set functions M,M ′ ⊆ ba, we write M � M ′ if and only
if ν(A) = 0 for all ν ∈ M ′ implies µ(A) = 0 for all µ ∈ M , A ∈ F . We set M ≈ M ′ to
mean that both M �M ′ and M ′ �M . Instead of {µ} � {ν} or {µ} ≈ {ν}, we shall write
µ� ν and µ ≈ ν. Finally, we define baν := {µ ∈ ba | µ� ν}, and caν analogously.

Theorem 3.3. Let R = (A,S, p) be a risk measurement regime such that ρR is finite and
continuous from above.

(i) There exists a weak reference probability measure P, that is a probability mea-
sure P on (Ω,F) such that ρ∗R(cP) <∞ for a suitable c > 0 and

P ≈ dom(ρ∗R). (3.7)

(ii) For P as in (i) we have that dom(ρ∗R) ⊆ (caP)+.

(iii) If ρR is normalised, then E0 = {µ ∈ ca | ρ∗R(µ) = 0} 6= ∅.

Proof. For (i), recall from Proposition 3.1 that the assumption on ρR implies that any lower
level set Ec := {µ ∈ ca+ | ρ∗R(µ) ≤ c}, c ∈ R, is σ(ca,L∞)-compact. Together with
convexity, this implies countable convexity, i.e.

(λk)k∈N ⊆ [0, 1],

∞∑
k=1

λk = 1, (µk)k∈N ⊆ Ec =⇒
∞∑
k=1

λkµk ∈ Ec. (3.8)

By [4, Theorem 4.7.25,(iv)⇒ (i)], En, n ∈ N, also has compact closure in the weak topology
σ(ca, ca∗). As En is already closed in the weaker topology σ(ca,L∞), En has to be weakly
compact. The proof of [4, Theorem 4.7.25, (i) ⇒ (ii)] shows the existence of a sequence
(µnl )l∈N ⊆ En such that En ≈ {µnl | l ∈ N}. We set νn :=

∑∞
l=1 2−lµnl , which lies in

En by (3.8), and satisfies νn ≈ En. By (3.4), the sequence (νn)n∈N satisfies νn(Ω) ≤
νn(Ω)− ρ∗R(νn) + n ≤ ρR(1) + n. Define

ν :=
∑
n∈N

2−nνn, cN :=

N∑
n=1

2−n, ζN := c−1
N

N∑
n=1

2−nνn, N ∈ N.

ν ∈ ca+ follows from the estimate ν(Ω) ≤
∑∞
n=1 2−n(ρR(1) + n) = ρR(1) + 2. Every

non-trivial scalar multiple of ν satisfies (3.7), and moreover, ν = limN ζN with respect to
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σ(ca,L∞). Lower semicontinuity and convexity of ρ∗R and ρ∗R(νn) ≤ n imply

ρ∗R(ν) ≤ lim inf
N→∞

ρ∗R(ζN ) ≤ lim
N→∞

c−1
N

N∑
n=1

2−nn = 2.

Choosing c := ν(Ω), the probability measure P := 1
cν is a weak reference probability model.

(ii) is an immediate consequence of (3.7). In order to prove (iii) note that normalisation
implies 0 = ρR(0) = − inf{ρ∗R(µ) | µ ∈ dom(ρ∗R)}. Hence, ρ∗R ≥ 0 and the family of
subsets (Ek)k∈(0,1] of the compact set E1 has the finite intersection property. Therefore
E0 =

⋂
k∈(0,1]Ek 6= ∅.

Remark 3.4. Continuity from above is sufficient but not necessary for the existence of
weak reference probability models. However, without continuity from above anything can
happen. For example, let (Ω,F) be the open unit interval (0, 1) endowed with its Borel sets
B((0, 1)), and let P be the Lebesgue measure on (0, 1). Consider

ess sup(X) := sup{m ∈ R | P(X ≤ m) = 1},

and set

A1 := {X ∈ L∞ | ess sup(X) ≤ 0}, A2 := {X ∈ L∞ | sup
ω∈Ω

X(ω) ≤ 0}.

The triples Ri = (Ai,R, idR), i = 1, 2, are risk measurement regimes. In the first case,
dom(ρ∗R1

) = (baP)+, and in the second dom(ρ∗R2
) = ba+. Thus neither ρR1 nor ρR2 is

continuous from above. P, however, is a weak reference probability model for ρR1
, whereas

in the case of ρR2
there is no weak reference probability model as Ω is uncountable.

Whenever a probability measure P satisfies (3.7) and X,Y ∈ L∞ are equal P-almost surely
(P-a.s.), (3.4) shows that ρR(X) = ρR(Y ). Hence, we may view ρR as a function on the
space of equivalence classes L∞P := L∞(Ω,F ,P) with the corresponding properties. We
recall that the least upper bound

‖X‖∞ := inf{m ∈ R | P(|X| ≤ m) = 1}, X ∈ L∞P ,

is a norm on L∞P , making it into a Banach lattice together with the P-almost sure order,
and the equivalence class generated by Ω 3 ω 7→ 1 is a strong unit of L∞P . Its dual may be
identified with baP. Let ι : L∞ → L∞P be the canonical embedding, then it is straightforward
to prove the following result.

Corollary 3.5. In the situation of Theorem 3.3 define ρ : L∞P → R by ρ(X̃) = ρR(X),
where X ∈ L∞ satisfies ι(X) = X̃. Then ρ is well-defined and agrees with the risk measure
ρ(ι(A),ι(S),p̄) on L∞P , where p̄(Z̃) = p(Z) whenever Z̃ = ι(Z). It is norm-continuous and
continuous from above. The dual function

ρ∗(µ) := sup
X̃∈L∞P

∫
X dµ− ρ(X̃), µ ∈ baP, (3.9)

where X denotes an arbitrary representative of X̃, agrees with ρ∗R|baP . Also

ρ(X̃) = sup
µ∈dom(ρ∗R)

∫
X dµ− ρ∗R(µ), X̃ ∈ L∞P ,

where X and X̃ are related as before.
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3.2 The model space L∞P and strong reference probability measures

Supported by our results in Proposition 3.3 and Corollary 3.5 we will from now on consider
the model space L∞P , acceptance sets A ⊆ L∞P , security spaces S ⊆ L∞P , pricing functionals
p : S → R and resulting finite risk measures ρR directly defined on L∞P , where P is a weak
reference probability model for ρR. Moreover, in the following we will stick to the usual
convention of identifying an equivalence class of random variables in L∞P with an arbitrary
representative of that class.
By similar reasoning as in Proposition 3.1 and Theorem 3.3 we have the following result.

Lemma 3.6. Let R = (A,S, p) be a risk measurement regime on L∞P such that ρR is finite
and normalised. Define

ρ∗R(µ) := sup
X∈L∞P

∫
X dµ− ρR(X), µ ∈ baP. (3.10)

Then ρR is continuous from above if and only if all lower level sets Ec := {µ ∈ baP |
ρ∗R(µ) ≤ c}, c ∈ R, of ρ∗R are σ(caP, L

∞
P )-compact, which is in particular implied by

B(A) :=

{
µ ∈ baP

∣∣∣ sup
Y ∈A

∫
Y dµ <∞

}
⊆ caP.

In that case

ρR(X) = sup
µ∈(caP)+

∫
X dµ− ρ∗R(µ), X ∈ L∞P . (3.11)

In particular, dom(ρ∗R) = B(A) ∩ {ν ∈ (caP)+ | ∀Z ∈ S :
∫
Z dν = p(Z)}, and E0 6= ∅. If

ρR is positively homogeneous, then the analogues of (3.5) and (3.6) hold as well.

We devote the remainder of this section to the question whether there is a strong refer-
ence model, i.e. whether there an element in

P := {µ ∈ E0 | µ ≈ P}.

This notion is well-known in the case of law-invariant monetary risk measures, and the result
can be generalised in our setting:

Proposition 3.7. Let R = (A,S, p) be a risk measurement regime on L∞P such that ρR is
normalised, and assume

(i) the underlying probability space (Ω,F ,P) is atomless;

(ii) A is the acceptance set {X ∈ L∞P | r(X) ≤ 0} of a normalised, P-law-invariant mone-
tary risk measure r which is continuous from above;

(iii) p = cEP[·] for a suitable constant c > 0.

Then P ∈ P.

Proof. By [32, Proposition 1.1] and [16, Corollary 4.65], r is dilatation monotone: for ev-
ery sub-σ-algebra G ⊆ F and every X ∈ L∞P , the estimate r(EP[X|G]) ≤ r(X) holds.
Thus, for every X ∈ L∞P , EP[X] = r (EP[X|{∅,Ω}]) ≤ r(X). We conclude σA(P) =
supY ∈L∞P : r(Y )≤0 EP[Y ] = 0.

Clearly, sensitivity (c.f. Definition 2.3) is necessary to have P 6= ∅, but apart from the
coherent case it is not sufficient. As an example consider two probability measures Q � P
such that Q 6≈ P. Define

Pβ := βQ + (1− β)P, ρ : L∞P 3 X 7→ sup
β∈[0,1]

EPβ [X]− (1− β)2.

For R = ({X | ρ(X) ≤ 0},R, idR), we have that ρ = ρR is a sensitive risk measure with
E0 = {Q} and P = ∅.
In the following we will use the notation F+ := {A ∈ F | P(A) > 0}.
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Lemma 3.8. Let R = (A,S, p) be a risk measurement regime such that ρR is finite, con-
tinuous from above, and coherent. Then P 6= ∅ if and only if ρR is sensitive.

Proof. We only prove sufficiency. If ρR is coherent, then dom(ρ∗R) = E0; see (3.5). Moreover,
continuity from above implies E0 ⊆ (caP)+. As ρR is sensitive, we have that 0 < ρR(1A) =
supµ∈E0

µ(A) for all A ∈ F+. Consequently, there is µA ∈ E0 such that µA(A) > 0. In
other words, E0 ≈ P. The Halmos-Savage Theorem [16, Theorem 1.61] shows that there
is a countable family (µn)n∈N ⊆ E0 such that {µn | n ∈ N} ≈ P. (3.8) ensures that also
ν :=

∑
n∈N

1
2nµn ∈ E0, i.e. P 6= ∅.

