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Abstract

In the framework of Bishop’s constructive mathematics we intro-
duce co-convexity as a property of subsets B of {0, 1}∗, the set of
finite binary sequences, and prove that co-convex bars are uniform.
Moreover, we establish a canonical correspondence between detach-
able subsets B of {0, 1}∗ and uniformly continuous functions f defined
on the unit interval such that B is a bar if and only if the correspond-
ing function f is positive-valued, B is a uniform bar if and only if f
has positive infimum, and B is co-convex if and only if f satisfies a
weak convexity condition.

1 Introduction

It is well-known that Brouwer’s fan theorem for detachable bars implies that
every uniformly continuous positive-valued function defined on the unit in-
terval has positive infimum, see [9]. In [3, Theorem 1] we have shown that if
the function is convex, the fan theorem is no longer required:

Theorem 1. Suppose that f : [0, 1] → ]0,∞[ is uniformly continuous and
convex. Then f has positive infimum.

Thus the question arises whether there is a constructively valid ‘convex’
version of the fan theorem. To this end, we will define ‘co-convexity’ as a
property of subsets B of {0, 1}∗, and show in Theorem 2 that there indeed
is such a result.

How is this related to convex functions as in Theorem 1? In their seminal
paper [9], Julian and Richman showed that for every detachable subset B of
{0, 1}∗ there exists a uniformly continuous function f : [0, 1] → [0,∞[ such
that
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(i) B is a bar ⇔ f is positive-valued

(ii) B is a uniform bar ⇔ f has positive infimum.

Conversely, for every uniformly continuous function f : [0, 1]→ [0,∞[ there
exists a detachable subset B of {0, 1}∗ such that (i) and (ii) hold. Our aim
is to include the following correspondence

(iii) B is co-convex ⇔ f is weakly convex

into that list, where weak convexity of functions generalises convexity. The
way we achieve our aim shows some similarities with the proofs presented in
[2] and [9], but in the crucial parts we need to proceed differently in order
to include (iii), in particular when deriving the function f with properties
(i)–(iii) for some given detachable set B. Interestingly, in the latter case
this alternative way also yields a very elementary proof of the corresponding
result in [9], which may be of interest of its own. Another consequence
of the derived correspondence is a more general version of Theorem 1, see
Corollary 1.

2 Co-convex bars are uniform

Let {0, 1}∗ be the set of all finite binary sequences u, v, w and {0, 1}N the set
of all infinite binary sequences α, β, γ. The length |u|, the concatenation u∗v,
and the restriction αk are defined as usual, see for instance [2]. If |u| = n,
we denote the components of u by u0, . . . , un−1. Note that α0 = ø, where
ø is the empty sequence. A subset B of {0, 1}∗ is closed under extension if
u ∗ v ∈ B for all u ∈ B and for all v. A sequence α hits B if there exists
an n such that αn ∈ B. B is a bar if every α hits B. B is a uniform bar
if there exists N such that for every α there exists an n ≤ N such that
αn ∈ B. Often one requires B to be detachable, that is for every u the
statement u ∈ B is decidable. Brouwer’s fan theorem for detachable bars is
the following statement, see [6].

FAN Every detachable bar is a uniform bar.

Define the upper closure B′ of B by

B′ = {u | ∃k ≤ |u| (uk ∈ B)} .

Note that B is a (detachable) bar if and only if B′ is a (detachable) bar and
B is a uniform bar if and only B′ is a uniform bar. Therefore, we may assume
that bars are closed under extension. Set

u < v
def⇔ |u| = |v| ∧ ∃k < |u| (uk = vk ∧ uk = 0 ∧ vk = 1)
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and
u ≤ v

def⇔ u = v ∨ u < v.

Definition. A subset B of {0, 1}∗ is co-convex if for every α which hits B
there exists an n such that either

{v | v ≤ αn} ⊆ B or {v | αn ≤ v} ⊆ B .

Note that, for detachable B, co-convexity follows from the convexity of
the complement of B, where C ⊆ {0, 1}∗ is convex if for all u, v, w we have

u ≤ v ≤ w ∧ u,w ∈ C ⇒ v ∈ C.

