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Abstract

For a large homogeneous portfolio of financial positions, we study the asymptotic behavior
of the capital requirement per position defined in terms of a convex monetary risk measure.
In an actuarial context, this capital requirement can be seen as a premium per contract. We
show that the premia converge to the fair premium as the portfolio becomes large, and we
give a precise description of the decay of the risk premia. The analysis is carried out first for
a law-invariant convex risk measure and then in a situation of model ambiguity.
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1 Introduction
Consider a large portfolio consisting of n financial positions whose monetary outcomes are described
as random variables X1, . . . , Xn on some probability space (Ω,F , P ). Given a convex risk measure
ρ, the capital which is required in order to make the aggregate position Sn = X1 + · · · + Xn

acceptable is specified as ρ(Sn), and we denote by

πn := 1
nρ(Sn)

the resulting capital requirement per position.
From an actuarial point of view, ρ(Sn) can be seen as the aggregate premium which is needed

to secure a portfolio of n insurance contracts, and πn is then the premium per contract. In the
classical i. i. d. case, one expects that the premium πn should be higher than the “fair premium”
EP [−X1], and that the “risk premium” πn − EP [−X1] should decrease as the portfolio becomes
large. For the coherent entropic risk measures ρc, defined by

ρc(X) := sup
Q:H(Q|P )≤c

EQ[−X] (1)
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in terms of the relative entropy H(Q|P ), this is indeed the case. More precisely, we have πn ≥
EP [−X1], and

lim
n↑∞

√
n(πn − EP [−X1]) = σP

√
2c, (2)

where σ2
P denotes the variance of X1; cf. [8], Proposition 4.1. On the other hand, the pooling of

risks does not have the desired effect if we take the convex entropic risk measure eγ defined by

eγ(X) := sup
Q
{EQ[−X]− 1

γH(Q|P )} = 1
γ logEP [e−γX ] (3)

for parameters γ > 0. Indeed, since eγ is additive on independent positions, we have eγ(Sn) =
neγ(X1), and so πn does not decrease as the portfolio becomes large.

In this paper, our aim is to understand the preceding two examples from a more general point of
view. For the ease of exposition we restrict the discussion to portfolios consisting of positions which
are i. i. d. with finite exponential moments, but our arguments have a wider scope; cf. Remarks
3.1 and 5.1. In Section 3 we study the asymptotics of the capital requirements specified by a
law-invariant convex risk measure ρ. Risk measures are often considered as functionals on L∞.
But in the law-invariant case they admit a canonical extension to L1; cf. Filipović&Svindland
[7]. Under our exponential moment assumption, we will actually consider them as functionals on
a suitable Orlicz space, in accordance with the general discussion in Cheridito&Li [2][3], and we
will make extensive use of the estimates available in this context.

As shown by Kusuoka [15] in the coherent case and by Kunze [14], Dana [4] and Frittelli &Rosazza
Gianin [12] in the general convex case, any law-invariant convex risk measure ρ can be constructed
by using as building blocks the coherent risk measures Average Value at Risk (AVaR), defined by

AVaRλ(X) := 1
λ

∫ λ

0

VaRα(X) dα

for any level λ ∈ (0, 1]; cf., e. g., [10], Theorem 4.62. It is therefore natural to begin by looking at
Average Value at Risk and at the behavior of the corresponding premia πλn := 1

n AVaRλ(Sn) as the
portfolio becomes large. In Proposition 3.1 we show that, as a straightforward consequence of the
central limit theorem, the premia πλn converge to the fair premium, and that

lim
n↑∞

√
n(πλn − EP [−X1]) = σP

1
λϕ(Φ−1(λ)), (4)

where σ2
P denotes the variance of X1 under P , and where ϕ and Φ denote the density and the

distribution function of the standard normal distribution.
In a second step we focus on the comonotonic case. Here the risk measure takes the form

ρµ(X) =
∫ 1

0

AVaRλ(X)µ(dλ) (5)

for some probability measure µ on (0, 1]. Theorem 3.1 shows that the asymptotic behavior of
the corresponding premia πµ,n := 1

nρµ(Sn) is analogous to (4) if log(1/λ) is integrable under the
mixing measure µ. We then pass to a general law-invariant coherent risk measure, given by