The following theorems state sufficient conditions under which P 6= ∅ without requiring
coherence of ρR. First, we characterise the strong condition E0 = P with the ability of ρR
to identify arbitrage.

Theorem 3.9. Let R = (A,S, p) be a risk measurement regime, and suppose that ρR is
finite, normalised, continuous from above, and sensitive. The following are equivalent:

(i) E0 = P;

(ii) For all A ∈ F+ we have ρR(−k1A) < 0 for k > 0 sufficiently large;

(iii) For all X ∈ (L∞P )++ we have ρR(−X) < 0.

Moreover, E0 = P if ρR is strictly monotone, i.e. ρR(X) < ρR(Y ) whenever Y − X ∈
(L∞P )++.

Proof. (iii) trivially implies (ii). Now assume (i) does not hold, i.e. there is some µ ∈ E0\P,
hence µ(A) = 0 for some A ∈ F+. From 0 = ρR(0) ≥ ρR(−k1A) ≥ −kµ(A) = 0 we infer
ρR(−k1A) = 0 for all k > 0, contradicting (ii). This shows that (ii) implies (i). In order
to show that (iii) is implied by (i), assume we can find a X 6= 0 in the negative cone with
ρR(X) = 0. As the level sets of ρ∗R are σ(caP, L

∞
P )-compact, we can find a µ ∈ dom(ρ∗R) such

that 0 = ρR(X) =
∫
X dµ − ρ∗R(µ). This implies ρ∗R(µ) = 0 =

∫
X dµ, a contradiction

to E0 = P. Finally, strict monotonicity clearly implies (iii) by normalisation.

The next aim is a characterisation of P 6= ∅ in terms of the components of the risk measure-
ment regime R = (A,S, p).

Theorem 3.10. Suppose that ρR is finite, continuous from above, normalised, and sensitive.
Let C ⊆ L∞P be the smallest weakly* closed convex cone containing A+ ker(p).

(i) P 6= ∅ if and only if C ∩ (L∞P )++ = ∅.
(ii) P 6= ∅ if A + ker(p) satisfies the rule of equal speed of convergence: Let

(Xn)n∈N ⊆ A and (Zn)n∈N ⊆ ker(p) be sequences such that ‖Xn + Zn‖∞ ≤ 1 for all
n. Suppose (tn)n∈N is such that tn ↑ ∞. If the rescaled vectors

Vn := tn(Xn + Zn)

satisfy V −n → 0 in probability, then for all sets B ∈ F+, it holds that

lim sup
n→∞

P(B ∩ {V +
n ≥ ε}) < P(B).

(iii) P = ∅ if there are sequences (Xn)n∈N, (Zn)n∈N and (tn)n∈N such that

sup
n∈N
‖tn(Xn + Zn)‖∞ <∞

violating the rule of equal speed of convergence

A proof is given in Appendix B.
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4 The Minkowski domain of a risk measure

4.1 Construction of the Minkowski domain and extension results

Throughout Section 4 fix an acceptance set A ⊆ L∞P , a security space S ⊆ L∞P , and let
p : S → R be a pricing functional such that ρR : L∞P → R is a normalised, finite, sensitive
risk measure which is continuous from above. Based on the results in Section 3, we assume
that P is a weak reference probability model, i.e. γP ∈ dom(ρ∗R) for a suitable constant
γ > 0. The aim of this section is to lift ρR to a domain of definition denoted by LR

whose structure is completely characterised by ρR and thus consistent with the initial risk
measurement regime, although it is in general strictly bigger than L∞P . The typical argument
for restricting risk measures to bounded random variables—namely, that this space is robust
and thus not conflicting with the ambiguity expressed by ρR—is not valid in this case, since
LR will completely reflect the ambiguity as perceived by ρR. To this end, we remark that

ρ(|X|) := sup
µ∈dom(ρ∗R)

∫
|X| dµ− ρ∗R(µ), (4.1)

where ρ∗R is given in (3.10), is well-defined for all X ∈ L0
P := L0(Ω,F ,P), possibly taking

the value ∞. In this sense the objects appearing in the following definition are well-defined.

Definition 4.1. For c > 0 and X ∈ L0
P let

‖X‖c,R := inf
{
λ > 0

∣∣∣ ρ( |X|λ ) ≤ c} (inf ∅ :=∞),

and ‖X‖R := ‖X‖1,R. The Minkowski domain for ρR is the set

LR := {X ∈ L0
P | ‖X‖R <∞}.

Note that we may interpret ‖ · ‖R as a Minkowski functional given the level set

ρ(| · |)−1(−∞, 1],

and its domain LR is thus called the Minkowski domain.

Proposition 4.2. (i) For all c > 0 there exist constants Ac, Bc > 0 such that

Ac‖ · ‖c,R ≤ ‖ · ‖R ≤ Bc‖ · ‖c,R.

In particular LR = {X ∈ L0
P | ‖X‖c,R <∞} for all c > 0, and (‖ · ‖c,R)c>0 is a family

of equivalent norms on LR.
Moreover, ‖X‖∞ ≥ B−1

ρR(1)‖X‖R, X ∈ L∞P , and thus L∞P ⊆ LR.

(ii) X ∈ LR if and only if
∫
|X| dµ <∞ for all µ ∈ dom(ρ∗R).

(iii) (LR, ‖ · ‖R) is a Banach lattice.

(iv) |X| ≤ |Y | implies ‖X‖c,R ≤ ‖Y ‖c,R and thus LR is solid. In particular, LR is
invariant under rearrangements of profits and losses, i.e. if ϕ ∈ L∞P attaining values
in [−1, 1], then ϕ ·X ∈ LR with ‖ϕX‖c,R ≤ ‖X‖c,R.

Proof. First we set Λc(X) := {λ > 0 | ρ(λ−1|X|) ≤ c}, i.e. ‖X‖c,R = inf Λc(X).

(i): Suppose that c ∈ (0, 1) and let X ∈ L0
P. Note that ‖X‖R =∞ if and only if Λ1(X) = ∅,

which implies Λc(X) = ∅ or equivalently ‖X‖c,R = ∞. Now assume ‖X‖R < ∞, and pick
λ ∈ Λ1(X). As ρ∗R ≥ 0, we have

ρ(c|X|/λ) = sup
µ∈dom(ρ∗R)

∫
c

λ
|X| dµ− ρ∗R(µ) ≤ cρ(|X|/λ) ≤ c,

which implies ‖X‖R ≥ c‖X‖c,R. Trivially, Λc(X) ⊆ Λ1(X) and therefore ‖X‖c,R ≥ ‖X‖R.
Hence, we may choose Ac = c and Bc = 1. The case c > 1 is treated similarly.
Monotonicity implies that ρ(|X|/‖X‖∞) ≤ ρR(1) for all X ∈ L∞P , which yields ‖X‖∞ ≥
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‖X‖ρR(1),R ≥ B−1
ρR(1)‖X‖R and L∞P ⊆ LR.

‖ · ‖c,R is indeed a norm: The verification of the triangle inequality and homogeneity are
straightforward. For the definiteness of ‖ · ‖c,R, let µ ∈ dom(ρ∗R) be arbitrary. As for all
λ ∈ Λc(X) we obtain the estimate ‖λ−1X‖L1

µ
− ρ∗R(µ) ≤ ρ(λ−1|X|) ≤ c, we can infer

1

c+ ρ∗R(µ)
‖X‖L1

µ
≤ ‖X‖c,R. (4.2)

Choosing µ ∈ dom(ρ∗R) such that µ = γP yields definiteness of ‖ · ‖c,R.

(ii): It follows from (4.2) that for all X ∈ LR and all µ ∈ dom(ρ∗R) the integrability condition∫
|X| dµ < ∞ holds. For the converse implication, let X ∈ L0

P\LR be arbitrary, the latter
being equivalent to ρ(t|X|) =∞ for all t > 0. As before, we set Ec := {µ ∈ caP | ρ∗R(µ) ≤ c},
c ∈ R, and will show that there is a ν ∈ E1 such that

∫
|X| dν = ∞. First assume that

supµ∈E1

∫
|X| dµ =∞. Choose a sequence (µn)n∈N ⊆ E1 such that

∫
|X| dµn ≥ 22n, n ∈ N,

and set ν =
∑∞
n=1 2−nµn, which is itself an element of E1 by (3.8). Moreover,∫

|X| dν =

∞∑
n=1

2−n
∫
|X| dµn ≥

∞∑
n=1

2n =∞.

Hence, X is not ν-integrable. In a second step, we show that the case supµ∈E1

∫
|X| dµ <∞

cannot occur. Assume for contradiction that supµ∈E1

∫
|X| dµ <∞. If there were a constant

κ > 0 such that for all µ ∈ dom(ρ∗R)\E1 the estimate∫
|X| dµ ≤ κρ∗R(µ)

holds, one could estimate

ρ(κ−1|X|) ≤ 1

κ
sup
µ∈E1

∫
|X| dµ <∞,

and thus X ∈ LR. Thus, there must be a sequence (µn)n∈N ⊆ dom(ρ∗R) such that ρ∗R(µn) >
1 and

∫
|X| dµn ≥ 22nρ∗R(µn), n ∈ N. We set C :=

∑∞
n=1

1
2nρ∗R(µn) ∈ (0, 1), and

ζ :=

∞∑
n=1

1

2nρ∗R(µn)C
µn.

As µn(Ω) ≤ ρR(1) + ρ∗R(µn), ζ(Ω) is finite. Moreover, by σ(caP, L
∞
P )-lower semicontinuity

of ρ∗R, ρ∗R(ζ) ≤ 1
C

∑∞
n=1 2−n = 1

C . Note that∫
|X| dζ ≥

∞∑
n=1

22nρ∗R(µn)

2nρ∗R(µn)C
=

1

C

∞∑
n=1

2n =∞,

Hence, for ν := Cζ + (1 − C)µ0 ∈ E1, where µ0 ∈ E0 is chosen arbitrarily, we also obtain∫
|X| dν =∞. This is the desired contradiction.

(iii) follows from [27, Proposition 4.10], and (iv) is an immediate consequence of the mono-
tonicity of ρ(| · |).

The proof of Proposition 4.6 will clarify the reason for introducing the norms ‖ ·‖c,R instead
of just ‖ · ‖R.