Theorem 2. Every co-convex bar is a uniform bar.

Proof. Fix a co-convex bar B. Since the upper closure of B is also co-convex,
we can assume that B is closed under extension. Define

C = {u | ∃n ∀w ∈ {0, 1}n (u ∗ w ∈ B)} .

Note that B ⊆ C and that C is closed under extension as well. Moreover, B
is a uniform bar if and only if there exists an n such that {0, 1}n ⊆ C.

First, we show that

∀u∃i ∈ {0, 1} (u ∗ i ∈ C) . (1)

Fix u. For
β = u ∗ 1 ∗ 0 ∗ 0 ∗ 0 ∗ . . .

there exist an l such that either{
v | v ≤ βl

}
⊆ B,

or {
v | βl ≤ v

}
⊆ B.

Since B is closed under extension, we can assume that l > |u| + 1. Fix m
with l = |u|+ 1 +m. In the first case, we can conclude that

u ∗ 0 ∗ w ∈ B

for every w of length m, which implies that u ∗ 0 ∈ C. In the second case,
we obtain

u ∗ 1 ∗ w ∈ B
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for every w of length m, which implies that u ∗ 1 ∈ C. This concludes the
proof of (1).

By countable choice, there exists a function F : {0, 1}∗ → {0, 1} such
that

∀u (u ∗ F (u) ∈ C) .

Define α by
αn = 1− F (αn).

Next, we show by induction on n that

∀n∀u ∈ {0, 1}n (u 6= αn⇒ u ∈ C) . (2)

If n = 0, the statement clearly holds, since in this case the statement u 6= αn
is false. Now fix some n such that (2) holds. Moreover, fix w ∈ {0, 1}n+1

such that w 6= α(n+ 1).

case 1. wn 6= αn. Then wn ∈ C and therefore w ∈ C.

case 2. w = αn ∗ (1 − αn) = αn ∗ F (αn). This implies w ∈ C. So we
have established (2).

There exists an n such that αn ∈ B. Applying (2) to this n, we can
conclude that every u of length n is an element of C, thus B is a uniform
bar.

Remark 1. Note that we do not need to require that the co-convex bar in
Theorem 2 is detachable.

3 From detachable sets to functions

A subset S of a metric space (X, d) is totally bounded if for every ε > 0 there
exist s1, . . . , sn ∈ S such that

∀s ∈ S ∃i ∈ {1, . . . , n} (d(s, si) < ε)

and compact if it is totally bounded and complete (i.e. every Cauchy sequence
in S has a limit in S). Proofs of the following basic statements can be found
in [7, Section 2.2].

Lemma 1. (i) If S is totally bounded, then for all x ∈ X the distance

d(x, S) = inf {d(x, s) | s ∈ S}

exists and the function x 7→ d(x, S) is uniformly continuous.
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(ii) Uniformly continuous images of totally bounded sets are totally bounded.

(iii) If S is totally bounded and f : S → R is uniformly continuous, then

inf f = inf {f(s) | s ∈ S}

exists.

We will use the metrics

d1(s, t) = |s− t|, d2((x1, x2), (y1, y2)) = |x1 − y1|+ |x2 − y2|

on R and R2, respectively. The mapping

(α, β) 7→ inf
{

2−k | αk = βk
}

defines a compact metric on {0, 1}N. See [6, Chapter 5] for an introduction to
basic properties of this metric space. Define a uniformly continuous function
κ : {0, 1}N → [0, 1] by

κ(α) = 2 ·
∞∑
k=0

αk · 3−(k+1).

The following lemma immediately follows from the definition of κ.

Lemma 2. For all α, β and n, we have

• αn = βn ⇒ |κ(α)− κ(β)| ≤ 3−n

• αn 6= βn ⇒ |κ(α)− κ(β)| ≥ 3−n

• αn < βn ⇒ κ(α) < κ(β).