ρM := sup
µ∈M

ρµ (6)

for some classM of probability measures µ on (0, 1]. Under the condition

sup
µ∈M

∫ 1

0

log
(

1
λ

)
µ(dλ) <∞ (7)
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we show that the asymptotic behavior of the corresponding premia πM,n := 1
nρM(Sn) is described

by

lim
n↑∞

√
n(πM,n − EP [−X1]) = σP sup

µ∈M

∫ 1

0

1
λϕ(Φ−1(λ))µ(dλ); (8)

cf. Theorem 3.2.
In the final part of Section 3 we consider the general case of a law-invariant convex risk measure

ρ. Here the risk measure is of the form

ρ(X) = sup
µ
{ρµ(X)− β(µ)}, (9)

where the penalty function β for probability measures µ on (0, 1] is given by

β(µ) = sup
X∈Aρ

ρµ(X) = sup
X∈Aρ

∫
(0,1]

AVaRλ(X)µ(dλ),

and where Aρ := {X|ρ(X) ≤ 0} denotes the class of positions X which are acceptable for ρ. In
Theorem 3.3 we show that the asymptotic behavior of the risk premia is the same for ρ as for the
coherent risk measure associated to Mρ := {µ|β(µ) < ∞} via (6). Here we need two conditions:
The class Mρ should satisfy (7), and the penalty function should remain bounded on Mρ. In
the coherent case we have β ≡ 0 onMρ, and so the second condition is satisfied trivially. In the
convex case, the second condition follows from the first if the exponential moments of the amount
X− of the loss stay bounded for positions X which are acceptable for ρ; cf. Lemma 3.2. The
convex entropic risk measures eγ satisfy this last condition. But they do not satisfy the first, and
this explains why they do not have the desired convergence property.

In Section 4 we illustrate our result for law-invariant comonotonic risk measures by viewing the
risk measures ρµ as Choquet integrals with respect to some concave distortion of the underlying
probability measure P , and by considering the special distortions proposed by S. S. Wang in [19].
We also show how the coherent entropic risk measure ρc and the corresponding results in [8] fit
into our general framework. As a further example, we introduce a truncated version eγ,c of the
convex entropic risk measure eγ , and we show that the asymptotic behavior of the induced risk
premia is the same as for the coherent entropic risk measure ρc.

In the final Section 5 we discuss an extension of our results beyond the law-invariant case. Here
we limit the discussion to coherent risk measures of the form

ρP,M := sup
P∈P

ρP,M,

where P is some class of reference measures, and where ρP,M is defined via (6) for a given P ∈ P.
These risk measures can be viewed as a robustification of the law-invariant coherent risk measures
in (6). We formulate conditions which guarantee that the corresponding premia converge to the
robustified fair premium

sup
P∈P

EP [−X1],

and that they do so at the rate n−1/2, in analogy to (8); cf. Theorem 5.1.

2 Preliminaries
First we recall some basic definitions and facts from the theory of risk measures, first developed
by Artzner, Delbaen, Eber&Heath [1] and Delbaen [5] in the coherent case and then extended
to the general convex case by Föllmer&Schied [9] and Frittelli &Rosazza Gianin [11]; cf. also
Deprez&Gerber [6] for an earlier development in the context of actuarial premium principles. We
refer to [10] for further details and a more extensive list of references, and also to Song&Yan [17].
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A functional ρ on the space X of bounded measurable functions on some measurable space
(Ω,F) is called a monetary risk measure if it is

i) monotone, i. e., ρ(X) ≤ ρ(Y ) if X ≥ Y ,

and

ii) cash-invariant, i. e., ρ(X +m) = ρ(X)−m for X ∈ X and m ∈ R.

Such a monetary risk measure is called a convex risk measure if it is quasi-convex, i. e., if

ρ(αX + (1− α)Y ) ≤ max{ρ(X), ρ(Y )}

for all positions X,Y ∈ X and α ∈ (0, 1), and in that case ρ is indeed a convex functional on X. A
convex risk measure is called coherent if it is positively homogeneous, i. e.,

ρ(λX) = λρ(X)

for all X ∈ X and λ ≥ 0, and in this case ρ is normalized, i. e., ρ(0) = 0.
Now let P be a probability measure on (Ω,F) such that the probability space (Ω,F , P ) is

atomless. We assume that ρ(X) = ρ(Y ) as soon as X = Y P -a. s.. Then ρ can be viewed as a
functional on L∞(P ).

Definition 2.1. A monetary risk measure ρ on L∞(P ) is called law-invariant if ρ(X) only de-
pends on the distribution of X under P , i. e., if ρ(X) = ρ(Y ) whenever X and Y have the same
distribution under P .

