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Abstract

We present first steps towards a constructive theory of convex op-
timisation. Our results indicate that mathematics in convex environ-
ments has some innate constructive nature.

1 Introduction

This contribution is a survey of our research on a constructive approach
to convex optimisation. The results we present are taken from [3, 4, 5,
7, 8, 9]. We also refer to [6] for an earlier detailed survey of [3, 4, 5] in
which we also present essential parts of the underlying theory in BISH.
In this contribution, however, we assume that the reader is familiar with
basic terminology and results from constructive analysis such as presented in
[13]. We will only briefly introduce some notation, conventions, and notions
related to convexity in Section 2 . Many of the results we discuss will not
be proved here, we only refer to the respective papers. Nevertheless, where
proofs are not too tedious, we will present them, in particular to illustrate
applications of our main results. Section 3 considers results on existence
of infima and minima for convex functions whereas Section 4 provides the
corresponding background in the framework of Brouwer’s Fan Theorem.
Section 5 discusses some recent results on Lemmas of Alternatives.

2 Some Definitions and Notation

Throughout this article ‖ · ‖ will denote the Euclidean norm on Rn. For
x ∈ Rn we denote by xi, i = 1, . . . , n, the ith coordinate of x, that is
x = (x1, . . . , xn). Moreover, we write

x · y =

n∑
i=1

xiyi



where x, y ∈ Rn for the Euclidean scalar product. If A = (aij) ∈ Rm×n is a
real matrix and x ∈ Rn and y ∈ Rm, then A · x is the vector in Rm with ith
coordinate

(A · x)i =

n∑
j=1

aijxj

whereas y ·A is the vector in Rn with jth coordinate

(y ·A)j =

m∑
i=1

aijyi.

Whenever C ⊆ Rn is located

d(x,C) := inf{‖x− y‖ | y ∈ C}

denotes the distance from x ∈ Rn to C. In this contribution located sets
are always inhabited. Also totally bounded sets, and thus compact sets, are
always assumed to be inhabited. A set C ⊆ Rn is convex if it is inhabited
and if

∀x, y ∈ C ∀λ ∈ [0, 1] (λx+ (1− λ)y ∈ C).

This in fact implies that C is closed under finite convex combinations. Let

Xm :=

{
λ ∈ Rm | λi ≥ 0(i = 1, . . . ,m),

m∑
i=1

λi = 1

}
.

For m points x1, . . . , xm ∈ Rn we define the convex hull

co(x1, . . . , xm) :=

{
m∑
i=1

λix
i | λ ∈ Xm

}
,

the convex cone

cone(x1, . . . , xm) :=

{
m∑
i=1

λix
i | λ ∈ Rm, λi ≥ 0(i = 1, . . . ,m)

}
,

and the linear space

span(x1, . . . , xm) :=

{
m∑
i=1

λix
i | λ ∈ Rm

}
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generated by x1, . . . , xm. Let C ⊆ Rn be convex. A function f : C → R is
called convex if

∀x, y ∈ C ∀λ ∈ [0, 1] f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

and quasi-convex if

∀x, y ∈ C ∀λ ∈ [0, 1] f(λx+ (1− λ)y) ≤ max{f(x), f(y)}.

Clearly, convex functions are quasi-convex.

3 Convexity and Existence of Infima and Minima

In this section we give an overview of results on infima and minima of quasi-
convex functions. We recall that a uniformly continuous function f : C → R
on a compact set C always admits an infimum, see [13, Corollary 2.2.7].
However, if f : C → R+ := (0,∞), the statement that inf f > 0 is equivalent
to Brouwer’s Fan Theorem, see [1, 14]. The same holds for the statement
that if f admits at most one minimum it has a minimum point, see [1, 2].
Nevertheless, it turns out that if we add convexity to the picture, suddenly
those statements are constructively verifiable. The underlying reason is that
in fact Brouwer’s Fan Theorem is constructively verifiable for so-called co-
convex bars, these are bars in {0, 1}∗, the set of all finite binary sequences,
possessing a convexity property which we will discuss in Section 3.

