Convexity and unique minimum points

Josef Berger and Gregor Svindland

November 30, 2017

Abstract

We show constructively that every quasi-convex, uniformly continuous function $f: C \to \mathbb{R}$ with at most one minimum point has a minimum point, where C is a convex compact subset of a finite dimensional normed space. Applications include strictly quasi-convex functions, a supporting hyperplane theorem, and a short proof of the constructive fundamental theorem of approximation theory.

1 Introduction

Let (X, d) be a compact metric space. The *infimum* of a uniformly continuous function $f: X \to \mathbb{R}$ is given by

$$\inf f = \inf \left\{ f(x) \mid x \in X \right\}.$$

An element x of X is a minimum point of f if

 $f(x) = \inf f.$

The function f has at most one minimum point if

$$d(x, y) > 0 \implies \inf f < f(x) \lor \inf f < f(y)$$

for all $x, y \in X$. In Bishop's constructive mathematics [7, 8, 9], the framework of this paper, the following statements are equivalent:

- (I) Brouwer's fan theorem for detachable bars.
- (II) Every positive-valued, uniformly continuous function on a compact metric space has positive infimum.
- (III) Every uniformly continuous function on a compact metric space which has at most one minimum point has a minimum point.

The equivalence of (I) and (II) was proved in [1, 10] and the equivalence of (I) and (III) was proved in [1, 2, 11]. In [3], we proved (II) for quasi-convex functions whose domain C is a convex compact subset of \mathbb{R}^m . Quasi-convex means that

$$f(\lambda x + (1 - \lambda)y) \le \max\left(f(x), f(y)\right)$$

for all $\lambda \in [0, 1]$ and $x, y \in C$. That result was crucial for the constructive treatment of the *fundamental theorem of asset pricing* in [4] and corresponds to a constructively valid version of the fan theorem, see [5].

In this paper—which is a sequel of [3]—we show (III) for quasi-convex functions whose domain C is a convex compact subset of \mathbb{R}^m (Theorem 1) and generalise this result to finite-dimensional normed spaces (Theorem 2). As applications we obtain a supporting hyperplane theorem (Proposition 1) and a result on strictly quasi-convex functions (Proposition 2). Moreover, we obtain a new short proof of the fundamental theorem of approximation theory (Proposition 3).

2 Unique minimum points

In this section, we prove the following theorem.

Theorem 1. Let C be a convex compact subset of \mathbb{R}^m . Then every quasiconvex, uniformly continuous function $f : C \to \mathbb{R}$ with at most one minimum point has a minimum point.

To this end, let C be a convex compact subset of \mathbb{R}^m . Fix a quasi-convex, uniformly continuous function $f: C \to \mathbb{R}$ which has at most one minimum point. Without loss of generality, we may assume that $\inf f = 0$. For a subset S of C let $f_{\upharpoonright S}$ denote the restriction of f to S.

Lemma 1. Fix convex compact subsets A, B of C such that d(a, b) > 0 for all $a \in A$ and $b \in B$. Then $\inf(f_{\uparrow A}) > 0$ or $\inf(f_{\uparrow B}) > 0$.

Proof. The set $A \times B$ is a convex compact subset of \mathbb{R}^{2m} , and the function

$$F: A \times B \to \mathbb{R}, (a, b) \mapsto \max(f(a), f(b))$$

is positive-valued, quasi-convex, and uniformly continuous. By [3, Theorem 1] we can conclude that $\varepsilon := \inf F > 0$. Since

$$\inf(f_{\uparrow A}) > 0 \lor \inf(f_{\uparrow A}) < \varepsilon$$

and

$$\inf(f_{\upharpoonright B}) > 0 \lor \inf(f_{\upharpoonright B}) < \varepsilon$$

this implies $\inf(f_{\restriction A}) > 0$ or $\inf(f_{\restriction B}) > 0$.

For $x \in \mathbb{R}^m$ and $j \in \{1, \ldots, m\}$ the *j*-th component of x is denoted by x_j .