Any law-invariant and normalized convex risk measure ρ satisfies

ρ(X) ≥ EP [−X]; (10)

cf., e. g., [10], Corollary 4.65. In particular, the corresponding premia πn := 1
nρ(Sn) satisfy

πn ≥ EP [−X1].

Moreover, law-invariance of a convex risk measure ρ on L∞(P ) implies continuity from above, as
shown by Jouini, Schachermayer&Touzi [13], and so ρ admits the robust representation

ρ(X) = sup
Q�P

{EQ[−X]− α(Q)} (11)

with some penalty function α on the class of probability measures Q on (Ω,F); cf., e. g., [10],
Theorem 4.33. A remarkable characterization of law-invariant coherent or convex risk measures
in terms of comonotonic subadditivity or convexity and of monotonicity with respect to stochastic
orders is given in Song&Yan [18].

Now consider the special case of Average Value at Risk (AVaR), defined for λ ∈ (0, 1] by

AVaRλ(X) := 1
λ

∫ λ

0

VaRα(X) dα

= 1
λEP [(q(λ)−X)+]− q(λ) (12)

for any λ-quantile q(λ) of X; cf., e. g., [10], Lemma 4.51. This definition can be extended to λ = 0
via

AVaR0(X) := VaR0(X) := lim
λ↓0

VaRλ(X) = ess sup(−X). (13)

AVaR is coherent, and it admits the robust representation

AVaRλ(X) = max
Q∈Qλ

EQ[−X] (14)
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with Qλ := {Q � P |dQdP ≤
1
λ}; cf., e. g., [10], Theorem 4.52. For any Q ∈ Qλ we have H(Q|P ) ≤

− log λ. In view of the definition (1) of the coherent risk measures ρc, the representation (14) thus
implies the estimate

AVaRλ(X) ≤ ρ− log λ(X); (15)

cf. [8], Proposition 3.2.
As mentioned already in the introduction, law-invariance of a convex risk measure ρ implies

that the representation (11) reduces to a representation of ρ in terms of mixtures (5) of Average
Value at Risk. In the coherent case this takes the form (6); in the general convex case it involves
a penalization of the mixing measures as in (9). Since AVaRλ(X) ≥ EP [−X] due to (10) or, more
directly, (14), the representations in (6) and (9) are well defined for any X ∈ L1(P ), and they yield
a natural extension of ρ from L∞(P ) to a law-invariant convex functional ρ : L1(P ) → (−∞,∞];
cf. Filipović&Svindland [7].

In the sequel we will make repeated use of Young’s inequality

EP [|XY |] ≤ 2‖X‖h‖Y ‖h∗ (16)

with respect to the convex functions h and h∗ defined by

h(x) = e|x| − 1 (17)

and

h∗(y) = (|y| log |y| − |y|+ 1)1[1,∞)(y); (18)

cf., e. g., Neveu [16], Appendix A.2. Recall that the Orlicz norm ‖ · ‖h is defined by

‖X‖h := inf{a > 0|EP [h( |X|a )] ≤ 1}.

We denote by Lh(P ) the corresponding Orlicz space of all random variablesX such that ‖X‖h <∞.
The Orlicz norm ‖ · ‖h∗ and the Orlicz space Lh

∗
(P ) are defined in the same way.

Remark 2.1. Clearly, ‖X‖h <∞ iff EP [eα|X|] <∞ for some α > 0, and in that case we have

‖X‖h ≤ 1
α max{ 1

log 2 logEP [eα|X|], 1}. (19)

Moreover,

‖Y ‖h∗ <∞ ⇔ EP [|Y | log |Y |] <∞,

and in this case we have

‖Y ‖h∗ ≤ max{1, EP [|Y | log |Y |]}. (20)

Note also that for an indicator function Y = 1A we get

EP [h∗( 1
a1A)] = h∗( 1

a )P [A],

hence

‖1A‖h∗ = 1

(h∗)−1
“

1
P [A]

” , (21)

where (h∗)−1 denotes the inverse function of h∗.
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3 Asymptotics of convex risk measures for large portfolios:
the law-invariant case

Consider a portfolio of n financial positions whose outcomes are described as random variables
X1, . . . , Xn on our atomless probability space (Ω,F , P ).

Assumption 3.1. We assume that the random variables X1, X2, . . . are independent and identi-
cally distributed under P , and that X1 has exponential moments of any order, i. e.,

EP [eα|X1|] <∞ for any α > 0. (22)

We also assume that the distribution of X1 under P is non-degenerate and denote by σ2
P > 0 the

variance of X1 with respect to P .