Remark 4.3. (i) In the coherent case, we can infer from Proposition 4.2(ii) that ‖·‖c,R =
c−1ρ(|X|) = c−1 supµ∈dom(ρ∗R) ‖X‖L1

µ
.

(ii) The Minkowski norm ‖ · ‖c,R can be interpreted as a generalisation of the so-called
Aumann-Serrano economic index of riskiness (see [2] and [8, Example 3]).
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(iii) The Minkowski domain and similar spaces have appeared in [22, 27, 31]. The definition
of LR depends on the nullsets of the probability measure P only, and thus is invariant
under any choice of the underlying probability measure P ≈ dom(ρ∗R), in particular
under changes of weak and strong reference probability models.

The main purpose for introducing the Minkowski domain LR is to extend ρR to a larger
domain than L∞P in a robust way in terms of the fundamentals, i.e. the risk measurement
regime R = (A,S, p). There is a canonical candidate for this given by R̃ := (Ã,S, p) where

Ã := {X ∈ LR | ∀µ ∈ dom(ρ∗R) :

∫
X dµ ≤ ρ∗R(µ)}, (4.3)

so Ã is given by lifting—and thus also preserving—the acceptability criteria
∫
X dµ ≤ ρ∗R(µ),

µ ∈ dom(ρ∗R), from L∞P to LR. Indeed the following Theorem 4.4 shows that R̃ is a
risk measurement regime, and that the corresponding risk measure ρR̃ preserves the dual
representation of ρR. Dual approaches to extending convex functions are commonly used in
the literature; see, e.g., [14, 27]. Note that ρR̃ also preserves any functional form ρR may
have, as for instance in the case of the entropic risk measure in Example 5.4 below.

Theorem 4.4. R̃ := (Ã,S, p) is a risk measurement regime on the Banach lattice (LR, ‖ ·
‖R). ρR̃ can be expressed as

ρR̃(X) = sup
µ∈dom(ρ∗R)

∫
X dµ− ρ∗R(µ), X ∈ LR, (4.4)

where ρ∗R is defined as in (3.10). Moreover, for every µ ∈ dom(ρ∗R), the linear functional∫
· dµ is bounded on (LR, ‖ · ‖R). A fortiori, ρR̃|L∞P = ρR. Moreover, ρR̃ is l.s.c. on

(LR, ‖ · ‖R), and satisfies
ρR̃(X) = sup

m∈N
ρR̃(X ∧m). (4.5)

Proof. Note that for arbitrary µ ∈ dom(ρ∗R) and all X 6= 0, we have∫
|X|
‖X‖R

dµ = sup
ε>0

∫
|X|

‖X‖R + ε
dµ ≤ sup

ε>0
ρ

(
|X|

‖X‖R + ε

)
+ ρ∗R(µ) ≤ 1 + ρ∗R(µ),

hence
∫
· dµ is a bounded linear functional on LR. For arbitrary X ∈ LR and µ ∈ E0 we

have

sup{p(Z) | Z ∈ S, X + Z ∈ Ã} ≤ sup{p(Z) | Z ∈ S, p(Z) ≤ −
∫
Xdµ} = −

∫
Xdµ <∞,

where the finiteness of the bound is due to Proposition 4.2(ii). Thus, R̃ satisfies (2.1) and
is indeed a risk measurement regime, because Ã is monotone by dom(ρ∗R) ⊆ (caP)+, and
convex as intersection of convex subsets of LR. It is straightforward to show (4.4), so ρR̃
is l.s.c. as pointwise supremum of a family of continuous functions. In order to prove (4.5),
let µ ∈ dom(ρ∗R) be arbitrary and note that by the Monotone Convergence Theorem and
monotonicity of ρR̃, we have∫

X dµ− ρ∗R(µ) = sup
m∈N

∫
(X ∧m)dµ− ρ∗R(µ) ≤ sup

m∈N
ρR̃(X ∧m) ≤ ρR̃(X).

Now take the supremum over µ ∈ dom(ρ∗R) on the left-hand side.

Another way to extend ρR could be considering

A := cl‖·‖R(A). (4.6)

and R = (A,S, p). We will discuss this approach in Remark 4.11 where we show that R is
no risk measurement regime on LR in general, and that, where ρR makes sense, it indeed
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equals ρR̃. As announced in the introduction, we also consider the following extensions of
ρR given by monotone approximation procedures:

ξ(X) := sup
m∈N

inf
n∈N

ρR((−n) ∨X ∧m), X ∈ LR,

and
η(X) := inf

n∈N
sup
m∈N

ρR((−n) ∨X ∧m), X ∈ LR.

The question is under which conditions we have

ρR̃(X) = ξ(X) = η(X) = lim
n→∞

ρR((−n) ∨X ∧ n). (4.7)

Note that as a byproduct of (4.5), we obtain the estimate

ρR̃ ≤ ξ ≤ η and ∀X ∈ LR : ρR̃(|X|) = ξ(|X|) = η(|X|) = ρ(|X|). (4.8)

The following Theorem 4.5 shows that ρR̃ possesses some regularity in terms of monotone
approximation in that always ρR̃ = ξ.

Theorem 4.5. For all X ∈ LR and all U ∈ L∞P we have

ρR̃(X + U) = sup
m∈N

inf
n∈N

ρR((−n) ∨X ∧m+ U). (4.9)

A fortiori, the equality ρR̃ = ξ holds, and ρR̃ can equivalently be interpreted as the risk
measure associated to the risk measurement regime Rξ := (Aξ,S, p) on (LR, ‖ · ‖R), where

Aξ := {X ∈ LR | ξ(X) ≤ 0} = {X ∈ LR | sup
m∈N

inf
n∈N

ρR((−n) ∨X ∧m) ≤ 0}.

For the sake of brevity, we shall in the remainder of our investigations often use the following
piece of notation: for random variables U, V ∈ (L∞P )+ and X ∈ LR, we set XU := X ∨ (−U)
and XV := X ∧ V .

Proof. We show first that ρR̃ = ξ holds. Let X ∈ LR, m ∈ N be fixed and n ∈ N be
arbitrary. Let µ ∈ dom(ρ∗R) be such that

ρR̃(−X−)− 1 ≤ ρR(Xm
n )− 1 ≤

∫
Xm
n dµ− ρ∗R(µ) ≤

∫
(X+)mdµ− ρ∗R(µ).

Of course, the first and last inequalities in the latter estimate always hold by monotonicity.
For ε > 0 arbitrary we can thus estimate

ρ∗R(µ)− 1 ≤
∫

(X+)mdµ− ρR̃(−X−) =
1

1 + ε

∫
(1 + ε)(X+)mdµ− ρR̃(−X−)

≤ 1

1 + ε
ρR((1 + ε)(X+)m) +

1

1 + ε
ρ∗R(µ)− ρR̃(−X−).

Rearranging this inequality, we obtain

ρ∗R(µ) ≤ 1

ε
ρR((1 + ε)(X+)m) +

1 + ε

ε

(
1− ρR̃(−X−)

)
=: c,

a bound which is independent of n ∈ N. Since Ec = {µ ∈ caP | ρ∗R(µ) ≤ c} is σ(caP, L
∞
P )-

compact by Lemma 3.6, we conclude for all n ∈ N that ρR(Xm
n ) = maxµ∈Ec f(µ, n), where

the function f is given by

f : Ec × N→ R, f(µ, n) :=

∫
Xm
n dµ− ρ∗R(µ),

Our aim is to apply Fan’s Minimax Theorem [10, Theorem 2] to the function f in order to
infer

ξ(Xm) = inf
n

max
µ∈Ec

f(µ, n) = max
µ∈Ec

inf
n∈N

f(µ, n) = max
µ∈Ec

inf
n∈N

∫
Xm
n dµ− ρ∗R(µ). (4.10)

To this end we have to check the following conditions:
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• Ec is a compact Hausdorff space when endowed with the relative σ(caP, L
∞
P )-topology.

This follows from continuity from above.

• f is convex-like on N in that for all n1, n2 ∈ N and all 0 ≤ t ≤ 1 there is a n0 ∈ N such
that

∀µ ∈ Ec : f(µ, n0) ≤ tf(µ, n1) + (1− t)f(µ, n2).

Indeed, choose n0 := max{n1, n2} and note that

tf(µ, n1) + (1− t)f(µ, n2) = t

∫
Xm
n1
dµ+ (1− t)

∫
Xm
n2
dµ− ρ∗R(µ)

≥ (t+ 1− t)
∫
Xm
n0
dµ− ρ∗R(µ) = f(µ, n0).

• f is concave-like on Ec, which is defined analogous to convex-like. Indeed, let µ1, µ2 ∈
Ec and define µ0 = tµ1 + (1 − t)µ2 ∈ Ec (by convexity of Ec). Then for all n ∈ N,
convexity of ρ∗R implies

tf(µ1, n) + (1− t)f(µ2, n) =

∫
Xm
n dµ0 − tρ∗R(µ1)− (1− t)ρ∗R(µ2)

≤
∫
Xm
n dµ0 − ρ∗R(µ0) = f(µ0, n).

• For all n ∈ N, the mapping µ 7→ f(µ, n) is upper semicontinuous. This follows from
the continuity of µ 7→

∫
Xm
n dµ and the lower semicontinuity of ρ∗R.

From (4.10), by the positivity of µ and, e.g., dominated convergence,

ξ(Xm) = max
µ∈Ec

∫
Xmdµ− ρ∗R(µ) ≤ ρR̃(Xm),

and ρR̃(Xm) = ξ(Xm) holds by (4.8). Taking the limit m → ∞, we obtain from the
definition of ξ and (4.5) that ρR̃(X) = ξ(X).
Now, let X ∈ LR and U ∈ L∞P be arbitrary and assume m,n ≥ u := ‖U‖∞. We obtain

(X + U)n = (X + U)1{X≥−U−n} − n1{X<−U−n}

= X1{X≥−U−n} − (n+ U)1{X<−U−n} + U = XU+n + U,
(4.11)

and in addition

(X + U)m = (X + U)1{X≤m−U} +m1{X>m−U}

= X1{X≤m−U} + (m− U)1{X>m−U} + U = Xm−U + U.
(4.12)

From these two equations (4.11) and (4.12) we infer

ξ(X + U) = sup
m≥u

inf
n≥u

ρR((XU+n + U)m) = sup
m≥u

inf
n≥u

ρR(Xm−U
U+n + U).