Lemma 2. For each $\varepsilon > 0$ there exists $C' \subseteq C$ such that

- (i) C' convex and compact
- (*ii*) $\inf(f_{\uparrow C'}) = 0.$
- (*iii*) $\forall x, y \in C' \forall j (x_j y_j < \varepsilon)$

Proof. Consider the first coordinate. The set $D = \{x_1 \mid x \in C\}$ is totally bounded. Set $\iota = \inf D$ and $\eta = \sup D$. If $\eta - \iota < \varepsilon$, set C' = C. Now assume that $\iota < \eta$. Define $s = \iota + \frac{1}{3}(\eta - \iota)$ and $t = \iota + \frac{2}{3}(\eta - \iota)$. By [3, Proof of Lemma 4], the sets

$$A = \{x \in C \mid x_1 \le s\}$$

and

$$B = \{x \in C \mid x_1 \ge t\}$$

are convex and compact. For $a \in A$ and $b \in B$ we have d(a,b) > 0. By Lemma 1, we can conclude that

$$\inf(f_{\restriction A}) > 0 \quad \text{or} \quad \inf(f_{\restriction B}) > 0. \tag{1}$$

In the first case, set

$$C'' = \{x \in C \mid x_1 \ge s\}$$

and in the second case set

$$C'' = \{x \in C \mid x_1 \le t\}.$$

The the set C'' fulfills the properties (i) and (ii). Iterating this, also over the coordinates, we eventually obtain a set C' which fulfills (iii) as well.

The *diameter* of a compact subset S of X is defined by

diam
$$S = \sup \{ d(x, y) \mid x, y \in S \}$$

By Lemma 2, we can construct a sequence (C_n) of compact subsets of C such that

- (a) $\forall n (C_{n+1} \subseteq C_n))$
- (b) $\lim_{n\to\infty} \operatorname{diam} C_n = 0$
- (c) $\forall n (\inf(f \upharpoonright C_n) = 0)$.

For each n, fix $x_n \in C_n$ with $f(x_n) < 1/n$. The sequence (x_n) is a Cauchy sequence and its limit is a minimum point of f.

This concludes the proof of Theorem 1.

3 Applications

3.1 Finite-dimensional normed spaces

A normed space V is *finite-dimensional* if there exist $b_1, \ldots, b_m \in V$ such that the linear mapping

$$\kappa: \mathbb{R}^m \to V, \lambda \mapsto \sum_{i=1}^m \lambda_i b_i$$

is bijective. (Injective in the sense that $\|\lambda\| > 0$ implies $\|\kappa(\lambda)\| > 0$.) In this case, both κ and its inverse κ^{-1} are uniformly continuous. See [7, 8, 9] for more information on finite-dimensional normed spaces.

In view of the definition of a finite-dimensional normed space, we obtain a straightforward generalisation of Theorem 1.

Theorem 2. Let C be a convex compact subset of a finite-dimensional normed space. Then every quasi-convex, uniformly continuous function $f : C \to \mathbb{R}$ with at most one minimum point has a minimum point.

3.2 Supporting hyperplanes

A subset C of a normed space X is strictly convex if

$$\lambda a + (1 - \lambda)b \in C^{\circ}$$

for all $a, b \in C$ with d(a, b) > 0 and all $\lambda \in [0, 1[$. The set C° , the *interior* of C, is defined as usual:

$$x \in C^{\circ} \Leftrightarrow \exists \varepsilon > 0 \ \forall y \in X \ (d(y, x) < \varepsilon \Rightarrow y \in C).$$

Lemma 3. Fix a subset C of X.

(a) If C is convex and open, then it is strictly convex.

(b) If C is strictly convex and closed, then it is convex.

Proposition 1. Let C be a compact, strictly convex subset of a finite dimensional normed space V. Let $g: V \to \mathbb{R}$ be a linear function, and v an element of V with g(v) > 0. Then the restriction of g to C has a minimum point z. *Proof.* Let f denote the restriction of g to C. Note that linear functions are quasi-convex. Fix a, b with d(a, b) > 0. Set c = (a + b)/2. Since C is strictly convex, there exists $\delta > 0$ such that $c - \delta \cdot v \in C$. We obtain

$$f(c - \delta \cdot v) < f(c) \le \max\left(f(a), f(b)\right).$$

Thus f has at most one minimum point. By Theorem 2, f has a minimum point.

In the situation of Proposition 1, the set

$$\{x \in V \mid g(x) = g(z)\}$$

is called a supporting hyperplane of C.

3.3 Strictly quasi-convex functions

Let C be a convex subset of a normed space. A function $f: C \to \mathbb{R}$ is *strictly quasi-convex* if

$$f(\lambda x + (1 - \lambda)y) < \max\left(f(x), f(y)\right)$$

for all $\lambda \in [0, 1[$ and $x, y \in C$ such that ||x - y|| > 0.

Lemma 4. Every strictly quasi-convex function is quasi-convex.