Remark 3.1. We restrict the discussion to the classical i. i. d. case, but only for the ease of
exposition. We do need bounded exponential moments. But the proofs remain valid under much
weaker conditions of homogeneity and weak dependence for the underlying sequence X1, X2, . . ., as
long as the standardized sums satisfy the central limit theorem and we retain control over their
exponential moments.

Let ρ be a convex risk measure which is law-invariant and normalized. In view of (10), the
capital requirements ρ(Sn) for the aggregate positions

Sn := X1 + . . .+Xn

are well defined, and the corresponding premia πn = 1
nρ(Sn) are bounded from below by the fair

premium EP [−X1]. Moreover, our Assumption 3.1 together with condition (7) will imply πn <∞,
as shown in Lemma 3.1 below.

Our aim is to clarify the behavior of the premia πn when the portfolio becomes large. We will
proceed in several steps, guided by the representation (9) of the risk measure ρ.

3.1 The building blocks: Average Value at Risk
In a first step, we focus on the coherent risk measures AVaRλ, λ ∈ [0, 1], and on the associated
capital requirements per position, or insurance premia per contract, defined by

πλn := 1
n AVaRλ(Sn).

For λ = 0 we have
AVaR0(Sn) = ess sup(−Sn) = n ess sup(−X1),

hence
π0
n = ess sup(−X1), n ∈ N,

and so the pooling of risks does not reduce the capital requirement per position.
For λ ∈ (0, 1], however, we have

EP [−X1] = 1
nEP [−Sn] ≤ 1

n AVaRλ(Sn) ≤ 1
nρ− log λ(Sn),

due to (14) and (15), and the right-hand side decreases to EP [−X1] as shown in [8], Corollary 4.1.
We are now going to analyze the decay of the “risk premium” πλn − EP [−X1] more precisely.

Proposition 3.1. For any λ ∈ (0, 1], the rate of decay is given by

lim
n↑∞

√
n(πλn − EP [−X1]) =σP AVaRλ(Z) (23)

=σP 1
λϕ(Φ−1(λ)), (24)

where Z is standard normally distributed, and where ϕ and Φ denote the density and the distribution
function of the standard normal distribution.
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Proof. Since AVaRλ is cash-invariant and positively homogeneous, we can write
√
n(πλn − EP [−X1]) = 1√

n
(AVaRλ(Sn)− nEP [−X1])

=σP AVaRλ(S∗n) (25)

in terms of the standardized random variables

S∗n := Sn−nEP [X1]√
nσP

.

We are going to show that
lim
n↑∞

AVaRλ(S∗n) = AVaRλ(Z). (26)

Indeed, the central limit theorem yields weak convergence of the distributions of S∗n to the standard
normal distribution. For any choice of the quantile functions qn of S∗n, this is equivalent to the
pointwise convergence

lim
n↑∞

qn(α) = Φ−1(α), α ∈ (0, 1), (27)

to the quantile function Φ−1 of Z; cf., e. g., [10], Remark A.40. Moreover,

sup
n∈N

∫ 1

0

(qn(α))2 dα = sup
n∈N

EP [(S∗n)2] = 1,

and this ensures uniform integrability of the sequence qn, n ∈ N, with respect to Lebesque measure
on (0, 1). Applying Lebesgue’s convergence theorem, we obtain

lim
n↑∞

∫ λ

0

qn(α) dα =
∫ λ

0

Φ−1(α) dα,

and this translates into (26), since VaRα(Sn) = −qn(α) a. e. on (0, 1) and VaRα(Z) = −Φ−1(α).
Using the substitution x = Φ−1(α) and ϕ′(x) = −xϕ(x), we also see that

AVaRλ(Z) = 1
λ

∫ λ

0

−Φ−1(α) dα = 1
λ

∫ Φ−1(λ)

−∞
−xϕ(x) dx

= 1
λϕ(Φ−1(λ)). (28)

3.2 The comonotonic case
Let us next analyze the case where the coherent risk measure is of the form

ρµ(X) =
∫ 1

0

AVaRλ(X)µ(dλ) (29)

for some probability measure µ on [0, 1]. Such a risk measure ρµ is comonotonic, and any law-
invariant comonotonic risk measure is of this form; cf., e. g., [10], Theorem 4.93. In this case we
have

πµ,n := 1
nρµ(Sn) =

∫ 1

0

πλn µ(dλ), n ∈ N. (30)