This implies that

sup
m∈N

inf
n∈N

ρR(Xm
n + U) = sup

m≥u
inf
n≥u

ρR(Xm−U
U+n + U) = sup

m≥u
inf
n≥u

ρR((X + U)mn )

= ξ(X + U) = ρR̃(X + U).

(4.9) is proved. ξ = ρR̃ being S-additive, monotone, and proper, directly implies Rξ is a
risk measurement regime. The equality ρR̃ = ξ = ρRξ obviously holds true.

Theorem 4.5 appeared as [31, Lemma 2.8] in the context of law-invariant monetary risk
measures. Our proof not only serves as an alternative to the one given in [31], relying
irreducibly on law-invariance, but also generalises the result to a much wider class of risk
measures.
In contrast to Theorem 4.5, we demonstrate in Example 5.2 that ρR̃ 6= η may happen.
Before we study conditions under which ρR̃ displays regularity in the sense of (4.7), we
show the following properties of η:
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Proposition 4.6. Define the acceptance set

Aη := {X ∈ LR | inf
n∈N

ρR̃((−n) ∨X) ≤ 0} ( LR.

Then η is the risk measure associated to the risk measurement regime Rη := (Aη,S, p).
Moreover,

∀X ∈ LR : η(X) = inf
n∈N

ρR̃((−n) ∨X), (4.13)

and

Γ := {X ∈ LR | ∃ ε > 0 : ρ((1 + ε)X+) <∞} = int dom(η) ⊆ int dom(ρR̃).

Proof. From (4.5) and η|L∞P = ρR = ρR̃|L∞P , we immediately obtain that for all X ∈ LR
the equality η(X) = infn∈N ρR̃((−n) ∨X) holds. (4.8) shows that Aη ( LR and that η is a
proper function. In order to prove the theorem, it suffices to check S-additivity, convexity
and monotonicity. Let Z ∈ S and X ∈ LR. From the S-additivity of ρR̃ and (4.11) we
obtain, using the notational conventions introduced before the proof of Theorem 4.5, that

η(X) = inf
n≥‖Z‖∞

ρR̃(XZ+n + Z) = inf
n≥‖Z‖∞

ρR̃(XZ+n) + p(Z) = η(X) + p(Z).

For each n ∈ N, fn(x) := (−n) ∨ x is convex and monotone, thus η = limn ρR̃ ◦ fn is
convex and monotone. Next we show that Γ ⊆ int dom(η). To this end we first show that
B :=

⋃
c>0{Y ∈ LR | ‖Y ‖c,R < 1} ⊆ int dom(η). Indeed for any X with ‖X‖c,R < 1, there

is λ < 1 such that ρ(|X|/λ) ≤ c, and thus

η(X) ≤ η(|X|) = ρ(|X|) ≤ λρ(|X|/λ) ≤ λc <∞,

so B ⊆ dom(η). Moreover, by definition B is open in (LR, ‖ · ‖R). Now, let X ∈ Γ, and
thus X+ ∈ B. Hence, there is δ > 0 and a ball Bδ(0) := {Y ∈ LR | ‖Y ‖R < δ} such that
{X+} + Bδ(0) ⊆ dom(η). By monotonicity of η it now follows that also {X} + Bδ(0) =
{X+}+Bδ(0)− {X−} ⊆ dom(η), so X ∈ int dom(η).
In order to show Γ ⊇ int dom(η) let X ∈ int dom(η). Then there is ε > 0 such that
(1+2ε)X ∈ dom(η) and thus also (1+ε)X ∈ dom(η), and by (4.13) there must be n ∈ N such
that (1 + 2ε)((−n)∨X) ∈ dom(ρR̃) and (1 + ε)((−n)∨X) ∈ dom(ρR̃). Let Xn := (−n)∨X
and Y = (1 + ε)(X− ∧ n) ∈ L∞P , so we have (1 + ε)X+ = (1 + ε)Xn + Y . If δ > 0 satisfies
(1 + δ)(1 + ε) = 1 + 2ε, convexity implies

ρ((1 + ε)X+) = ρR̃((1 + ε)Xn + Y ) = ρR̃

(
1 + δ

1 + δ
(1 + ε)Xn +

δ(1 + δ)

δ(1 + δ)
Y

)
≤ 1

1 + δ
ρR̃((1 + 2ε)Xn) +

δ

(1 + δ)
ρR̃

(
(1 + δ)

δ
Y

)
<∞. (4.14)

Hence, X ∈ Γ. int dom(η) ⊆ int dom(ρR̃) follows from ρR̃ ≤ η, see (4.8).

The following Theorem 4.7 states conditions under which (4.7) holds.

Theorem 4.7. Let X ∈ Γ. Consider the following conditions:

(i) there is s > 0 such that for all n ∈ N we have

ρR̃((−n) ∨X) = limm→∞ ρR̃((−n) ∨X + sX+1{X+≥m});

(ii) there is s > 0 such that η(X) = limm→∞ η(X + sX+1{X+≥m});

(iii) for all n ∈ N we have limm→∞ ρ(nX1{X≥m}) = 0.

Any of the conditions (i)-(iii) implies (4.7).
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The set Γ appears to be a set of reasonable risks in that they can at least be leveraged by a
small amount and still remain hedgeable. Risks outside Γ should probably not be considered
by any sound agent. Note that the conditions (i)-(iii) are satisfied whenever monotone or
dominated convergence results can be applied to ρR̃, as is the case for many risk measures
used in practice like the entropic risk measure in Example 5.4 or Average Value at Risk
based risk measures in Example 5.5. The proof of Theorem 4.7 is based on a study of
subgradients of ρR̃ and η, respectively, and therefore postponed to the end of Section 4.4.
It turns out that the regularity condition (4.7) is closely related to the existence of regular
subgradients for η and ρR̃.

4.2 The structure of the Minkowski domain

In this section, we will decompose LR into parts with clear operational meanings.

Definition 4.8. We denote the closure of L∞P in LR by MR := cl‖·‖R(L∞P ), and define the
heart of the Minkowski domain to be

HR := {X ∈ LR | ρ(k|X|) <∞ for all k > 0}.

HR, a concept which clearly adapts the idea of an Orlicz heart,6 is the set of risky positions
which can be hedged at any quantity with finite cost.

Proposition 4.9. MR and HR are solid Banach sublattices of LR and MR ⊆ HR. More-
over, HR ⊆ Γ, and both ρR̃|HR and η|HR are continuous.

Proof. The first assertions are easily verified. Recall the set B from the proof of Propo-
sition 4.6 for which we know that B ⊆ Γ. For the inclusion HR ⊆ B, let 0 6= X ∈ HR

and note that ρ(2|X|) < ∞. The latter means ‖X‖c,R ≤ 1
2 < 1 for some c > 0, and

thus HR ⊆ B. Finally, as (HR, ‖ · ‖R) is a Banach lattice and both η and ρR̃ are convex,
monotone and finite-valued on (HR, ‖ · ‖R), ρR̃|HR and η|HR are continuous according to
Remark 2.4(v).

From Proposition 4.9 we can derive the following characterisation of MR, a result which
can also be found as [27, Lemma 3.3].

Corollary 4.10. MR = {X ∈ LR | ∀λ > 0 : limk→∞ ρ(λ|X|1{|X|≥k}) = 0}.

Proof. Let X ∈MR and λ, ε > 0 be arbitrary. Let δ > 0 be such that ‖Y ‖R ≤ δ, Y ∈ HR,
implies ρ(|Y |) = ρR̃(|Y |) ≤ ε. This is possible due to Proposition 4.9. Choose now Y ∈ L∞P
such that ‖λ(X − Y )‖R ≤ δ

2 and k ∈ N such that ‖λY 1{|X|≥k}‖R ≤ δ
2 , the latter being due

to continuity from above. Then Z := |X − Y |1{|X|≥k} + |Y |1{|X|≥k} satisfies ‖λZ‖R ≤ δ,
and by monotonicity ρ(λ|X|1{|X|≥k}) ≤ ρR̃(λZ) ≤ ε. The converse inclusion above is
obvious.

As HR is closed, the set of directions along whose absolute value ρR̃ attains the value infinity
is thus norm-open. In particular, we can only approximate such vectors with sequences of
vectors along which ρR̃ behaves equally discontinuous, and limits of well-behaved financial
positions are equally well-behaved. Hence shifting to LR yields a structure which conve-
niently separates regimes of “good” and “bad” risk behavior. In that respect consider the
set CR := dom(ρR̃)\HR ⊆ LR. CR is the set of “less bad” positions, and shields HR

from the financial positions that carry infinite risk. It has a nice interpretation in terms of
liquidity risk in the sense of Lacker [24]. In that paper the author considers liquidity risk
profiles, i.e. curves of the form ρR̃(tX)t≥0 capturing how risk scales when increasing the
leverage. CR consists of financial positions X such that the liquidity risk profiles of X+ or
X− breach the infinite risk regimes. Whereas an agent could at least hypothetically hedge
any position in HR at finite cost, no matter what the leverage, she has to be very careful in
the case of elements in CR that have finite risk themselves but which produce potentially
completely non-hedgeable losses under incautious scaling.

6 For an introduction to Orlicz space theory we refer to [28].
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Recalling that for any X ∈ LR there is λ > 0 such that ρ(|X|/λ) < ∞, we obtain that
CR = ∅, if and only if HR = LR, and ρR̃ is continuous. Moreover, if HR ( LR, both
HR and MR are nowhere dense (as true subspaces of LR) and—by Baire’s Theorem—
CR ∪ {ρR̃ =∞} is a dense open set.
Note that the inclusions MR ⊆ HR ⊆ LR can all be strict, as is illustrated by Example 5.3.

Remark 4.11. Having introduced MR we can now discuss the extension given by the norm
closure operation (4.6). Seen as a subset of LR, A is unfortunately not an acceptance set
in the sense of Definition 2.1, since X ≤ Y and Y ∈ A does not necessarily imply X ∈ A,
so the monotonicity property is violated. However, one can show that R := (A,S, p) is
a risk measurement regime on the Banach lattice MR. By Proposition 4.9 it follows that
ρA(X) = ρR̃(X) = η(X) for all X ∈MR, and ρA is continuous on MR.