Theorem 1. (see [4, Theorem 1] and [3, Proposition 1]) If C ⊆ Rn is
compact and convex and

f : C → R+

is quasi-convex and uniformly continuous, then inf f > 0.

As a first consequence we obtain the following version of Theorem 1 for
convex hulls which in contrast to classical mathematics cannot be verified
to be closed and thus compact in general. Only special cases like Xm are
indeed compact.

Corollary 1. (see [3, Corollary 1]) Let x1, . . . , xm ∈ Rn and suppose that
f : co(x1, . . . , xm) → R+ is quasi-convex and uniformly continuous. Then
inf f > 0.

Proof. Consider the function

κ : Xm → co(x1, . . . , xm), λ 7→
m∑
i=1

λix
i.

The composition f ◦ κ satisfies the requirements of Theorem 1.
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Theorem 1 also implies the following separating hyperplane result for disjoint
convex sets which does not require locatedness of the algebraic difference
Y − C such as in [13, Theorem 5.2.9].

Theorem 2. (see [4, Theorem 2]) Let C and Y be subsets of Rn and suppose
that

1. C is convex and compact

2. Y is convex, complete, and located

3. ‖c− y‖ > 0 for all c ∈ C and y ∈ Y .

Then there exist p ∈ Rn and reals α, β such that

p · c < α < β < p · y

for all c ∈ C and y ∈ Y . In particular, the sets C and Y are strictly
separated by the hyperplane

H = {x ∈ Rn | p · x = γ} ,

with γ = 1
2(α+ β).

Next we consider existence of minima. A function f : C → R, where C ⊆ Rn

is inhabited, is said to have at most one minimum point if inf f exists and

∀x, y ∈ C (‖x− y‖ > 0 ⇒ f(x) > inf f ∨ f(y) > inf f).

Theorem 3. [7, Theorem 1] Let C be a convex and compact subset of Rn.
Then every quasi-convex, uniformly continuous function f : C → R with at
most one minimum point has a minimum point, that is

∃x ∈ C f(x) = inf f.

As consequence we obtain supporting hyperplanes for compact, strictly con-
vex sets, see Proposition 1 below. To this end, note that an inhabited subset
C of Rn is strictly convex if

λx+ (1− λ)y ∈ C◦

for all x, y ∈ C with ‖x − y‖ > 0 and all λ ∈ (0, 1). Here the set C◦, the
interior of C, is defined as usual:

x ∈ C◦ ⇔ ∃ε > 0∀y ∈ Rn (‖y − x‖ < ε ⇒ y ∈ C)
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Lemma 1. Fix a subset C of Rn.

i) If C is convex and open, then it is strictly convex.

ii) If C is strictly convex and closed, then it is convex.

Proof. We only prove ii). Let x, y ∈ C and λ ∈ (0, 1). Define an increasing
sequence (an)n∈N ∈ {0, 1}N such that an = 0 implies ‖x − y‖ < 1

n whereas
an = 1 implies ‖x− y‖ > 0. Next define a sequence

xn =

{
x if an = 0

λx+ (1− λ)y if an = 1
, n ∈ N.

Note that (xn)n∈N ⊆ C is a Cauchy sequence. As C is closed its limit
λx+ (1− λ)y lies in C. For general λ ∈ [0, 1] choose a sequence (λn)n∈N ⊆
(0, 1) such that λn → λ and note that by closedness of C we have

λx+ (1− λ)y = lim
n→∞

λnx+ (1− λn)y ∈ C.

Proposition 1. (see [7, Proposition 1]) Let C ⊆ Rn be a compact and
strictly convex set. Let g : Rn → R be a linear function such that g(v) > 0
for some v ∈ Rn. Then the restriction of g to C has a minimum point w.