If µ[{0}] > 0, then

ρµ(Sn) ≥ µ[{0}]n ess sup(−X1) + (1− µ[{0}])nEP [−X1]
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and
lim
n↑∞

(πµ,n − EP [−X1]) ≥ µ[{0}](ess sup(−X1)− EP [−X1]) > 0,

i. e., the desired convergence of πµ,n to the “fair premium” EP [−X1] does not take place.
From now on we only consider the case where µ is concentrated on (0, 1]. In addition we impose

the integrability condition ∫ 1

0

log
(

1
λ

)
µ(dλ) <∞. (31)

Condition (31) guarantees that ρµ is finite on the Orlicz space Lh(P ), where h is the convex
function defined in (17):

Lemma 3.1. Condition (31) holds if and only if∫
(0,1]

1

λ(h∗)−1
“

1
λ

” µ(dλ) <∞, (32)

where (h∗)−1 denotes the inverse function of h∗ in (18), and∫
(0,1]

1

λ(h∗)−1
“

1
λ

” µ(dλ) ≤
∫

(0,1]

log
(

1
λ

)
µ(dλ) + 1. (33)

In this case ρµ(X) is finite for any X ∈ Lh(P ) and satisfies

|ρµ(X)| ≤ 2‖X‖h
∫

(0,1]

1

λ(h∗)−1
“

1
λ

” µ(dλ). (34)

Proof. 1. For any choice of a quantile function qX for X we have

|ρµ(X)| ≤
∫ 1

0

1
λ

∫ λ

0

|VaRα(X)| dαµ(dλ)

=
∫ 1

0

1
λ

∫ 1

0

|qX(α)|1[0,λ](α) dαµ(dλ).

Young’s inequality (16) applied to the inner integral together with formula (21) yields

|ρµ(X)| ≤
∫ 1

0

1
λ · 2‖qX‖h

1

(h∗)−1
“

1
λ

” µ(dλ)

=2‖X‖h
∫ 1

0

1

λ(h∗)−1
“

1
λ

” µ(dλ),

since the Orlicz norm ‖qX‖h with respect to Lebesgue measure on (0, 1) coincides with the Orlicz
norm ‖X‖h with respect to P .

2. It remains to show the equivalence of conditions (31) and (32). Let us denote by g := (h∗)−1

the inverse function of h∗. Both integrands are bounded on (ε, 1] for any ε > 0. Since

h∗
(

x
log x

)
= x+ 1− x

log x (log log x+ 1) ≤ x

for x ≥ e, we get
g(x)
x ≥

1
log x

for x ≥ e, hence
log
(

1
λ

)
≥ 1

λg
“

1
λ

” (35)
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for λ ≤ e−1. This implies (33), since∫
(0,1]

1

λg
“

1
λ

” µ(dλ) ≤
∫ e−1

0

log
(

1
λ

)
µ(dλ) + e

g(e) ≤
∫ 1

0

log
(

1
λ

)
µ(dλ) + 1.

In particular, (32) follows from (31).
Conversely, for any δ > 0 we have

h∗
(

x
log x

)
≥ x(1− δ),

and hence g(x(1− δ)) ≤ x(log x)−1 for large enough x. This amounts to
1

λg
“

1
λ

” ≥ (1− δ) log
(

1
λ

)
for λ ≤ λ(δ), and so (32) implies (31).

Remark 3.2. Assumption 3.1 ensures that the aggregate positions Sn belong to the Orlicz heart

Mh := {X ∈ Lh(P )|EP [h(α|X|)] <∞ for all α > 0} ⊂ Lh(P )

with respect to the Young function h in (17), and so the capital requirements ρµ(Sn) are well defined
and finite due to (34). For a systematic discussion of risk measures on Orlicz hearts and of their
dual representations we refer to Cheridito&Li [2][3].

Remark 3.3. For a standard normal random variable Z we have

ρµ(Z) =
∫

(0,1]

1
λϕ(Φ−1(λ))µ(dλ),

due to (28). Thus the estimates (33) and (34) show that condition (31) implies∫
(0,1]

1
λϕ(Φ−1(λ))µ(dλ) <∞.

We are now ready to identify the rate of decay of the risk premium πµ,n − EP [−X1].