4.3 The dual of the Minkowski domain

In this short interlude we discuss a few properties of the norm dual (LR∗, ‖ · ‖R∗) of (LR, ‖ ·
‖R), the space of continuous linear functionals on the Minkowski domain, which will be
essential when we study subgradients in Section 4.4.

Theorem 4.12. LR∗ is the direct sum of two subspaces CA and PA, i.e.

LR∗ = CA⊕ PA.

Elements in CA have the shape X 7→
∫
X dµ for a unique µ ∈ caP. λ ∈ PA are characterised

by λ|MR = 0. For ` = µ ⊕ λ,7 µ is the regular part of ` and λ the singular part.
Moreover, L∞P can be identified with a subspace of LR∗.

Proof. Let ` ∈ LR∗ and consider the additive set function µ = µ` : F → R, µ(A) := `(1A). It
is straightforward to prove that µ ∈ baP and that it is unique, given `. Let now (An)n∈N ⊆ F
be a vanishing sequence of sets. For all λ > 0 continuity from above implies

limn→∞ ρ(λ−11An) = ρ(0) = 0,

which reads as limn ‖1An‖R = 0 and thus limn µ(An) = limn `(1An) = 0. Hence µ ∈ caP.
We will now show that the linear functional X 7→

∫
X dµ is bounded. To this end, note

first that by its definition, `(X) =
∫
X dµ` holds for all X ∈ L∞P . Moreover, by [1, Theorem

7.46], LR∗ is a Banach lattice in its own right, and the mapping ` 7→ µ` is positive and linear
in `, hence it suffices to show X 7→

∫
X dµ ∈ LR∗ is bounded for µ = µ` ∈ (caP)+, ` ∈ LR∗+ .

Let X ∈ LR+ be arbitrary.∫
(X ∧ n)dµ = |`(X ∧ n)| ≤ ‖`‖R∗‖(X ∧ n)‖R ≤ ‖`‖R∗‖X‖R,

where the last inequality follows from Proposition 4.2(iv). We apply the Monotone Conver-
gence Theorem and obtain

∫
X dµ ≤ ‖`‖R∗‖X‖R. For a general X ∈ LR, we get∣∣∣∣∫ X dµ

∣∣∣∣ ≤ ∫ |X|dµ ≤ ‖`‖R∗‖|X|‖R = ‖`‖R∗‖X‖R.

X 7→
∫
X dµ ∈ LR∗ follows, and from L∞P being dense in MR, `|MR =

∫
· dµ|MR has

to hold. Let CA := {
∫
· dµ` | ` ∈ LR∗}, which is a subspace of LR∗. For ` ∈ LR∗, let

λ := ` −
∫
· dµ ∈ LR∗, which satisfies λ|MR = 0. Clearly, ` =

∫
· dµ + λ is a unique

decomposition of ` as a sum of elements in CA and PA.
If Z ∈ L∞P , the inclusion LR ⊆ L1

P, Hölder’s inequality and (4.2) yield LR 3 X 7→ EP[ZX]
is well-defined and continuous, i.e. EP[Z·] ∈ LR∗.

CA stands for “countably additive”, PA for “purely additive”. One can show that CA is a
closed subspace of LR∗. The following corollary is a direct consequence of Theorem 4.12.

7 We shall stick to the abuse of notation of identifying functionals in CA with the unique measure µ ∈ caP in
their integral representation.
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Corollary 4.13. For all λ ∈ PA, X ∈ LR and r > 0, we have the identity

λ(X) = λ(X1{|X|≥r}).

Moreover, if ` = µ⊕ λ ∈ LR∗, limr→∞ `(X1{|X|≥r}) = λ(X) holds for all X ∈ LR.

Theorem 4.12 implies another characterisation of ρR̃.

Corollary 4.14. Consider the following two classes of extensions of ρR to LR:

E1 = {g : LR → (−∞,∞] | g convex, σ(LR, CA)-l.s.c., g|L∞P = ρR},
E2 := {g : LR → (−∞,∞] | g monotone, g = supm∈N g(· ∧m), g|L∞P = ρR}.

Then ρR̃ is maximal both in E1 and E2, i.e. g ∈ Ei implies g ≤ ρR̃.

Proof. First assume g ∈ E1. By the Fenchel-Moreau Theorem (c.f. [9, Proposition 4.1]) g
has a dual representation

g(X) = sup
µ∈CA

∫
X dµ− g∗(µ), X ∈ LR,

where g∗(µ) = supX∈LR
∫
X dµ − g(X). By g|L∞P = ρR, we have dom(g∗) ⊆ dom(ρ∗R) and

g∗(µ) ≥ ρ∗R(µ) for all µ ∈ dom(ρ∗R). Hence, for X ∈ LR arbitrary, we have

g(X) ≤ sup
µ∈dom(ρ∗R)

∫
X dµ− g∗(µ) ≤ sup

µ∈dom(ρ∗R)

∫
X dµ− ρ∗R(µ) = ρR̃(X).

For the second claim, let g ∈ E2 and let X ∈ LR be arbitrary. Monotonicity of g allows for
the following estimate:

g(X) = sup
m∈N

g(X ∧m) ≤ sup
m∈N

inf
n∈N

g((−n) ∨X ∧m)︸ ︷︷ ︸
=ρR((−n)∨X∧m)

= ξ(X) = ρR̃(X).

4.4 Subgradients over the Minkowski domain

In this section we will study subgradients of ρR̃ and η, and how to ensure that subgradients
correspond to measures on (Ω,F). Given Theorem 4.12, it does not seem surprising that this
is not always the case. The reason for also considering subgradients of η is that existence of
regular subgradients of η and ρR̃ is closely related to the question (4.7), and the developed
results pave the way for the proof of Theorem 4.7.

Definition 4.15. Let (X , τ) be a topological vector space with dual space X ∗. Given a
proper convex function f : X → (−∞,∞], the subgradient of f at X ∈ X is the set

∂f(X) := {` ∈ X ∗ | ∀Y ∈ X : f(Y ) ≥ f(X) + `(Y −X)}
= {` ∈ X ∗ | f(X) = `(X)− f∗(`)},

where f∗(`) := supX∈X `(X)− f(X), ` ∈ X ∗.
Note that if a convex function f : LR → (−∞,∞] is additionally monotone and S-additive,
its subgradients will be positive functionals in LR∗+ that agree with p on S.
In the study of risk measures subgradients play an important role, for instance as pricing
rules in equilibria. The following easy example serves as an economic motivation.

Example 4.16 (Optimal investment). For some capital constraint c > 0 and some linear
pricing rule ` ∈ LR∗+ consider the following optimisation problem:

(∗) ρR̃(Y )→ min, over all Y ∈ LR with `(−Y ) ≤ c.

In order to solve this, by monotonicity, we can without loss of generality focus on Y satisfying
`(−Y ) = c. If X ∈ LR satisfies ` ∈ ∂ρR̃(X) and `(−X) = c, then X solves (∗). Indeed for
all Y ∈ `−1({−c}), we have

ρR̃(X) = ρR̃(X) + `(Y −X)− `(Y )− c ≤ ρR̃(Y ) + `(−Y )− c = ρR̃(Y ).
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An important feature of the space (LR, ‖ · ‖R) is that dom(ρR̃) possesses a particularly rich
interior, see Proposition 4.6. Thus we have the following result:

Theorem 4.17. Suppose X ∈ int dom(ρR̃), so in particular if X ∈ Γ, then ∂ρR̃(X) 6= ∅.
Also ∂η(Y ) 6= ∅ whenever Y ∈ Γ.

Proof. It is well-known that a convex, proper and monotone function f on a Banach lattice
is subdifferentiable at every point in int dom(f), see [30, Proposition 1]. The claim thus
follows from Theorem 4.4 and Proposition 4.6.

We devote the remainder of this subsection to the question under which conditions ∂ρR̃(X)
will contain regular (that is σ-additive) elements.8 To this end, note that by (4.8) we
have that η∗ ≤ ρ∗R̃, which implies dom(ρ∗R̃) ⊆ dom(η∗). Moreover, CA ∩ dom(ρ∗R̃) ⊆
CA∩ dom(η∗) ⊆ dom(ρ∗R), so regular subgradients of ρR̃ and η are necessarily in dom(ρ∗R).
Indeed, if µ ∈ CA ∩ dom(η∗), then

ρ∗R(µ) = sup
Y ∈L∞P

∫
Y dµ− η(Y ) ≤ sup

Y ∈LR

∫
Y dµ− η(Y ) = η∗(µ) <∞.

Conversely, for all Y ∈ dom(η) the definition of η and CA ⊆ caP shows for µ ∈ CA∫
Y dµ− η(Y ) = lim

n→∞
lim
m→∞

∫
Y mn dµ− ρR(Y mn )

≤ sup
U∈L∞P

∫
U dµ− ρR(U) = ρ∗R(µ).

(4.15)

This shows that η∗(µ) = ρ∗R(µ), which provides a first step towards the proof of Theorem 4.7:

Lemma 4.18. Let X ∈ dom(η) and suppose that µ ⊕ λ ∈ ∂η(X), where µ ∈ CA and
λ ∈ PA. Then λ(X−) = 0. If, moreover, λ = 0, i.e. µ ∈ ∂η(X), then η(X) = ρR̃(X).

Proof. Let µ ⊕ λ ∈ ∂η(X). Define λ̃ by λ̃(Y ) = λ(Y 1{X≥0}), Y ∈ LR. One verifies that

λ̃ ∈ (LR)∗. Also we have

η∗(µ⊕ λ̃) = sup
Y ∈LR

∫
Y dµ+ λ(Y 1{X≥0})− η(Y )

≤ sup
Y ∈LR

lim
n→∞

∫
(−n) ∨ Y dµ+ λ(Y +)− η((−n) ∨ Y )

≤ lim sup
n→∞

sup
Y ∈LR

∫
(−n) ∨ Y dµ+ λ((−n) ∨ Y )− η((−n) ∨ Y )

≤ η∗(µ⊕ λ),

where we used monotonicity of λ. Hence,

η(X) =

∫
X dµ+ λ(X)− η∗(µ⊕ λ) ≤

∫
X dµ+ λ̃(X)− η∗(µ⊕ λ̃) ≤ η(X),

and the first inequality would be strict if λ(X−) > 0. Thus λ(X−) = 0 follows. For the
last assertion, suppose that µ ∈ ∂η(X) ∩ CA. The observations preceding the lemma and
(4.8) show

η(X) =

∫
X dµ− ρ∗R(µ) ≤ ρR̃(X) ≤ η(X).