For the rest of this section, we fix a detachable subset B of {0, 1}∗. We
assume that ø /∈ B and that B is closed under extension. Define

ηB : {0, 1}N → [0, 1] , α 7→ inf
{

3−k | αk /∈ B
}
. (3)

Lemma 3. The function ηB is well-defined, i.e. the infimum in (3) exists,
and uniformly continuous. If ηB(α) > 0, there exists k such that

(1) αk /∈ B

(2) α(k + 1) ∈ B

(3) ηB(α) = 3−k.
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Moreover,
αn ∈ B ⇔ ηB(α) ≥ 3−n+1 ⇔ ηB(α) > 3−n

for all α and n.

Proof. Set S =
{

3−k | αk /∈ B
}

. Note that 1 ∈ S and that 0 is a lower
bound of S. By [7, Corollary 2.1.19], it suffices to show that for rationals
p < q either p is a lower bound of S or there exists s ∈ S with s < q. If
p ≤ 0, p is a lower bound of S. Now assume that 0 < p. Then there exists k
with 3−k < p. If αk /∈ B, there exist s ∈ S (choose s = 3−k) with s < q. If
αk ∈ B, we can compute the minimum s0 of S. If p < s0, p is a lower bound
of S; if s0 < q, there exists s ∈ S (choose s = s0) with s < q.

If inf S > 0, there exists l such that 3−l < inf S. Therefore, αl ∈ B. Let
k be the largest number such that αk /∈ B.

Assume that αn ∈ B. Let l be the largest natural number with αl /∈ B.
Then l ≤ n− 1 and thus inf S = 3−l ≥ 3−n+1.

Assume that inf S > 3−n. Then there exists k with (1), (2), and (3). We
obtain k < n and therefore αn ∈ B.

Set
C =

{
κ(α) | α ∈ {0, 1}N

}
and

K =
{

(κ(α), ηB(α)) | α ∈ {0, 1}N
}
.

Lemma 4. The sets C and K are compact.

Proof. Both sets are uniformly continuous images of the compact set {0, 1}N
and therefore totally bounded, by Lemma 1. Suppose that κ(αn) converges
to t and ηB(αn) converges to s. By Lemma 2, the sequence (αn) is Cauchy,
therefore it converges to a limit α. Then κ(αn) converges to κ(α) and ηB(αn)
converges to ηB(α), therefore t = κ(α) and s = ηB(α). Thus we have shown
that both C and K are complete.

We now have all ingredients needed to give a simple short proof the
following result from [9]:

Proposition 1. There exists a uniformly continuous function fB : [0, 1]→ R
such that

(i) B is a bar ⇔ fB is positive-valued

(ii) B is a uniform bar ⇔ inf fB > 0.
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The proof of Proposition 1 uses Bishop’s lemma:

Lemma 5. (see [5, Ch. 4, Lemma 3.8]) Let A be a compact subset of a
metric space (X, d), and x a point of X. Then there exists a point a in A
such that d(x, a) > 0 entails d(x,A) > 0.

Proof of Proposition 1. Define

fB : [0, 1]→ [0,∞[ , t 7→ d2((t, 0), K). (4)

Assume that B is a bar. Fix t ∈ [0, 1]. In view of Bishop’s lemma and the
compactness of K, it is sufficient to show that

d2((t, 0), (κ(α), ηB(α))) > 0

for each α. This follows from ηB(α) > 0.

Now assume that fB is positive-valued. Fix α. Since

d2((κ(α), 0), K) = fB(κ(α)) > 0,

we can conclude that

d2((κ(α), 0), (κ(α), ηB(α))) > 0.

Thus ηB(α) is positive which implies that α hits B by Lemma 3.

The second equivalence follows from Lemma 3 and the fact that inf fB =
inf ηB.

In order to include convexity in the list of Proposition 1, we need to define
weakly convex functions:

Definition. Let S be a subset of R. A function f : S → R is weakly convex
if for all t ∈ S with f(t) > 0 there exists ε > 0 such that either

∀s ∈ S (s ≤ t ⇒ f(s) ≥ ε)

or
∀s ∈ S (t ≤ s ⇒ f(s) ≥ ε) .