Proof. Let f denote the restriction of g to C. Note that linear functions are
quasi-convex. We will prove that f has at most one minimum point. To
this end, consider x, y ∈ C with ‖x− y‖ > 0. Set z = (x+ y)/2. Since C is
strictly convex, there exists δ > 0 such that z − δv ∈ C. We obtain

f(z − δv) < f(z) ≤ max{f(x), f(y)}.

Thus f has at most one minimum point. By Theorem 3, f has a minimum
point.

In the situation of Proposition 1, the set

H := {x ∈ Rn | g(x) = g(w)}

is called a supporting hyperplane of C. Indeed, C lies on one side of H, since
∀x ∈ C g(x) ≥ g(w), and H touches C in the point w.
Another consequence of Theorem 3 is that a strictly quasi-convex function
defined on a convex compact set possesses a (unique) minimum point. To
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this end note that a function f : C → R defined on a convex set C ⊆ Rn is
called strictly quasi-convex if

f(λx+ (1− λ)y) < max{f(x), f(y)}

for all λ ∈ (0, 1) and x, y ∈ C such that ‖x− y‖ > 0. Since strictly
quasi-convex functions have at most one minimum point, the following result
follows from Theorem 3.

Proposition 2. (see [7, Proposition 2]) Let C ⊆ Rn be convex and compact.
Then every strictly quasi-convex, uniformly continuous function f : C → R
has a minimum point.

Another application of Theorems 1 and 3 in game theory will be given at
the end of Section 5.

4 Convexity and Brouwer’s Fan Theorem

In this section we give a résumé on the deeper reason why statements equiv-
alent to Brouwer’s Fan Theorem become constructively verifiable once we
add some convexity assumption. We will see in Theorem 4 that in fact the
Fan Theorem is constructively verifiable for so-called co-convex bars. Be-
fore we can state this result we need to introduce some further notions and
notation related to the Fan Theorem.
We write {0, 1}∗ for the set of all finite binary sequences u, v, w. Let ø be
the empty sequence and let {0, 1}N be the set of all infinite binary sequences
α, β, γ. For every u let |u| be the length of u, that is |ø| = 0 and for
u = (u0, . . . , un−1) we have |u| = n. For u = (u0, . . . , un−1) and v =
(v0, . . . , vm−1) the concatenation u ∗ v of u and v is defined by

u ∗ v = (u0, . . . , un−1, v0, . . . , vm−1).

A subset B of {0, 1}∗ is closed under extension if u ∗ v ∈ B for all u ∈ B
and for all v. The restriction αn of α to n bits is given by α0 = ø and

αn = (α0, . . . , αn−1) whenever n ≥ 1.

For u with n ≤ |u|, the restriction un is defined analogously. A sequence α
hits B if there exists n such that αn ∈ B. B is a bar if every α hits B. B
is a uniform bar if there exists N such that for every α there exists n ≤ N
such that αn ∈ B. Often one requires B to be detachable, that is for every
u the statement u ∈ B is decidable. Brouwer’s Fan Theorem for detachable
bars is
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FAN Every detachable bar is a uniform bar.

FAN is neither provable nor falsifiable in BISH, see [12, Section 3 of Chapter
5]. In their seminal paper [14] Julian and Richman established a correspon-
dence between FAN and functions on [0, 1] as follows.

Proposition 3. For every detachable subset B of {0, 1}∗ there exists a uni-
formly continuous function f : [0, 1]→ [0,∞) such that

1) B is a bar ⇔ f is positive-valued

2) B is a uniform bar ⇔ inf f > 0.

Conversely, for every uniformly continuous function f : [0, 1]→ [0,∞) there
exists a detachable subset B of {0, 1}∗ such that 1) and 2) hold.