8 There are immediate—however very strong—sufficient conditions for this to happen, e.g. LR∗ ⊆ caP, which
is the case if and only if MR = LR, or continuity of ρR̃ with respect to the σ(LR, CA)-topology.
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Consequently, if ∂η(X) 6= ∅, so for instance for X ∈ Γ, then η may display a “jump” λ(X+)
produced by the unbounded risk X+. If that jump is not present, then η(X) = ρR̃(X). In
the following we will introduce a weak local continuity assumption, tail continuity, which
quantifies which tails are not too fat to lead to such jumps. In [31], a version of it is studied
for law-invariant monetary risk measures.

Definition 4.19. Let f : LR → (−∞,∞] be monotone and proper, and let X ∈ dom(f).
We call f tail continuous at X along Y ∈ LR if X + Y + ∈ dom(f) and

f(X) = lim
r→∞

f
(
X + Y 1{Y≥r}

)
holds. T fX denotes the set of tails Y along which f is tail continuous at X. With a slight

abuse of language, we call f tail continuous at X if T fX = {Y ∈ LR | X + Y + ∈ dom(f)}.

Note that T fX is solid in that Y1 ≤ Y2 P-a.s. and Y2 ∈ T fX implies Y1 ∈ T fX . The next
proposition shows that sufficient tail continuity can eliminate non-σ-additive elements in
the subgradient. We prove this for general monotone functions f , but we clearly have
f = ρR̃ or f = η in mind.

Proposition 4.20. Let f : LR → (−∞,∞] be proper, monotone, and convex, and let

X ∈ dom(f). Suppose that {sY | s ≥ 0, Y ∈ T fX} is norm-dense (or equivalently T fX
separates the points of LR∗). Then ∂f(X) ⊆ CA. In particular, if f is tail continuous at
X ∈ int dom(f), then ∂f(X) ⊆ CA.

Proof. Let ` = µ ⊕ λ ∈ ∂f(X). Assume λ 6= 0. The density assumption and monotonicity

allows to pick Y ∈ T fX , Y ≥ 0, such that λ(Y ) > 0. Corollary 4.13 and ` being a subgradient
together with tail continuity along Y yield the contradiction

f(X) < f(X) + λ(Y ) = lim
r→∞

f(X) + λ(Y 1{Y≥r})

= lim
r→∞

f(X) + `(Y 1{Y≥r}) = lim
r→∞

`(X)− f∗(`) + `(Y 1{Y≥r})

= lim
r→∞

`(X + Y 1{Y≥r})− f∗(`) ≤ lim inf
r→∞

f(X + Y 1{Y≥r}) = f(X).

Unfortunately, in general we only have tail continuity along MR, as is shown in the following
Lemma 4.21. As we have already observed, if LR = MR, then LR∗ = CA and therefore
trivially ∂ρR̃(X) ⊆ CA, so just knowing tail continuity along MR is not sufficient for the
existence of countably additive subgradients in non-trivial cases.

Lemma 4.21. Let f : LR → (−∞,∞] be proper, monotone, and convex such that L∞P ⊆
dom(f). If X ∈ int dom(f), then MR+ − LR+ ⊆ T

f
X .

Proof. T fX is solid, hence it suffices to consider Y ∈ MR+ . The condition X ∈ int dom(f)
guarantees X+Y ∈ dom(f) as in (4.14). From Corollary 4.10 we obtain limn ‖Y 1{Y≥n}‖R =
0, hence X+Y 1{Y≥n} ∈ int dom(f) for all n large enough. The desired tail continuity follows
from the continuity of f |int dom(f) (see Remark 2.4(v)).

While in Proposition 4.20 we gave a condition under which the subgradient contains regular
dual elements only, we will now turn to conditions guaranteeing the existence of at least one
regular element in the subgradient, namely by means of projection.

Proposition 4.22. Let X ∈ dom(ρR̃) and ` = µ ⊕ λ ∈ ∂ρR̃(X). Then also µ ∈ ∂ρR̃(X)
whenever µ satisfies

∫
X dµ ≥ `(X). Similarly, if X ∈ dom(η) and ` = µ⊕λ ∈ ∂η(X), then

µ ∈ ∂η(X) whenever µ satisfies
∫
X dµ ≥ `(X). In particular, the assumption

∫
X dµ ≥

`(X) is met if X ∈MR+ − LR+ .
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Proof. By the same argument employed in (4.15) and the equality ρR̃ = ξ, we obtain that
η∗(µ) = ρ∗R̃(µ) = supU∈L∞P

∫
U dµ − ρR(U) = ρ∗R(µ) holds for all µ ∈ CA. From this and

`|MR =
∫
· dµ we infer ρ∗R̃(µ) ≤ ρ∗R̃(`), and η∗(µ) ≤ η∗(`). The assumption

∫
X dµ ≥ `(X)

and ` ∈ ∂ρR̃(X) imply

ρR̃(X) ≥
∫
X dµ− ρ∗R̃(µ) ≥ `(X)− ρ∗R̃(`) = ρR̃(X).

The assertion for η follows in the same way.

Remark 4.23. In the situation of Proposition 4.22, as
∫
X dµ − ρ∗R̃(µ) = `(X) − ρ∗R̃(`),

ρ∗R̃(µ) ≤ ρ∗R̃(`), and
∫
X dµ ≥ `(X), we in fact obtain

∫
X dµ = `(X) and ρ∗R̃(`) = ρ∗R̃(µ).

In other words, singularities in the subgradient cannot be excluded, but they are redundant
for X.

The following proposition establishes a handy criterion for
∫
X dµ ≥ `(X).

Proposition 4.24. Suppose that f : LR → (−∞,∞] is monotone, proper and convex, and

that ` = µ⊕ λ ∈ ∂f(X). Then
∫
X dµ ≥ `(X) whenever sX+ ∈ T fX for some s > 0.

Proof. Suppose that λ(X+) =: δ > 0. By monotonicity one obtains for all n ∈ N

δ = λ(X+) = λ(X+1{X+≥n}) ≤ `(X+1{X+≥n}).

Define Xn = X + sX+1{X+≥n} ≥ X, n ∈ N, where s > 0 is chosen like in the assumption
of the proposition. We estimate

`(X)− f(X) = f∗(`) ≥ `(Xn)− f(Xn) = `(X) + s`(X+1{X+≥n})− f(Xn)

≥ `(X) + sδ − f(Xn).

Consequently, we arrive at the contradiction 0 = limn→∞ f(Xn) − f(X) ≥ sδ. Hence,
λ(X+) = 0, and thus

∫
X dµ ≥ `(X).

We now have the tools at hand to provide the proof of Theorem 4.7.

Proof of Theorem 4.7. Note that condition (i) implies (ii), and suppose that one of them
holds. X ∈ Γ implies that ∂η(X) 6= ∅ (Theorem 4.17), and Propositions 4.22 and 4.24 in
conjunction with the second part of Lemma 4.18 do the rest.
Condition (iii) is equivalent to X+ ∈MR by Corollary 4.10. Hence Proposition 4.22 applies,
and Lemma 4.18 yields the assertion.

5 Examples

Example 5.1. Consider (Ω,F) to be the natural numbers endowed with their power set.
Let ζ ∈ ca+ be defined by the discrete density (2−ω)ω∈N and let ν ∈ ba+ be the purely
finitely additive measure on (Ω,F) arising from the Banach-Mazur limit (c.f. [1, Definition
15.46]); the reader should keep in mind that ν(F ) = 0 for all finite sets F ⊆ N. Moreover,
for λ ∈ [0, 1] we set µλ = (1− λ)ζ + λν and define the closed acceptance set

A :=

{
X ∈ L∞

∣∣∣∀λ ∈ [0, 1] :

∫
X dµλ ≤ λ

}
.

Clearly, B(A)\ca 6= ∅. Now let ∅ 6= A ⊂ N be any finite subset, S = {U(α, β) := α1A +
β | α, β ∈ R}, p(U(α, β)) =

∫
U(α, β) dζ. We first show that R := (A,S, p) is a risk

measurement regime and ρR is finite. To this end, note first that, for arbitrary X ∈ L∞,
X + U(α, β) ∈ A implies

0 ≥
∫

(X + U(α, β))dµ0 =

∫
X dζ + p(U(α, β)),
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hence p(U(α, β)) ≤ −
∫
X dζ <∞, and R is a risk measurement regime. Moreover, for any

k ∈ N we have that k − U(0, k) ∈ A, which means that ρR(k) ≤ k. By monotonicity, ρR
does not attain the value +∞.
Next we prove that ρR is continuous from above even though B(A) \ ca 6= ∅. We proceed
in three steps.
Step 1: σA(µλ) = λ. Indeed, let An := {n, n+ 1, ...} and note that

µλ(An) = (1− λ)

∞∑
i=n

2−i + λ.

Hence Yn := 1An −
∑∞
i=n 2−i ∈ A, and

σA(µλ) ≥ lim
n→∞

∫
Yn dµλ = lim

n→∞
−λ

∞∑
i=n

2−i + λ = λ.

The converse inequality σA(µλ) ≤ λ is due to the definition of A.
Step 2: B(A) = cone({ζ, ν}), where cone(E) refers to the smallest convex and pointed cone
containing E ⊆ ba and 0. The inclusion B(A) ⊇ cone({ζ, ν}) is clear, for the other one note
that B(A) = cone(B(A)1) always holds, where B(A)1 := { 1

µ(Ω)µ | 0 6= µ ∈ B(A)}. Assume

we can find µ ∈ B(A)1\co({ζ, ν}), where co({ζ, ν}) denotes the convex hull of ζ and ν. As
co({ζ, ν}) is σ(ba,L∞)-compact and convex, by means of separation we can find a Y ∈ L∞
such that

max
λ∈[0,1]

(∫
Y dµλ − λ

)
≤ max
λ∈[0,1]

∫
Y dµλ = 0 <

∫
Y dµ.

