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Abstract

We show constructively that every quasi-convex, uniformly con-
tinuous function f : C → R with at most one minimum point has a
minimum point, where C is a convex compact subset of a finite di-
mensional normed space. Applications include strictly quasi-convex
functions, a supporting hyperplane theorem, and a short proof of the
constructive fundamental theorem of approximation theory.

1 Introduction

Let (X, d) be a compact metric space. The infimum of a uniformly continuous
function f : X → R is given by

inf f = inf {f(x) | x ∈ X} .

An element x of X is a minimum point of f if

f(x) = inf f.

The function f has at most one minimum point if

d(x, y) > 0 ⇒ inf f < f(x) ∨ inf f < f(y)

for all x, y ∈ X. In Bishop’s constructive mathematics [7, 8, 9], the framework
of this paper, the following statements are equivalent:

(I) Brouwer’s fan theorem for detachable bars.

(II) Every positive-valued, uniformly continuous function on a compact
metric space has positive infimum.

(III) Every uniformly continuous function on a compact metric space which
has at most one minimum point has a minimum point.
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The equivalence of (I) and (II) was proved in [1, 10] and the equivalence of
(I) and (III) was proved in [1, 2, 11]. In [3], we proved (II) for quasi-convex
functions whose domain C is a convex compact subset of Rm. Quasi-convex
means that

f(λx+ (1− λ)y) ≤ max (f(x), f(y))

for all λ ∈ [0, 1] and x, y ∈ C. That result was crucial for the constructive
treatment of the fundamental theorem of asset pricing in [4] and corresponds
to a constructively valid version of the fan theorem, see [5].

In this paper—which is a sequel of [3]—we show (III) for quasi-convex func-
tions whose domain C is a convex compact subset of Rm (Theorem 1) and
generalise this result to finite-dimensional normed spaces (Theorem 2). As
applications we obtain a supporting hyperplane theorem (Proposition 1) and
a result on strictly quasi-convex functions (Proposition 2). Moreover, we ob-
tain a new short proof of the fundamental theorem of approximation theory
(Proposition 3).

2 Unique minimum points

In this section, we prove the following theorem.

Theorem 1. Let C be a convex compact subset of Rm. Then every quasi-
convex, uniformly continuous function f : C → R with at most one minimum
point has a minimum point.

To this end, let C be a convex compact subset of Rm. Fix a quasi-convex,
uniformly continuous function f : C → R which has at most one minimum
point. Without loss of generality, we may assume that inf f = 0. For a
subset S of C let f�S denote the restriction of f to S.

Lemma 1. Fix convex compact subsets A,B of C such that d(a, b) > 0 for
all a ∈ A and b ∈ B. Then inf(f�A) > 0 or inf(f�B) > 0.

Proof. The set A×B is a convex compact subset of R2m, and the function

F : A×B → R, (a, b) 7→ max (f(a), f(b)) ,

is positive-valued, quasi-convex, and uniformly continuous. By [3, Theorem
1] we can conclude that ε := inf F > 0. Since

inf(f�A) > 0 ∨ inf(f�A) < ε

and
inf(f�B) > 0 ∨ inf(f�B) < ε,

this implies inf(f�A) > 0 or inf(f�B) > 0.
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For x ∈ Rm and j ∈ {1, . . . ,m} the j-th component of x is denoted by xj.

Lemma 2. For each ε > 0 there exists C ′ ⊆ C such that

(i) C ′ convex and compact

(ii) inf(f�C′) = 0.

(iii) ∀x, y ∈ C ′ ∀j (xj − yj < ε)

Proof. Consider the first coordinate. The set D = {x1 | x ∈ C} is totally
bounded. Set ι = inf D and η = supD. If η − ι < ε, set C ′ = C. Now
assume that ι < η. Define s = ι+ 1

3
(η− ι) and t = ι+ 2

3
(η− ι). By [3, Proof

of Lemma 4], the sets
A = {x ∈ C | x1 ≤ s}

and
B = {x ∈ C | x1 ≥ t}

are convex and compact. For a ∈ A and b ∈ B we have d(a, b) > 0. By
Lemma 1, we can conclude that

inf(f�A) > 0 or inf(f�B) > 0. (1)

In the first case, set
C ′′ = {x ∈ C | x1 ≥ s}

and in the second case set

C ′′ = {x ∈ C | x1 ≤ t} .

The the set C ′′ fulfills the properties (i) and (ii). Iterating this, also over the
coordinates, we eventually obtain a set C ′ which fulfills (iii) as well.

The diameter of a compact subset S of X is defined by

diam S = sup {d(x, y) | x, y ∈ S} .

By Lemma 2, we can construct a sequence (Cn) of compact subsets of C such
that

(a) ∀n (Cn+1 ⊆ Cn))

(b) limn→∞ diam Cn = 0

(c) ∀n (inf(f � Cn) = 0) .