Theorem 3.1. Under condition (31), the premia πµ,n converge to the fair premium EP [−X1],
and the decay of the risk premium πµ,n − EP [X1] is described by

lim
n↑∞

√
n(πµ,n − EP [−X1]) = σP

∫
(0,1]

1
λϕ(Φ−1(λ))µ(dλ). (36)

Proof. 1. In view of (30) and (25) we have

√
n(πµ,n − EP [−X1]) = σP

∫
(0,1]

AVaRλ(S∗n)µ(dλ). (37)

It is thus enough to show that
∫

(0,1]
AVaRλ(S∗n)µ(dλ) converges to

∫
(0,1]

AVaRλ(Z)µ(dλ), where
Z is standard normally distributed. Denoting by qn any quantile function of S∗n, we obtain the
estimate

|
∫ 1

0

AVaRλ(S∗n)µ(dλ)−
∫ 1

0

AVaRλ(Z)µ(dλ)| ≤
∫ 1

0

|AVaRλ(S∗n)−AVaRλ(Z)|µ(dλ)

=
∫ 1

0

| 1λ
∫ λ

0

−qn(α) + Φ−1(α) dα|µ(dλ)

≤
∫ 1

0

1
λ

∫ 1

0

|qn(α)− Φ−1(α)|1(0,λ](α) dαµ(dλ).
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Applying Young’s inequality (16) to the interior integral, we see that∫ 1

0

|qn(α)− Φ−1(α)|1(0,λ](α) dα ≤2‖qn − Φ−1‖h‖1(0,λ]‖h∗

=2‖qn − Φ−1‖h 1

(h∗)−1
“

1
λ

” ,
where (h∗)−1 denotes the inverse function of h∗. But this translates into the estimate

|
∫ 1

0

AVaRλ(S∗n)µ(dλ)−
∫ 1

0

AVaRλ(Z)µ(dλ)| ≤ 2‖qn − Φ−1‖h
∫

(0,1]

1

λ(h∗)−1
“

1
λ

” µ(dλ). (38)

Step 2 of this proof will show that limn↑∞ ‖qn−Φ−1‖h = 0. Combined with Lemma 3.1, this yields

lim
n↑∞
|
∫ 1

0

AVaRλ(S∗n)µ(dλ)−
∫ 1

0

AVaRλ(Z)µ(dλ)| = 0,

hence

lim
n↑∞

√
n(πµ,n − EP [−X1]) =σP lim

n↑∞

∫
(0,1]

AVaRλ(S∗n)µ(dλ)

=σP
∫

(0,1]

AVaRλ(Z)µ(dλ)

=σP
∫

(0,1]

1
λϕ(Φ−1(λ))µ(dλ).

2. Let us check that limn↑∞ ‖qn − Φ−1‖h = 0. For this purpose, it is enough to show that

lim
n↑∞

∫ 1

0

eβ|qn(α)−Φ−1(α)| dα = 1 (39)

for any β > 0. Indeed, this implies∫ 1

0

(eβ|qn(α)−Φ−1(α)| − 1) dα ≤ 1

for all n ≥ n0(β), hence ‖qn − Φ−1‖h ≤ 1
β for n ≥ n0(β).

To verify (39) for given β > 0, note that fn(α) := eβ|qn(α)−Φ−1(α)| converges to 1 for all
α ∈ (0, 1), due to (27). Step 3 shows that the sequence fn, n ∈ N, also satisfies

sup
n∈N

∫ 1

0

(fn(α))p dα <∞ for p > 1, (40)

and is thus uniformly integrable with respect to Lebesgue measure on (0, 1). Using Lebesgue’s
convergence theorem, we obtain (39).

3. It remains to verify (40). Indeed, applying Hölder’s inequality we get∫ 1

0

(fn(α))p dα ≤
∫ 1

0

epβ|qn(α)|epβ|Φ
−1(α)| dα

≤(
∫ 1

0

e2pβ|qn(α)| dα)
1
2 (
∫ 1

0

e2pβ|Φ−1(α)| dα)
1
2

=(EP [eγ|S
∗
n|])

1
2 (EP [eγ|Z|])

1
2

10



for γ := 2pβ > 0 and for a standard normally distributed random variable Z. In order to verify
that EP [eγ|S

∗
n|] stays bounded for all n ∈ N, we may assume EP [X1] = 0 so that S∗n = 1√

nσP
Sn.

Assumption 3.1 ensures that both EP [eγX1 ] and EP [e−γX1 ] are finite. The function

Z(λ) := logEP [eλX1 ]

is smooth and satisfies
Z(λ) = 1

2λ
2σ2
P + o(λ2).