The same holds true when Y is replaced by tY , t > 0. Thus {tY | t > 0} ⊆ A, and

σA(µ) ≥ sup
t>0

∫
tY dµ =∞.

We conclude that B(A)1 = co({ζ, ν}) and thus B(A) = cone({ζ, ν}).
Step 3: Ep ∩ B(A) = {ζ} and therefore ρR(X) =

∫
X dζ by Proposition 3.1(i), which is

continuous from above. Indeed, µ ∈ Ep∩B(A) only if µ ∈ B(A)1, therefore by Step 2 we can
assume µλ ∈ Ep ∩B(A) for some λ ∈ [0, 1]. We reformulate the condition as for all α, β ∈ R
it has to hold

αζ(A) + β = (1− λ)(αζ(A) + β) + λβ = (1− λ)αζ(A) + β,

which is the case if and only if λ = 0.

Example 5.2 (ρR̃ 6= η). Let (Ω,F ,P) be the integers Z endowed with their power set and
a probability measure specified below. Let

Qk :=
1

2k
(δk + δ−k) +

(
1− 1

k

)
δ0, k ∈ N,

and define P :=
∑
k∈N 2−kQk. It is straightforward to check that

A := {X ∈ L∞P | ∀k ∈ N : EQk [X] ≤ 0}, S = R, p = idR,

is a risk measurement regime on L∞P such that ρR(X) := supk∈N EQk [X], X ∈ L∞P , is a
coherent monetary risk measure which is continuous from above and sensitive with respect
to the strong reference model P. We consider X := idZ. We first observe that for all k ∈ N
it holds that EQk [|X|] = 1, which is sufficient for X ∈ LR. Using the notational conventions
of Theorem 4.5, for all n ∈ N

ρR̃(Xn) ≥ ρR(Xn2

n ) ≥ EQn2 [Xn2

n ] =
1

2

(
1− 1

n

)
.
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Hence η(X) ≥ 1
2 . However, for m ∈ N fixed, we obtain for all n > m that

EQk [Xm
n ] =


0, if k ≤ m,
m
2k −

1
2 , if m < k ≤ n,

m−n
2k , if k > n.

This implies
ρR̃(Xm) = ξ(Xm) = lim

n→∞
ρR(Xm

n ) = 0,

and therefore

ρR̃(X) = lim
m→∞

ρR̃(Xm) = 0 <
1

2
≤ η(X).

Example 5.3 (MR ( HR ( LR). Let (Ω,F) be the real numbers endowed with their Borel
sets B(R). Let P0 be the probability measure P from Example 5.2 extended to B(R), and
define P1 by its Lebesgue density dP1 = e1−x1(1,∞)dx. Let P := 1

2 (P0 + P1), and consider
the risk measurement regime

A := {X ∈ L∞P | ∀k ∈ N : EQk [X] ≤ 0, and EP1
[eX ] ≤ 1}, S = R, p = idR,

where the probability measures (Qk)k∈N are chosen as in Example 5.2 and extended to B(R).
One can easily show that ρR(X) = ρ0(X) ∨ ρ1(X), where

ρ0(V ) = supk∈N EQk [V ], ρ1(U) = log
(
EP1

[eU ]
)
, U, V ∈ L∞P .

ρR is a sensitive finite risk measure on L∞P being continuous from above, and P is a strong
reference probability model.
Consider first X ∈ L0

P be generated by idZ. We have already shown in Example 5.2 that
ρ(t|X|) = ρ0(t|X|) = t for all t ≥ 0, hence X ∈ HR. Nevertheless, it holds for all k ∈ N that

1 ≥ ρ(|X|1{|X|>k}) ≥ EQk+1
[|X|1{|X|>k}] = 1.

Hence limk ρ(|X|1{|X|≥k}) = 1, which is sufficient for X ∈ HR\MR by Corollary 4.10.
Let now λ > 0 and define Y ∈ L0

P generated by

ω 7→

{
1
λ (ω − 1), ω ∈ (1,∞)\Z,
0 otherwise.

Y is exponentially distributed under P1 with parameter λ. Moreover, Y ∈ LR and satisfies
ρR̃(Y ) <∞. However, for every t > λ, ρ(t|Y |) = log(EP1

[etY ]) =∞, hence Y ∈ CR.

Example 5.4 (Entropic Risk Measure). On a probability space (Ω,F ,P) consider for β > 0
fixed the entropic risk measure ρR(X) := 1

β log
(
EP[eβX ]

)
, X ∈ L∞P . One can easily show

LR = {X ∈ L0
P | ∃k > 0 : ek|X| ∈ L1

P}, ρR̃(X) = 1
β log

(
EP[eβX ]

)
, X ∈ LR.

ρR̃ is tail continuous. Indeed, choose X ∈ dom(ρR̃) arbitrary and Y ∈ LR such that

X + Y + ∈ dom(ρR̃), i.e. eβX+βY + ∈ L1
P. By continuity of log and dominated convergence,

we obtain

lim
r
ρR̃(X + Y 1{Y≥r}) = lim

r

1

β
log
(
EP[eβ(X+Y +)1{Y≥r}] + EP[eβX1{Y <r}]

)
= ρR̃(X).

Example 5.5 (AVaR-based risk measures). Consider the Average Value at Risk AV aRα
for some α ∈ (0, 1] on L∞P , which is known to have the minimal dual representation

AV aRα(X) = max
Q∈Qα

EQ[X], X ∈ L∞P ,

where

Qα :=

{
Q� P | dQ

dP
≤ 1

1− α

}
,

see [16, Theorem 4.52]. Given the acceptance set A := {X ∈ L∞P | AV aRα(X) ≤ 0} we
define the risk measurement regime R = (A,S, p) by S = R · U for some U ∈ L∞P with
P(U > 0) = 1, and p(mU) := m, m ∈ R. By [11, Proposition 4.4] and Proposition 3.1 the
resulting risk measure ρR is finite, continuous from above with strong reference model P,
and LR = HR = MR. Hence, Theorem 4.7 applies for all X ∈ LR.
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A Proof of Proposition 3.1 and Corollary 3.2

Proof of Proposition 3.1. (i): Suppose ρR(0) is a real number and let X = Y +N for some
Y ∈ A and some N ∈ ker(p). By S-additivity, ρR(X) = ρR(Y ) ≤ 0 holds. ρR being l.s.c.
implies ρR(X) ≤ 0 for all X ∈ cl|·|∞(A+ ker(p)). Again, S-additivity of ρR allows to infer
p(Z) = ρR(Z)− ρR(0) ≤ −ρR(0) for all Z ∈ cl|·|∞(A+ ker(p)) ∩ S, and p is bounded from
above on the latter set. By virtue of [13, Theorems 2 and 3], B(A) ∩ Ep 6= ∅ and

ρR(X) = sup
µ∈B(A)∩Ep

∫
X dµ− σA(µ), X ∈ L∞,

from which the claimed equations (3.3) and (3.4) are derived easily. If ρR is coherent, its
positive homogeneity implies that ρ∗R|dom(ρ∗R) ≡ 0. As furthermore dom(ρ∗R) = B(A) ∩ Ep,
(3.5) and (3.6) are special cases of (3.3) and (3.4).

(ii): ρ∗R is by definition a σ(ba,L∞)-l.s.c. function, hence its lower level sets are closed in
this topology. Let c ∈ R and suppose µ ∈ Ec, thus a fortiori µ ∈ ba+. (3.4) implies

∀µ ∈ Ec : µ(Ω) ≤ ρ∗R(µ) + ρR(1) ≤ c+ ρR(1) <∞.

Thus being a closed subset of a dilation of the closed unit ball of ba, Ec is weakly* compact
by virtue of the Banach-Alaoglu Theorem [1, Theorem 6.25].

(iii): Assume first a risk measure ρR associated to the acceptance set A is finite and con-
tinuous from above. ρR is in particular norm-continuous by Remark 2.4(v) and statements
(i) and (ii) apply. Continuity from above implies ρR(k1An) ↓ ρR(0) for all k > 0 whenever
(An)n∈N ⊆ F is a sequence of events decreasing to ∅. For µ ∈ dom(ρ∗R),

−ρR(0) ≤ sup
k>0

k lim
n→∞

µ(An)− ρR(0) = sup
k>0

lim
n→∞

kµ(An)− ρR(k1An) ≤ ρ∗R(µ) <∞.

This can only hold if limn µ(An) = 0, i.e. µ ∈ ca+. By (ii), this is equivalent to all level
sets Ec of ρ∗R, c ∈ R, being σ(ca,L∞)-compact.
For the converse, assume that dom(ρ∗R) ⊆ ca+. Let (Xn)n∈N be any sequence in L∞ such
that Xn ↓ X for some X ∈ L∞. Let Y ∈ {X,X1, X2, ...} and suppose that µ ∈ dom(ρ∗R)
satisfies ρR(Y ) − 1 ≤

∫
Y dµ − ρ∗R(µ). We can thus use the monotonicity of ρR and the

positivity of µ to estimate

ρ∗R(µ) ≤
∫
Y dµ− ρR(Y ) + 1 ≤

∫
X1dµ− ρR(X) + 1

≤ 1

2
ρR(2X1) +

1

2
ρ∗R(µ)− ρR(X) + 1.

Rearranging this inequality yields that

ρ∗R(µ) ≤ 2 + ρR(2X1)− 2ρR(X) =: c,

a bound which is independent of Y . Therefore, for all Y ∈ {X,X1, X2, ...} it holds that

ρR(Y ) = sup
µ∈Ec

∫
Y dµ− ρ∗R(µ) = max

µ∈Ec

∫
Y dµ− ρ∗R(µ),

where in the last equality we used the σ(ca,L∞)-continuity of µ 7→
∫
Y dµ− ρ∗R(µ) and the

compactness of Ec. For each n ∈ N choose µn ∈ Ec such that

ρR(Xn) =

∫
Xn dµn − ρ∗R(µn).