For each n, fix xn ∈ Cn with f(xn) < 1/n. The sequence (xn) is a Cauchy
sequence and its limit is a minimum point of f .

This concludes the proof of Theorem 1.
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3 Applications

3.1 Finite-dimensional normed spaces

A normed space V is finite-dimensional if there exist b1, . . . , bm ∈ V such
that the linear mapping

κ : Rm → V, λ 7→
m∑
i=1

λibi

is bijective. (Injective in the sense that ‖λ‖ > 0 implies ‖κ(λ)‖ > 0.) In
this case, both κ and its inverse κ−1 are uniformly continuous. See [7, 8, 9]
for more information on finite-dimensional normed spaces.

In view of the definition of a finite-dimensional normed space, we obtain a
straightforward generalisation of Theorem 1.

Theorem 2. Let C be a convex compact subset of a finite-dimensional normed
space. Then every quasi-convex, uniformly continuous function f : C → R
with at most one minimum point has a minimum point.

3.2 Supporting hyperplanes

A subset C of a normed space X is strictly convex if

λa+ (1− λ)b ∈ C◦

for all a, b ∈ C with d(a, b) > 0 and all λ ∈ ]0, 1[. The set C◦, the interior of
C, is defined as usual:

x ∈ C◦ ⇔ ∃ε > 0 ∀y ∈ X (d(y, x) < ε ⇒ y ∈ C) .

Lemma 3. Fix a subset C of X.

(a) If C is convex and open, then it is strictly convex.

(b) If C is strictly convex and closed, then it is convex.

Proposition 1. Let C be a compact, strictly convex subset of a finite di-
mensional normed space V . Let g : V → R be a linear function, and v an
element of V with g(v) > 0. Then the restriction of g to C has a minimum
point z.
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Proof. Let f denote the restriction of g to C. Note that linear functions are
quasi-convex. Fix a, b with d(a, b) > 0. Set c = (a+ b)/2. Since C is strictly
convex, there exists δ > 0 such that c− δ · v ∈ C. We obtain

f(c− δ · v) < f(c) ≤ max (f(a), f(b)) .

Thus f has at most one minimum point. By Theorem 2, f has a minimum
point.

In the situation of Proposition 1, the set

{x ∈ V | g(x) = g(z)}

is called a supporting hyperplane of C.

3.3 Strictly quasi-convex functions

Let C be a convex subset of a normed space. A function f : C → R is strictly
quasi-convex if

f(λx+ (1− λ)y) < max (f(x), f(y))

for all λ ∈ ]0, 1[ and x, y ∈ C such that ‖x− y‖ > 0.

Lemma 4. Every strictly quasi-convex function is quasi-convex.

Proof. Assume that f is strictly quasi-convex. Fix x, y ∈ C and λ ∈ [0, 1].
We have to show

f(λx+ (1− λ)y) ≤ max (f(x), f(y)) . (2)

This is the negation of

f(λx+ (1− λ)y) > max (f(x), f(y)) .

If ‖x− y‖ = 0 or λ ∈ {0, 1}, the statement (2) holds anyway. In the case
λ ∈ ]0, 1[ and ‖x− y‖ > 0, the statement (2) holds by the quasi-convexity
of f .

Since strictly quasi-convex functions have at most one minimum point, The-
orem 2 yields the following proposition.

Proposition 2. Let C be a convex compact subset of a a finite-dimensional
normed space. Then every strictly quasi-convex, uniformly continuous func-
tion f : C → R has a minimum point.
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3.4 Approximation theory

Let Y be a subset of a normed linear space X. For a ∈ X let fY
a be the

function
fY
a : Y 3 y 7→ d(y, a).

The set Y is quasiproximinal if for every a ∈ X the implication

fY
a has at most one minimum point ⇒ fY

a has a minimum point

is valid.

As an immediate consequence of Theorem 2, we obtain the the constructive
fundamental theorem of approximation theory from [6].

Proposition 3. Every finite-dimensional subspace V of a normed space X
is quasiproximinal.

Proof. Fix a ∈ X. Set f = fV
a and suppose that f has at most one minimum

point. Fix b ∈ V such that d(a, b) > 0. Set

V0 = {v ∈ V | d(v, b) ≤ 3 · d(a, b)} .

Then V0 is compact, see [9, Corollary 4.1.7], and convex. The function f � V0
is uniformly continuous, quasi-convex and has at most one minimum point.
Theorem 2 implies that f � V0 has a minimum point v0. Fix v ∈ V . We show

f(v0) ≤ f(v),

which implies that v0 is a minimum point of f .

Case 1. If d(v, b) ≤ 3 · d(a, b) then v ∈ V0 and therefore f(v0) ≤ f(v).

Case 2. If 2 · d(a, b) ≤ d(v, b), we obtain

2 · d(a, b) ≤ d(v, b) ≤ d(v, a) + d(a, b),

and therefore

f(v0) = d(v0, a) ≤ d(a, b) ≤ d(v, a) = f(v).
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