Proof. Assume that f is strictly quasi-convex. Fix $x, y \in C$ and $\lambda \in [0, 1]$. We have to show

$$f(\lambda x + (1 - \lambda)y) \le \max\left(f(x), f(y)\right). \tag{2}$$

This is the negation of

$$f(\lambda x + (1 - \lambda)y) > \max\left(f(x), f(y)\right).$$

If ||x - y|| = 0 or $\lambda \in \{0, 1\}$, the statement (2) holds anyway. In the case $\lambda \in [0, 1[$ and ||x - y|| > 0, the statement (2) holds by the quasi-convexity of f.

Since strictly quasi-convex functions have at most one minimum point, Theorem 2 yields the following proposition.

Proposition 2. Let C be a convex compact subset of a a finite-dimensional normed space. Then every strictly quasi-convex, uniformly continuous function $f: C \to \mathbb{R}$ has a minimum point.

3.4 Approximation theory

Let Y be a subset of a normed linear space X. For $a \in X$ let f_a^Y be the function

$$f_a^Y: Y \ni y \mapsto d(y, a).$$

The set Y is quasiproximinal if for every $a \in X$ the implication

 f_a^Y has at most one minimum point $\Rightarrow f_a^Y$ has a minimum point

is valid.

As an immediate consequence of Theorem 2, we obtain the the *constructive* fundamental theorem of approximation theory from [6].

Proposition 3. Every finite-dimensional subspace V of a normed space X is quasiproximinal.

Proof. Fix $a \in X$. Set $f = f_a^V$ and suppose that f has at most one minimum point. Fix $b \in V$ such that d(a, b) > 0. Set

$$V_0 = \{ v \in V \mid d(v, b) \le 3 \cdot d(a, b) \}.$$

Then V_0 is compact, see [9, Corollary 4.1.7], and convex. The function $f \upharpoonright V_0$ is uniformly continuous, quasi-convex and has at most one minimum point. Theorem 2 implies that $f \upharpoonright V_0$ has a minimum point v_0 . Fix $v \in V$. We show

$$f(v_0) \le f(v)$$

which implies that v_0 is a minimum point of f. <u>Case 1.</u> If $d(v, b) \leq 3 \cdot d(a, b)$ then $v \in V_0$ and therefore $f(v_0) \leq f(v)$. <u>Case 2.</u> If $2 \cdot d(a, b) \leq d(v, b)$, we obtain

$$2 \cdot d(a,b) \le d(v,b) \le d(v,a) + d(a,b),$$

and therefore

$$f(v_0) = d(v_0, a) \le d(a, b) \le d(v, a) = f(v)$$

References

- Berger, J., Ishihara, H.: Brouwer's fan theorem and unique existence in constructive analysis. Math. Log. Quart. 51, No. 4, 360–364 (2005)
- [2] Berger, J., Bridges, D., Schuster P.: The fan theorem and unique existence of maxima. The Journal of Symbolic Logic, Volume 71, Number 2, 713–720 (2006)
- [3] Berger, J., Svindland, G.: Convexity and constructive infima. Arch. Math. Logic 55, 873–881 (2016)
- [4] Berger, J., Svindland, G.: A separating hyperplane theorem, the fundamental theorem of asset pricing, and Markov's principle. Ann. Pure Appl. Log. 167, 1161–1170 (2016)
- [5] Berger, J., Svindland, G.: Brouwer's fan theorem and convexity. Preprint
- [6] Bridges, D.S.: A Constructive Proximinality Property of Finitedimensional Linear Subspaces. Rocky Mountain Journal of Mathematics 11, Number 4, 491–497 (1981)
- [7] Bishop E., Bridges, D.: Constructive Analysis. Springer-Verlag (1985)
- [8] Bridges, D., Richman, F.: Varieties of Constructive Mathematics. London Math. Soc. Lecture Notes 97, Cambridge Univ. Press, 160 pp. (1987)
- [9] Bridges D.S., Vîţă, L.S.: Techniques of Constructive Analysis, Universitext. Springer, New York (2006)
- [10] Julian, W., Richman, F.: A uniformly continuous function on [0, 1] that is everywhere different from its infimum. Pac. J. Math. 111(2), 333–340 (1984)
- [11] Kohlenbach, U.: Effective moduli from ineffective uniqueness proofs. An unwinding of de La Vallée Poussin's proof for Chebycheff approximation. Annals of Pure and Applied Logic 64, 27–94 (1993)