Note that Ec is σ(ca, ca∗)-compact by virtue of [4, Theorem 4.7.25]. The Eberlein-Smulian
Theorem (see e.g. [1, Theorem 6.38]) now implies that we may select a σ(ca, ca∗)-convergent
subsequence (µnk)k∈N with limit µ̄ ∈ Ec. Choose a measure ν, for instance

ν := µ̄+
∑
k∈N

1

2k
µnk ,
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such that for all µ ∈ K := {µ̄, µn1
, µn2

, . . .} we have µ � ν. As ν(A) ≤ ε implies µ(A) ≤ ε
for all A ∈ F and the set of Radon-Nikodym derivatives {dµdν | µ ∈ K} is ‖ · ‖L1

ν
-bounded

as a subset of L1(ν), we conclude that they form a ν-uniformly integrable family by [4,

Proposition 4.5.3]. Abbreviating Zk :=
dµnk
dν , we obtain for all constants L > 0

lim sup
k→∞

∣∣∣∣∫ X dµ̄−
∫
Xnk dµnk

∣∣∣∣ ≤ lim sup
k→∞

∣∣∣∣∫ X dµ̄−
∫
X dµnk

∣∣∣∣+

∣∣∣∣∫ (X −Xnk) dµnk

∣∣∣∣
≤ lim sup

k→∞

∫
{Zk≥L}

|X1 −X|Zk dν +

∫
{Zk<L}

|Xnk −X|Ldν

= lim sup
k→∞

∫
{Zk≥L}

|X1 −X|Zk dν = 0,

where we applied monotone convergence for the second but last equality and where the
last equality follows from the uniform ν-integrability of the densities Zk and the fact that
|X1 − X| is bounded by a constant. Hence limk

∫
Xnk dµnk =

∫
X dµ̄, and from lower

semicontinuity of ρ∗R, we arrive at

lim
k→∞

ρR(Xnk) = lim sup
k→∞

∫
Xnk dµnk − ρ∗R(µnk) ≤

∫
X dµ̄− ρ∗R(µ̄) ≤ ρR(X).

ρR(X) ≤ infn∈N ρR(Xn) = limk→∞ ρR(Xnk) holds a priori, however. We infer ρR(X) =
limn ρR(Xn).
Suppose B(A) ⊆ ca+. By (3.3) and statement (ii), the lower level sets of the dual conjugate
of any finite risk measure ρR associated to A are σ(ca,L∞)-compact, and continuity from
above follows from the equivalence proved just before.

(iv): Suppose that the risk measurement regime R = (A,S, p) is such that S = R · U for
some U ∈ L∞++ and such that the resulting risk measure is finite. Assume for contradiction
the existence of a 0 6= µ ∈ B(A) such that

∫
U dµ = 0. Recall that µ is necessarily positive,

and let k > σA(µ)
µ(Ω) . For any r ∈ R∫

(k − rU)dµ = kµ(Ω) > σA(µ),

which would imply that k− rU /∈ A for any r ∈ R, and thus ρR(k) =∞ in contradiction
to the finiteness of ρR. As hence

∫
U dµ > 0 has to hold for all 0 6= µ ∈ B(A), we can

identify with (3.3)

dom(ρ∗R) = Ep ∩ B(A) =

{
p(U)∫
U dµ

µ
∣∣∣0 6= µ ∈ B(A)

}
,

and by (3.4),

ρR(X) = sup
06=µ

p(U)∫
U dµ

(∫
X dµ− σA(µ)

)
, X ∈ L∞,

is the minimal dual representation of ρR. From this representation and (iii), we infer that
ρR is continuous from above if and only if B(A) ⊆ ca.

Proof of Corollary 3.2. As ρR(X) ≤ 0 for all X ∈ A+ ker(p), finiteness and S-additivity of
ρR together with [13, Remark 6] show that A+ ker(p) is proper and thus an acceptance set.
Fix U ∈ S ∩ L∞++ and recall from [13, Lemma 3] the identity

ρR(X) = inf{p(rU) | r ∈ R, X − rU ∈ A+ ker(p)}, X ∈ L∞.

A fortiori, R′ := (A+ ker(p),R · U, p|R·U ) is a risk measurement regime and the associated
risk measure ρR′ is continuous from above if and only if ρR is continuous from above. As the
identity B(A + ker(p)) = B(A) ∩ ker(p)⊥ is easily verified, the claimed equivalence follows
from Proposition 3.1(iv).
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B Proof of Theorem 3.10

The proof heavily relies on the following result.

Lemma B.1 (Grothendieck; see Exercise 1, Chapter 5, part 4 of [18]). A convex subset
C of L∞P is closed in the σ(L∞P , caP)-topology if and only if for arbitrary r > 0 the set
Cr := {X ∈ C | ‖X‖∞ ≤ r} is closed with respect to convergence in probability, i.e. with
respect to the metric

dP(X,Y ) := EP[|X − Y | ∧ 1].

(i): For a set Γ ⊆ L∞P we define Γ� := {µ ∈ caP | ∀X ∈ Γ :
∫
X dµ ≤ 1} be the one-sided

polar of Γ. Moreover, Γ� = (clσ(L∞P ,caP)(Γ))�. Having this information at hand, one can

easily identify9

{cµ | c ≥ 0, µ ∈ E0} = (
⋃
{tA+ ker(p) | t ≥ 0})� = C�.

From the Bipolar Theorem [1, Theorem 5.91] we deduce

C = {X ∈ L∞P | ∀µ ∈ E0 :

∫
X dµ ≤ 0}.

Hence C is an acceptance set. Consider the following risk measurement regime and its
implied risk measure:

Ř := (C,S, p) , ρŘ(X) = sup
µ∈E0

∫
X dµ, X ∈ L∞P .

ρŘ is finite, coherent, and continuous from above by Lemma 3.6. Hence, by Lemma 3.8,
P 6= ∅ is equivalent to ρŘ being sensitive, i.e. C does not contain any element in (L∞P )++.

(ii): Suppose that C∩ (L∞P )++ is non-empty. Using the monotonicity and conicity of C, we
can find some B ∈ F+ such that 1B ∈ C. Let us define the sets

D := {Y = dP- limn tnWn | tn ≥ 0,Wn ∈ A+ ker(p)},
Dr = {Y ∈ D | ‖Y ‖∞ ≤ r}, r > 0.

D is a convex cone. It is straightforward to check that Dr is dP-closed. We apply Grothendieck’s
Lemma B.1 to infer that D is a σ(L∞P , caP)-closed cone. Thus the inclusion C ⊆ D holds and
we must be able to find sequences (Xn)n∈N ⊆ A, (Zn)n∈N ⊆ ker(p) and (tn)n∈N ⊆ (0,∞)
such that 1B = dP-limn tn(Xn + Zn). Define Vn := tn(Xn + Zn), n ∈ N. Without loss of
generality we can assume that ‖Xn + Zn‖∞ ≤ 1. Otherwise, note that by normalisation
0 ∈ A := cl‖·‖∞(A+ker(p)), and C is also the smallest σ(L∞P , caP)-closed cone that contains
A; thus we can shift to

Xn + Zn
‖Xn + Zn‖∞

∈ A, t̃n = ‖Xn + Zn‖∞tn.

As A is convex, (tn)n∈N cannot be bounded. If there is some M > 0 such that supn∈N tn ≤
M , we can define the sequence (tn(Xn +Zn)/2M)n ⊆ A which converges in probability and
with respect to σ(L∞P , caP) to 1B/2M ∈ A. As A = {Y | ρR(Y ) ≤ 0}, we would obtain a
contradiction to the sensitivity of ρR and can therefore assume tn ↑ ∞. dP(Vn,1B)→ 0
for n→∞ implies

9 The only difficult part is the following: Recall from Remark 2.4(iv) that ρR(Y ) ≤ 0 if and only if Y ∈
cl‖·‖∞(A+ ker(p)). Assume ν ∈ C�, then ν ∈ (caP)+ by normalisation and monotonicity of A. Also, C being a
cone shows

C� = {ν ∈ caP | ∀Y ∈ C :

∫
Y dν ≤ 0}.

Let U ∈ S ∩ (L∞P )++ and X ∈ L∞P . Since ρR(X − ρR(X)
p(U)

U) = 0, we obtain that either c :=
∫

1
p(U)

U dν = 0,

which implies ν(Ω) = 0 and ν = 0, or

c sup
X∈L∞P

(∫
X d

(ν
c

)
− ρR(X)

)
≤ 0 =⇒ ν

c
∈ E0.
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V −n
dP−→ 0, V +

n
dP−→ 1B , n→∞,

and this means that

lim sup
n→∞

P
({

V +
n ≥

1

2

}
∩B

)
= P(B),

The rule of equal speed of convergence is violated.

(iii): Let (Xn)n∈N ⊆ A, (Zn)n∈N ⊆ ker(p) and (tn)n∈N be sequences violating the rule
of equal speed of convergence such that the rescaled sequence (Vn)n∈N is bounded in the
‖ · ‖∞-norm. Let B be a measurable set with positive probability such that

lim sup
n→∞

P({Vn ≥ ε} ∩B) = P(B).

Let µ ≈ P be a finite measure with
∫
Z dµ = p(Z) for all Z ∈ S, and let η > 0 be an arbitrary

positive number. Note that due to the Dominated Convergence Theorem and the bounded
vanishing in probability of V −n , we obtain for n→∞ the behaviour limn

∫
Vn1{Vn≤−η} dµ→

0. For all n large enough such that |
∫
Vn1{Vn≤−η} dµ| < η we can estimate∫

Vn dµ ≥ εµ({Vn ≥ ε} ∩B)− ηµ(Vn ∈ (−η, ε))− η.

Thus for all η > 0 our assumption yields the estimate

lim sup
n→∞

∫
Vn dµ ≥ εµ(B)− η(µ(Ω) + 1).

Sending η ↓ 0, we obtain from µ ≈ P that lim supn→∞
∫
Vn dµ ≥ εµ(B) > 0. After choosing

n suitably we have found a vector in A+ker(p) such that
∫

(Xn+Zn) dµ > 0, hence µ /∈ E0.
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[16] Föllmer, H., and A. Schied (2011), Stochastic Finance: An Introduction in Discrete
Time. 3rd edition, De Gruyter.

[17] Frittelli, M., and E. Rosazza Gianin (2002), Putting Order in Risk Measures. Journal
of Banking and Finance, 26(7), pp. 1473–1486.

[18] Grothendieck, A. (1973), Topological Vector Spaces. Gordon and Breach.
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