Remark 2. (i) Note that in particular uniformly continuous (quasi-)convex
functions f : [0, 1] → R are weakly convex. To this end, we recall that
f is convex if we have

f(λs+ (1− λ)t) ≤ λf(s) + (1− λ)f(t)
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and quasiconvex if we have

f(λs+ (1− λ)t) ≤ max{f(s), f(t)}

for all s, t ∈ [0, 1] and all λ ∈ [0, 1]. Clearly, convexity implies quasi-
convexity. Now assume that f is quasiconvex. Fix t ∈ [0, 1] and assume
that f(t) > 0. Set ε = f(t)/2. The assumption that both

inf{f(s) | s ∈ [0, t]} < f(t) and inf{f(s) | s ∈ [t, 1]} < f(t)

is absurd, because in that case by uniform continuity there exists s <
t < s′ such that f(s) < f(t) and f(s′) < f(t). Compute λ ∈ (0, 1)
such that t = λs+ (1− λ)s′, and note that quasiconvexity of f implies
f(t) ≤ max{f(s), f(s′)} < f(t) which is absurd. Hence, it follows that
either inf{f(s) | s ∈ [0, t]} > ε or inf{f(s) | s ∈ [t, 1]} > ε.

(ii) Positive functions and monotone functions are weakly convex. More-
over, pointwise continuous functions on [0, 1] which are decreasing on
[0, s] and increasing on [s, 1] for some s are weakly convex. See [8] for
a detailed discussion of various notions of convexity.

(iii) If f is weakly convex, then the set {t | f(t) ≤ 0} is convex. With classi-
cal logic, the reverse implication holds as well, if f is continuous. This
illustrates that weak convexity is indeed a convexity property.

(iv) Fix a dense subset D of [0, 1]. A uniformly continuous function f :
[0, 1] → R is weakly convex if and only its restriction to D is weakly
convex.

Set
−C = {t ∈ [0, 1] | d1(t, C) > 0} .

Even though the proof of Proposition 1 already shows the main idea, when
adding the statement

(iii) B is co-convex ⇔ fB is weakly convex

to Proposition 1, we cannot argue with fB as defined in (4), because the
property of weak convexity does not make much sense in that case, since fB
is positive on −C. Therefore, we introduce a new function gB by

gB : [0, 1]→ R, t 7→ fB(t)− d1(t, C).

Theorem 3. (i) B is a bar ⇔ gB is positive-valued
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(ii) B is a uniform bar ⇔ inf gB > 0

(iii) B is co-convex ⇔ gB is weakly convex

For the proof of Theorem 3 we need a few auxiliary results. It is readily
verified that:

Lemma 6. For all α, n, and t we have

• gB(κ(α)) = fB(κ(α)) ≤ ηB(α)

• gB(κ(α)) > 3−n ⇒ αn ∈ B ⇒ gB(κ(α)) ≥ 3−n

• d1(t, C) ≤ fB(t).

Lemma 7. The set −C is dense in [0, 1]. For every t ∈ −C there exist
unique elements a, a′ of C such that

(a) t ∈ ]a, a′[ ⊆ −C.

(b) d1(t, C) = min (d1(t, a), d1(t, a
′))

Moreover, setting γ = κ−1(a) and γ′ = κ−1(a′), we obtain

(c) ∀n
(
γn ∈ B ∧ γ′n ∈ B ⇒ gB(t) ≥ 3−n

)
(d) if d1(t, a) < d1(t, a

′), then

γ hits B ⇔ gB(t) > 0 ⇔ inf {gB(s) | a ≤ s ≤ t} > 0

(e) if d1(t, a
′) < d1(t, a), then

γ′ hits B ⇔ gB(t) > 0 ⇔ inf {gB(s) | t ≤ s ≤ a′} > 0.

Proof. Fix t ∈ [0, 1] and δ > 0. If d1(t, C) > 0, then t ∈ −C. Now assume
that there exists an α such that d1(t, κ(α)) < δ/2. There exists an u such
that d1(κ(α), tu) < δ/2, where

tu = 1
2
· κ(u ∗ 0 ∗ 1 ∗ 1 ∗ 1 ∗ . . .) + 1

2
· κ(u ∗ 1 ∗ 0 ∗ 0 ∗ 0 ∗ . . .).