Thus

logEP [eγS
∗
n ] = logEP [e

γ√
nσP

Sn ] = nZ( γ√
nσP

)

converges to 1
2γ

2 and hence stays bounded. Applying the same argument to −X1 instead of X1,
we see that

EP [eγ|S
∗
n|] ≤ EP [eγS

∗
n ] + EP [e−γS

∗
n ]

is bounded. We have thus shown (40), and this completes the proof.

3.3 The coherent case

We are now going to consider the case of a general law-invariant coherent risk measure. Such a
risk measure is of the form

ρM(X) = sup
µ∈M

∫ 1

0

AVaRλ(X)µ(dλ) (41)

for some subclassM of the classM1((0, 1]) of probability measures on (0, 1]; cf., e. g., [10], Theorem
4.62 and Remark 4.64. In this case the premium πM,n := 1

nρM(Sn) computed in terms of ρM
takes the form

πM,n = sup
µ∈M

πµ,n = sup
µ∈M

∫ 1

0

πλn µ(dλ), n ∈ N.

The following theorem describes the decay of the risk premium πM,n −EP [−X1] for a classM of
mixing measures such that

sup
µ∈M

∫ 1

0

log
(

1
λ

)
µ(dλ) <∞. (42)

Remark 3.4. The estimate (33) implies

sup
µ∈M

∫
(0,1]

1

λ(h∗)−1
“

1
λ

” µ(dλ) ≤ sup
µ∈M

∫ 1

0

log
(

1
λ

)
µ(dλ) + 1.

Thus condition (42) guarantees that the left-hand side is finite, and it follows as in Remark 3.3
that

sup
µ∈M

∫
(0,1]

1
λϕ(Φ−1(λ))µ(dλ) <∞.

Theorem 3.2. Under condition (42) the premia πM,n converge to the fair premium EP [−X1],
and the decay of the risk premia πM,n − EP [−X1] is described by

lim
n↑∞

√
n(πM,n − EP [−X1]) = σP sup

µ∈M

∫
(0,1]

1
λϕ(Φ−1(λ))µ(dλ). (43)
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Proof. Since πM,n = supµ∈M πµ,n, the identity (37) yields

√
n(πM,n − EP [−X1]) = σP sup

µ∈M

∫
(0,1]

AVaRλ(S∗n)µ(dλ),

and so the claim follows if we can prove the uniform convergence

lim
n↑∞

sup
µ∈M

|
∫ 1

0

AVaRλ(S∗n)µ(dλ)−
∫ 1

0

AVaRλ(Z)µ(dλ)| = 0, (44)

where Z is a standard normally distributed random variable. Indeed, the estimate (38) yields

sup
µ∈M

|
∫ 1

0

AVaRλ(S∗n)µ(dλ)−
∫ 1

0

AVaRλ(Z)µ(dλ)| ≤ 2‖qn − Φ−1‖h sup
µ∈M

∫
(0,1]

1

λ(h∗)−1
“

1
λ

” µ(dλ).

By Remark 3.4 the last term is bounded, and

lim
n↑∞
‖qn − Φ−1‖h = 0,

as shown in step 2 in the proof of Theorem 3.1. This implies (44), and in view of AVaRλ(Z) =
1
λϕ(Φ−1(λ)) we have verified (43).

We denote by qµ the function on (0, 1) associated to µ ∈M1((0, 1]) via

qµ(t) :=
∫

(1−t,1]

1
s µ(ds).

Corollary 3.1. For a law-invariant coherent risk measure ρM, defined by (41) for a class M ⊆
M1((0, 1]), the convergence in (43) holds if

sup
µ∈M

∫
(0,1]

qµ(t) log qµ(t) dt <∞. (45)

Proof. We verify that (45) implies condition (42). Indeed, in analogy to the proof of Lemma 4.1
we obtain ∫ 1

0

log
(

1
λ

)
µ(dλ) =

∫ 1

0

log
(

1
t

)
qµ(1− t) dt− 1,

and so condition (42) is equivalent to

sup
µ∈M

∫ 1

0

log
(

1
t

)
qµ(1− t) dt <∞. (46)

Applying Young’s inequality (16) for the uniform distribution on [0, 1] and for the functions h and
h∗ in (17) and (18), we see that

sup
µ∈M

∫ 1

0

log
(

1
t

)
qµ(1− t) dt ≤ 2‖ log

(
1
·
)
‖h sup

µ∈M
‖qµ‖h∗ .