Consequently, FAN is equivalent to the statement that every uniformly con-
tinuous, positive-valued function defined on the unit interval has positive
infimum. In fact, in the latter statement the unit interval may be replaced
by compact subsets of Rn, see [1]. Now, in view of Theorem 1, the question
arises whether there is a constructively valid convex version of Brouwer’s
Fan Theorem. To this end, we define

u < v :⇔ |u| = |v| ∧ ∃k < |u| (uk = vk ∧ uk = 0 ∧ vk = 1)

and
u ≤ v :⇔ u = v ∨ u < v.

A subset B of {0, 1}∗ is co-convex if for every α which hits B there exists n
such that either

{v | v ≤ αn} ⊆ B or {v | αn ≤ v} ⊆ B .

Note that for detachable B co-convexity follows from the convexity of the
complement of B, where C ⊆ {0, 1}∗ is convex if for all u, v, w we have

u ≤ v ≤ w ∧ u,w ∈ C ⇒ v ∈ C.

The following is the already advertised fan theorem for co-convex bars:

Theorem 4. (see [5, Theorem 2.1]) Every co-convex bar is a uniform bar.
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Proof. Fix a co-convex bar B. We can and will assume that B is closed
under extension, see [5] for the details. Define

C = {u | ∃n ∀w ∈ {0, 1}n (u ∗ w ∈ B)} .

Note that C consists of the set of nodes beyond which B is uniform, B ⊆ C
and that C is closed under extension as well. Moreover, B is a uniform bar
if and only if there exists n such that {0, 1}n ⊆ C.
First, we show that

∀u∃i ∈ {0, 1} (u ∗ i ∈ C) . (1)

Fix u. For
β = u ∗ 1 ∗ 0 ∗ 0 ∗ 0 ∗ . . .

there exist an l such that either{
v | v ≤ βl

}
⊆ B,

or {
v | βl ≤ v

}
⊆ B.

Since B is closed under extension, we can assume that l > |u| + 1. Let
m = l − |u| − 1. If

{
v | v ≤ βl

}
⊆ B, we can conclude that

u ∗ 0 ∗ w ∈ B

for every w of length m, which implies that u ∗ 0 ∈ C. If
{
v | βl ≤ v

}
⊆ B,

we obtain
u ∗ 1 ∗ w ∈ B

for every w of length m, which implies that u ∗ 1 ∈ C. This concludes the
proof of (1).

By countable choice, there exists a function F : {0, 1}∗ → {0, 1} such that

∀u (u ∗ F (u) ∈ C) .

Define α by
αn = 1− F (αn).

Next, we show by induction on n that

∀n ≥ 1∀u ∈ {0, 1}n (u 6= αn⇒ u ∈ C) . (2)

The case n = 1 is easily verified. Now fix some n ≥ 1 such that (2) holds.
Moreover, fix w ∈ {0, 1}n+1 such that w 6= α(n+ 1).
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case 1. wn 6= αn. Then wn ∈ C and therefore w ∈ C.

case 2. w = αn ∗ (1− αn) = αn ∗ F (αn). This implies w ∈ C. So we have
established (2).

There exists n such that αn ∈ B. Applying (2) to this n, we can conclude
that every u of length n is an element of C, thus B is a uniform bar.

Remark 1. Note that we do not need to require that the co-convex bar in
Theorem 4 is detachable.

In order to include convexity in the list of Proposition 3, we introduce the
notion of weakly convex functions. Let S be an inhabited subset of R. A
function f : S → R is weakly convex if for all t ∈ S with f(t) > 0 there
exists ε > 0 such that either

∀s ∈ S (s ≤ t ⇒ f(s) ≥ ε) or ∀s ∈ S (t ≤ s ⇒ f(s) ≥ ε) .

Note that weak convexity is a generalisation of convexity in that uniformly
continuous (quasi-) convex functions f : [0, 1] → R are weakly convex, see
[5, Lemma 3.3]. For convex functions we can even drop uniform continuity:

Proposition 4. (see [8, Proposition 3]) Every convex function f : [0, 1]→ R
is weakly convex.

The following generalisation of Proposition 3 links Theorem 1 with Theo-
rem 4.