Note that tu ∈ −C and that d1(t, tu) < δ. So −C is dense in [0, 1].

Fix t ∈ −C. Since for any α it is decidable whether κ(α) > t or κ(α) < t,
the sets C<t = {s ∈ C | s < t} and C>t = {s ∈ C | s > t} are compact. Let
a be the maximum of C<t and let a′ be the minimum of C>t. Clearly, a and
a′ fulfil (a) and (b).
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(c): Fix n and assume that both γn ∈ B and γ′n ∈ B. For any α with
κ(α) < t we have

d2((t, 0), (κ(α), ηB(α)))− d1(t, C) ≥ κ(γ)− κ(α) + ηB(α)

and similarly for any β with κ(β) > t we have

d2((t, 0), (κ(β), ηB(β)))− d1(t, C) ≥ κ(β)− κ(γ′) + ηB(β).

If αn = γn, then αn ∈ B and we can conclude thar ηB(α) ≥ 3−n+1, by
Lemma 3. If αn 6= γn, then κ(γ)−κ(α) ≥ 3−n, by Lemma 2. The analogous
considerations for β conclude the proof that gB(t) ≥ 3−n.

(d): Set ι = d1(t, a
′)−d1(t, a) > 0. Suppose that there is n such that γn ∈ B.

Set ε = min (ι, 3−n). Fix s with a ≤ s ≤ t. We show that gB(s) ≥ ε. To this
end, note that d1(s, C) = d1(s, a). Hence, for all β such that κ(β) ≥ a′ we
have

d2((s, 0), (κ(β), ηB(β)))− d1(s, C) ≥ ι.

If α satisfies κ(α) ≤ a, we have

d2((s, 0), (κ(α), ηB(α)))− d1(s, C) = s− κ(α) + ηB(α)− d1(s, C) =

κ(γ)− κ(α) + ηB(α) ≥ 3−n.

Thus, gB(s) ≥ ε.

It remains to show that gB(t) > 0 implies that γ hits B. If gB(t) > 0,
then

fB(t) > d1(t, C) = d1(t, a)

and
fB(t) ≤ d2((t, 0), (a, ηB(γ))) = d1(t, κ(γ)) + a,

so ηB(γ) > 0. Apply Lemma 3.

(e): This is proved analogously to (d).

The next lemma is very easy to prove, we just formulate it to be able to
refer to it.

Lemma 8. For real numbers x < y < z and δ > 0 there exists a real number
y′ such that

(i) x < y′ < z

(ii) d1(y, y
′) < δ
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(iii) d1(x, y
′) < d1(y

′, z) or d1(x, y
′) > d1(y

′, z).

For a function F defined on {0, 1}N, set

F (u) = F (u ∗ 0 ∗ 0 ∗ 0 ∗ . . .). (5)

Proof of Theorem 3. (i) “⇒”. Suppose that B is a bar and fix t. By Propo-
sition 1 we obtain fB(t) > 0. If d1(t, C) < fB(t), then gB(t) > 0, by the
definition of gB. If 0 < d1(t, C), we can apply Lemma 7 to conclude that
gB(t) > 0.

(i) “⇐”. If gB is positive-valued, then fB is positive-valued as well and
Proposition 1 implies that B is a bar.

(ii) “⇒”. Suppose that B is a uniform bar. Then, by Proposition 1,
ε := inf fB > 0. There exists δ > 0 such that

|s− t| < δ ⇒ |gB(s)− gB(t)| < ε/2

for all s and t and there exists an n such that {0, 1}n ⊆ B. Then for all t we
can show that

gB(t) ≥ min
(
ε/2, 3−n

)
,

using case distinction d1(t, C) < δ or d1(t, C) > 0 and Lemma 7.

(ii) “⇐”. If inf gB > 0, then inf fB > 0, and Proposition 1 implies that
B is a uniform bar.