Theorem 5. (see [5, Theorem 3.4]) For every detachable subset B of {0, 1}∗
which is closed under extension there exists a uniformly continuous function
f : [0, 1]→ R such that

1) B is a bar ⇔ f is positive-valued

2) B is a uniform bar ⇔ inf f > 0

3) B is co-convex ⇔ f is weakly convex.

Conversely, for every uniformly continuous function f : [0, 1] → R there
exists a detachable subset B of {0, 1}∗ which is closed under extension such
that 1), 2), and 3) hold.

Hence, by Theorems 4 and 5 uniformly continuous and weakly convex func-
tions f : [0, 1] → R+ have positive infimum. This is a generalisation of
Theorem 1 in the one-dimensional case. Indeed, an inspection of the proof
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of Theorem 1 given in [4] shows that one can replace the required quasi-
convexity by the even weaker notion of weak convexity in that proof to
directly obtain Theorem 1 for weakly convex functions, which then in con-
junction with Theorem 5 again implies Theorem 4. Without studying the
fan theorem for bars in {0, 1}∗ we would, however, never have spotted weak
convexity as the essential property behind positive infima, see also the dis-
cussion at the end of [5].

5 Lemmas of the Alternative and Consequences

Lemmas of the alternative such as Farkas’ lemma play an important role
in convex optimisation. Constructively valid versions of those results are
therefore of great interest. In this section we will present two types of such
constructive versions: The first type of results replace the alternatives by
equivalences and make some stronger assumptions on the appearing objects.
These are useful in applications such as solvability criteria for systems of lin-
ear equations, see Propositions 7, 8 and Corollary 2. The second type of
constructively valid versions concludes the classical formulation as alterna-
tives from the detachability of a suited set from {1, . . . , k} for some k ∈ N.
We will call these results conditionally constructive. The rule of intuitionistic
propositional logic

((ϕ ∨ ¬ϕ)⇒ ¬ψ)⇒ ¬ψ
implies that conditionally constructive formulas ν may be used to prove
negated statements:

(ν ⇒ ¬ψ)⇒ ¬ψ, (3)

see [9]. This observation is very useful because lemmas of the alternative
often come into play when we wish to derive falsum. Indeed, based on this we
will prove a constructive version of optimality criteria in linear programming,
see Proposition 9, and we will also provide a simple proof of a constructive
version of the von Neumann minimax theorem which first appeared in [11].
As regards the lemmas of the alternative, as in [9], our main reference point
will be Farkas’ lemma. Throughout this section we will need the following
notation: For x, y ∈ Rn we write

x ≤ y :⇔ ∀i ∈ {1, . . . , n} (xi ≤ yi) , y ≥ x :⇔ x ≤ y,

x < y :⇔ ∀i ∈ {1, . . . , n} (xi < yi) , y > x :⇔ x < y,

and

x � y :⇔ x ≤ y ∧ ∃i ∈ {1, . . . , n} (xi < yi) , x 
 y :⇔ y � x.

10



Farkas’ lemma in its classical formulation states the following: For any real
matrix A ∈ Rm×n and b ∈ Rm we have

FAR(A, b) Exactly one of the following statements is true.

i) ∃ξ ∈ Rm (ξ ·A ≥ 0 ∧ ξ · b < 0)

ii) ∃q = (q1, . . . qn) ∈ Rn (qi ≥ 0 (i = 1, . . . , n) ∧ A · q = b)

Farkas’ lemma is not constructively verifiable, indeed:

Proposition 5. (see [9, Proposition 2]) Equivalent are:

i) FAR : ∀A ∈ Rm×n ∀b ∈ Rm FAR(A, b)

ii) LPO

The following two propositions are constructive versions of Farkas’ lemma
of the first kind discussed above. We write cone(A) for the convex cone
generated by the columns of A, that is cone(A) = cone(a1, . . . , an) where
ai ∈ Rm denotes the ith column of A. Similarly we will write span(A) for
the linear space generated by the columns of A.

Proposition 6. (see [9, Proposition 3]) Fix a matrix A ∈ Rm×n and b ∈
Rm. If cone(A) is located, the following are equivalent:

i) ∃ξ ∈ Rm (ξ ·A ≥ 0 ∧ ξ · b < 0)

ii) d(b, cone(A)) > 0

Proof. i)⇒ ii): As Rm 3 x 7→ ξ · x is continuous and ξ · b < 0, there exists
δ > 0 such that

∀x ∈ Rm (‖b− x‖ < δ ⇒ ξ · x < 0) .

Fix x ∈ cone(A). If ‖b − x‖ < δ, we can conclude that ξ · x < 0, a contra-
diction. Thus,

∀x ∈ cone(A) (‖b− x‖ ≥ δ) .

This implies ii).

ii)⇒ i): Set d := d(b, cone(A)). By [3, Lemma 6], there exists ξ ∈ Rn such
that

∀x ∈ cone(A)
(
ξ · (x− b) ≥ d2

)
.

Thus,
∀x ∈ cone(A)

(
ξ · x ≥ d2 + ξ · b

)
.
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Since 0 ∈ cone(A), we conclude that ξ · b < 0. Finally, cone(A) being a cone
implies

∀x ∈ cone(A) (ξ · x ≥ 0) .

Proposition 7. (see [9, Proposition 4]) Fix A ∈ Rm×n and b ∈ Rm. If
cone(A) is located and closed, then the following are equivalent:

i) ∀ξ ∈ Rm (ξ ·A ≥ 0 ⇒ ξ · b ≥ 0)

ii) ∃q ∈ Rn (qi ≥ 0(i = 1, . . . , n) ∧ A · q = b)

Proof. Since cone(A) is located and closed, ii) is equivalent to d(b, cone(A)) =
0, that is ¬(d(b, cone(A)) > 0). Thus the assertion follows from Proposi-
tion 6.

For instance, Proposition 7 implies the following constructive version of the
so-called Fredholm alternative:

Proposition 8. (see [9, Proposition 8]) Let A ∈ Rm×n and b ∈ Rm. Sup-
pose that span(A) is located and closed. Equivalent are:

i) ∀ξ ∈ Rm (ξ ·A = 0⇒ ξ · b = 0),

ii) ∃x ∈ Rn (A · x = b).

Proof. Consider the matrix B := (A −A), then cone(B) = span(A) is closed
and located. Hence, by Proposition 7 the following are equivalent

1) ∀ξ ∈ Rm (ξ ·B ≥ 0⇒ ξ · b ≥ 0)

2) ∃q ∈ X2n (B · q) = b.

Now i) is equivalent to 1) and ii) is equivalent to 2).

As a consequence we obtain a constructive version of the Fredholm alterna-
tive for solvability of systems of linear equations.

Corollary 2. (see [9, Corollary 2]) Let A ∈ Rm×n and b ∈ Rm. Suppose
span(A) is located and closed. If the homogeneous equation ξ · A = 0 has a
unique solution, then there exists a solution to the system of linear equations
A · x = b.

Proof. The unique solution to ξ · A = 0 is of course ξ = 0, so i) of Proposi-
tion 8 is satisfied which implies ii).
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For the second type of constructive versions of lemmas of the alternative
we have to introduce the following notion. A formula ϕ is conditionally
constructive if there exists a k ∈ N and a subset M of {1, . . . , k} such that
the detachability of M from {1, . . . , k} implies ϕ.