(iii) “⇒”. Assume that B is co-convex. In view of Remark 2 and Lemma
7, it is sufficient to show that the restriction of gB to −C is weakly convex.
Fix t ∈ −C and assume that gB(t) > 0. Choose γ and γ′ according to Lemma
7. In view of Lemma 8 and the uniform continuity of gB, we may assume
without loss of generality that either

d1(κ(γ), t) < d1(t, κ(γ′)) or d1(κ(γ), t) > d1(t, κ(γ′)).

Consider the first case. The second case can be treated analogously. By
Lemma 7 we obtain

ι = inf {gB(s) | κ(γ) ≤ s ≤ t} > 0.

In particular, gB(κ(γ)) > 0, so γ hits B. There exists an n such that either

{v | v ≤ γn} ⊆ B (6)
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or
{v | γn ≤ v} ⊆ B . (7)

Set ε = min (ι, 3−n) . In case (6), we show that

∀s ∈ −C (s ≤ t ⇒ gB(s) ≥ ε) ,

as follows. Assume that there exists s ∈ −C with s ≤ t such that gB(s) < ε.
Then, by the definition of ι, we obtain that s < κ(γ). Applying Lemma 7
again, we can choose α and α′ such that

s ∈ ]κ(α), κ(α′)[ ⊆ −C.

Then αn ≤ α′n ≤ γn, therefore both αn and α′n are in B. This implies
gB(s) ≥ 3−n, which is a contradiction. In case (7), a similar argument yields

∀s ∈ −C (t ≤ s ⇒ gB(s) ≥ ε) .

(iii) “⇐”. Assume that gB is weakly convex. Fix α and suppose that α
hits B. Then Lemma 6 implies that gB(κ(α)) > 0. There exists an n with
αn ∈ B such that

∀s
(
s ≤ κ(α) ⇒ gB(s) > 3−n

)
or

∀s
(
κ(α) ≤ s ⇒ gB(s) > 3−n

)
.

Assume the first case. Fix v with v ≤ αn. Then κ(v) ≤ κ(α). If v /∈ B, then
Lemma 3 yields

gB(κ(v)) = fB(κ(v)) ≤ ηB(v) ≤ 3−n.

This contradiction shows that

{v | v ≤ αn} ⊆ B.

Now, consider the second case. Fix v with αn < v. Then κ(α) ≤ κ(v). If
v /∈ B, then gB(κ(v)) ≤ 3−n. This contradiction shows that

{v | αn ≤ v} ⊆ B.
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4 From functions to detachable sets

When constructing a set B from a function f , it is more handy to work with
an altered κ. Set

κ′ : {0, 1}N → [0, 1] , α 7→
∞∑
k=0

αk · 2−(k+1).

One cannot prove that κ′ is surjective, but we can use [1, Lemma 1] to
overcome this, partially.

Lemma 9. Let S be a subset of [0, 1] such that

∀α ∃ε > 0 ∀x ∈ [0, 1] (|x− κ′(α)| < ε⇒ x ∈ S) .

Then S = [0, 1].

The next lemma is a typical application of Lemma 9.

Lemma 10. Fix a uniformly continuous function f : [0, 1]→ R and define

F : {0, 1}N → R, α 7→ f(κ′(α)).

Then

(i) f is positive-valued ⇔ F is positive-valued

(ii) inf f > 0 ⇔ inf F > 0.

Proof. In (i), the direction “⇒” is clear. For “⇐”, apply Lemma 9 to the set

S = {t ∈ [0, 1] | f(t) > 0} .

The case (ii) follows from the density of the image of κ′ in [0, 1] and the
uniform continuity of f .

In the following proposition, we use a similar construction as in [2].

Theorem 4. For every uniformly continuous function

f : [0, 1]→ R

there exists a detachable subset B of {0, 1}∗ which is closed under extension
such that

(i) B is a bar ⇔ f is positive-valued
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(ii) B is a uniform bar ⇔ inf f > 0

(iii) B is co-convex ⇔ f is weakly convex.