Theorem 6. (see [9, Propositions 5, 7, 11, and 13]) Fix A ∈ Rm×n and
b ∈ Rm. The following are conditionally constructive:

i) FAR(A,b)

ii) The Fredholm alternative for A and b, that is exactly one of the following
statements is true:

a) ∃ξ ∈ Rm (ξ ·A = 0 ∧ |ξ · b| > 0)

b) ∃x ∈ Rn (A · x = b)

iii) Stiemke’s Lemma for A and b, that is exactly one of the following al-
ternatives is true:

a) ∃ξ ∈ Rm (ξ ·A 
 0)

b) ∃p ∈ Xn (pi > 0(i = 1, . . . , n) ∧ (A · p = 0))

iv) Exactly one of the following statements is true:

a) ∃p ∈ Xm (p ·A ≥ 0)

b) ∃q ∈ Xn (A · q < 0)

Theorem 6 allows to derive a number of constructive versions of prominent
classical results from convex programming, see [9]. We review a few of those
in the following. The first result is on optimlity criteria for linear program-
ming. To this end, consider the following linear optimisation problems: Let
A ∈ Rm×n, b ∈ Rm, and c ∈ Rn. The primal problem is

(P ) minimise c · x subject to x ∈ P := {y ∈ Xn | A · y = b},

whereas the dual problem is

(D) maximise b · u subject to u ∈ D := {v ∈ Rm | v ·A ≤ c}.

Proposition 9. (see [9, Proposition 10]) Consider the (m+ 1)× n-matrix

A′ =

(
A
c

)
and suppose that cone(A′) is closed and located. If there is a solution u to
(D), then there exists a solution x to (P) and c · x = b · u.
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The well-known von Neumann minimax theorem states that for any matrix
A ∈ Rm×n

max
p∈Xm

min
q∈Xn

p ·A · q = min
q∈Xn

max
p∈Xm

p ·A · q.

A thorough discussion of this result in BISH is given in [11]. In that article
also the following constructive version of von Neumann’s minimax theorem
was introduced, see [11, Theorem 2.3]. Here, to illustrate the applicability
of conditionally convex statements, we provide a short proof of this result
based on Theorem 6 and (3).

Proposition 10. (see [9, Proposition 14]) Let A ∈ Rm×n. Then

sup
p∈Xm

inf
q∈Xn

p ·A · q = inf
q∈Xn

sup
p∈Xm

p ·A · q.

Proof. Note that infq∈Xn p · A · q = min{(p · A)i | i = 1, . . . , n}, p ∈ Xm,
and supp∈Xm

p · A · q = max{(A · q)j | j = 1, . . . ,m}, q ∈ Xn, and that the
functions

Xm 3 p 7→ inf
q∈Xn

p ·A · q and Xn 3 q 7→ sup
p∈Xm

p ·A · q

are uniformly continuous, whence

sup
p∈Xm

inf
q∈Xn

p ·A · q and inf
q∈Xn

sup
p∈Xm

p ·A · q

exist, see [13, Corollary 2.2.7]. Clearly,

sup
p∈Xm

inf
q∈Xn

p ·A · q ≤ inf
q∈Xn

sup
p∈Xm

p ·A · q,

so it remains to show that

¬( sup
p∈Xm

inf
q∈Xn

p ·A · q < inf
q∈Xn

sup
p∈Xm

p ·A · q).

Suppose
sup
p∈Xm

inf
q∈Xn

p ·A · q < inf
q∈Xn

sup
p∈Xm

p ·A · q.

Without loss of generality, by suitable translation, we may assume that there
exists ι > 0 such that

sup
p∈Xm

inf
q∈Xn

p ·A · q ≤ −ι and ι ≤ inf
q∈Xn

sup
p∈Xm

p ·A · q. (4)
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As we aim at proving falsum, by (3) and Theorem 6 (see [9] for the details)
it suffices to consider the cases

∃p ∈ Xm (p ·A ≥ 0) or ∃q ∈ Xn (A · q < 0) .

In the first case
sup
p∈Xm

inf
q∈Xn

p ·A · q ≥ 0 > −ι,

a contradiction, and in the second case

inf
q∈Xn

sup
p∈Xm

p ·A · q ≤ 0 < ι,

also a contradiction.

Now based on Proposition 10 and as a further consequence of Theorem 3
we obtain the following existence result for solutions to two-person zero-sum
games; see for instance [15] for a classical discussion of such games.

Proposition 11. (see [9, Proposition 15]) Let A ∈ Rm×n. Suppose that

fA : Xn 3 q 7→ sup
p∈Xm

p ·A · q

admits at most one minimum point, and that

gA : Xm 3 p 7→ inf
q∈Xn

p ·A · q

admits at most one maximum point, that is −gA admits at most one mini-
mum point. Then there exists (p̂, q̂) ∈ Xm ×Xn such that

p̂ ·A · q̂ = sup
p∈Xm

inf
q∈Xn

p ·A · q = inf
q∈Xn

sup
p∈Xm

p ·A · q.

Proof. Note that Xn and Xm are compact and that fA is convex whereas
gA is concave, that is −gA is convex. Hence, according to Theorem 3 there
exists a minimiser q̂ ∈ Xn of fA and a minimiser p̂ ∈ Xm of −gA, i.e. p̂ is a
maximiser of gA. We have

sup
p∈Xm

inf
q∈Xn

p ·A · q = inf
q∈Xn

p̂ ·A · q ≤ p̂ ·A · q̂ ≤ sup
p∈Xm

p ·A · q̂ = inf
q∈Xn

sup
p∈Xm

p ·A · q.

Now apply Proposition 10.
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Saddle points (p̂, q̂) as in Proposition 11 are called solutions to the two-
person zero-sum game given by A. The following Corollary 3 generalises
[11, Theorem 3.2] and verifies the conjecture as regards existence of solu-
tions to two-person zero-sum games made at the end of [11]. We will apply
Theorem 1 in its proof.

Corollary 3. (see [9, Corollary 3]) Let A ∈ Rm×n, and suppose that the
associated two-person zero-sum game has at most one solution in the sense
of [11], that is, denoting

α := sup
p∈Xm

inf
q∈Xn

p ·A · q = inf
q∈Xn

sup
p∈Xm

p ·A · q,

we have for any pairs (p, q), (p′, q′) ∈ Xm × Xn with ‖p− p′‖+ ‖q − q′‖ > 0
that either |p · A · q − α| > 0 or |p′ · A · q′ − α| > 0. Then the game has a
unique solution, that is there exists a unique (p̂, q̂) ∈ Xm ×Xn such that

p̂ ·A · q̂ = α.

Proof. For uniqueness, assume that (p, q), (p′, q′) ∈ Xm × Xn are two solu-
tions to the game. Then, as the game has at most one solution, ‖p− p′‖+
‖q − q′‖ > 0 is absurd, which implies (p, q) = (p′, q′).

As regards existence of solutions, we show that the function fA defined in
Proposition 11 admits at most one minimum. Note that infq∈Xn fA(q) = α
and

∀δ > 0∀q ∈ Xn ∃p ∈ Xm (|p ·A · q − fA(q)| < δ) . (5)

Fix q, q′ ∈ Xn and suppose that ‖q − q′‖ > 0. The function

h : Xm ×Xm → R
(p, p′) 7→ |p ·A · q − α|+ |p′ ·A · q′ − α|

is uniformly continuous, convex, and positive-valued. The latter follows from
the assumption that the game has at most one solution. Thus, according to
Theorem 1 there exists ε > 0 such that

inf
(p,p′)∈Xm×Xm

h(p, p′) > ε. (6)

We have that either fA(q) < α+ε/4 or fA(q) > α and either fA(q′) < α+ε/4
or fA(q′) > α. Assume that

fA(q) < α+
ε

4
and fA(q′) < α+

ε

4
.
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Then there are p, p′ ∈ Xm such that

|p ·A · q − α| < ε

2
and

∣∣p′ ·A · q′ − α∣∣ < ε

2
.

This is a contradiction to (6). Thus, either

fA(q) > α or fA(q′) > α.

Similarly, one verifies that gA defined in Proposition 11 admits at most one
maximum. Hence, the assertion follows from Proposition 11.
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