Proof. Since the function

F : {0, 1}N → [0,∞[ , α 7→ f(κ′(α))

is uniformly continuous, there exists a strictly increasing function M : N→ N
such that

|F (α)− F (α(M(n)))| < 2−n

for all α and n, recalling the convention given in (5). Since M is strictly
increasing, for every k the statement

∃n (k = M(n))

is decidable. Therefore, for every u we can choose λu ∈ {0, 1} such that

λu = 0 ⇒ ∀n (|u| 6= M(n)) ∨ ∃n
(
|u| = M(n) ∧ F (u) < 2−n+2

)
λu = 1 ⇒ ∃n

(
|u| = M(n) ∧ F (u) > 2−n+1

)
.

The set
B = {u ∈ {0, 1}∗ | ∃l ≤ |u| (λul = 1)}

is detachable and closed under extension. Note that

F (α) ≥ 2−n+3 ⇒ α(M(n)) ∈ B ⇒ F (α) ≥ 2−n (8)

for all α and n. In view of Lemma 10, (8) yields (i) and (ii).

Assume that B is co-convex. Fix t ∈ [0, 1] and assume that f(t) > 0.
By part (ii) of Remark 2, we may assume that t is a rational number, which
implies that there exists α such that κ′(α) = t. Now F (α) > 0 implies that
α hits B. Therefore, there exists n such that either

{v | v ≤ αn} ⊆ B

or
{v | αn ≤ v} ⊆ B.

In the first case, we show that

inf {f(s) | s ∈ [0, t]} ≥ min
(
2−n, F (α)

)
. (9)
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Assume that there exists s ≤ t such that f(s) < 2−n and f(s) < F (α). The
latter implies that s < t. Choose a β with the property that κ′(β) is close
enough to s such that

κ′(β) < κ′(α) (10)

and
F (β) = f(κ′(β)) < 2−n. (11)

Now (8) and (11) imply that βn /∈ B. On the other hand, (10) implies that
βn ≤ αn and therefore βn ∈ B. This is a contradiction, so we have shown
(9).

In the case
{v | αn ≤ v} ⊆ B

we can similarly show that

inf {f(s) | s ∈ [t, 1]} ≥ min
(
2−n, F (α)

)
.

Now assume that f is weakly convex. Fix an α which hits B. Then there
exists an n with α(M(n)) ∈ B and (8) implies that f(κ′(α)) > 0. We choose
n large enough such that either

inf {f(t) | t ∈ [0, κ′(α)]} ≥ 2−n+3

or
inf {f(t) | t ∈ [κ′(α), 1]} ≥ 2−n+3.

Applying (8) again, we obtain

{v | v ≤ α(M(n))} ⊆ B

in the first case and
{v | α(M(n)) ≤ v} ⊆ B.

in the second. Therefore, B is co-convex.

The following corollary follows immediately.

Corollary 1. Every uniformly continuous weakly convex function f : [0, 1]→
]0,∞[ has positive infimum.
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In [3] we in fact proved a stronger result than Theorem 1, namely that
any positive-valued uniformly continuous quasi-convex function f defined on
a convex compact subset C of Rn has positive infimum. One verifies that
such functions are in particular weakly convex in the following sense: for
every hyperplane H such that both halfspaces H1 and H2 intersect C, the
implication

inf {f(x) | x ∈ C ∩H} > 0 ⇒ ∃i ∈ {0, 1} inf
{
f(x) | x ∈ C ∩H i

}
> 0

holds. An inspection of the proof given in [3], which is an inductive argument
over the dimension, shows that Corollary 1 as a base clause and then applying
the same techniques as presented in [3] in fact yields the following result:

Fix a convex and compact subset C of Rn and suppose that f : C → ]0,∞[
is uniformly continuous and weakly convex. Then f has positive infimum.

Many functions are weakly convex, so in many situations where we normally
need the fan theorem we actually can do without—mathematics in convex
environments has some innate constructive nature. For example, the proof
in [4] of the equivalence of the fundamental theorem of asset pricing and
Markov’s principle is based on the fact that the Euclidean norm is a convex
function.
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