Here ‖ log
(

1
·
)
‖h is finite due to Remark 2.1, since∫ 1

0

e
α log

“
1
t

”
dt =

∫ 1

0

t−α dt <∞

for any α ∈ (0, 1). Finiteness of supµ∈M ‖qµ‖h∗ follows from condition (45) and inequality (20).
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3.4 The convex case
Recall from the Introduction that any law-invariant convex risk measure ρ has the form

ρ(X) = sup
µ∈M1((0,1])

{∫
(0,1]

AVaRλ(X)µ(dλ)− β(µ)

}
, (47)

where the penalty function β onM1((0, 1]) is given by

β(µ) = sup
X∈Aρ

∫
(0,1]

AVaRλ(X)µ(dλ);

cf., e. g., [10], Theorem 4.62. Let us define

Mρ := {µ ∈M1((0, 1])|β(µ) <∞}.

Under the condition
sup
µ∈Mρ

∫
(0,1]

log
(

1
λ

)
µ(dλ) <∞, (48)

the risk measure ρ has a natural extension from L∞(P ) to the Orlicz space Lh(P ), with

|ρ(X)| ≤ 2‖X‖h sup
µ∈Mρ

∫
(0,1]

1

λ(h∗)−1
“

1
λ

” µ(dλ);

cf. Lemma 3.1 and Remark 3.4.
In addition we are going to assume the condition

sup
µ∈Mρ

β(µ) <∞. (49)

This condition is clearly satisfied in the coherent case, since then we have β ≡ 0 on Mρ. In the
convex case it holds if for any acceptable position X ∈ Aρ the Orlicz norm of its negative part
X− := max{−X, 0} does not exceed a given threshold:

Lemma 3.2. Condition (49) is satisfied if, in addition to (48),

sup
X∈Aρ

‖X−‖h <∞ (50)

Proof. We have ∫
(0,1]

AVaRλ(X)µ(dλ) ≤
∫

(0,1]

AVaRλ(−X−)µ(dλ)

≤2‖X−‖h sup
µ∈Mρ

∫
(0,1]

1

λ(h∗)−1
“

1
λ

” µ(dλ)

by (34), and so we get

sup
µ∈Mρ

β(µ) ≤ 2 sup
X∈Aρ

‖X−‖h sup
µ∈Mρ

∫
(0,1]

1

λ(h∗)−1
“

1
λ

” µ(dλ) <∞,

using our assumptions (48) and (50) and Remark 3.4.

Under conditions (48) and (49) we are now going to show that the asymptotics for ρ coincides
with the asymptotics for the coherent risk measure corresponding to the classMρ via (6).
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Theorem 3.3. Consider a convex risk measure ρ of the form (47) which satisfies conditions (48)
and (49). Then the premia πn := 1

nρ(Sn) converge to the fair premium EP [−X1], and

lim
n↑∞

√
n(πn − EP [−X1]) = σP sup

µ∈Mρ

∫
(0,1]

1
λϕ(Φ−1(λ))µ(dλ). (51)

Proof. In order to verify (51), consider the coherent risk measure

ρ̃(X) := sup
µ∈Mρ

∫
(0,1]

AVaRλ(X)µ(dλ) (52)

and denote by π̃n := 1
n ρ̃(Sn), n ∈ N, the corresponding capital requirements per position. Note

that ρ̃ ≥ ρ, hence π̃n ≥ πn. Thus we have
√
n(π̃n − EP [−X1]) ≥

√
n(πn − EP [−X1])

= sup
µ∈Mρ

(
σP

∫
(0,1]

AVaRλ(S∗n)µ(dλ)− β(µ)√
n

)
≥
√
n(π̃n − EP [−X1])− 1√

n
sup
µ∈Mρ

β(µ).

This shows that the asymptotic behavior of the premia πn defined by ρ is the same as for the
premia π̃n defined by the coherent risk measure ρ̃, and so the result follows from Theorem 3.2.

Remark 3.5. As pointed out in the Introduction, the premia πn induced by the convex entropic
risk measure eγ in (3) do not decrease to the fair premium. In fact, eγ does not satisfy conditions
(48) and (49). But it does satisfy condition (50). Indeed, if X is acceptable for eγ , then eγ(X) ≤ 0,
hence EP [e−γX ] ≤ 1 and

EP [eγX
−

] ≤ EP [e−γX ;X < 0] + 1 ≤ 2,

and this implies ‖X−‖h ≤ 1
γ .

4 Examples

4.1 Concave distortions and Wang’s example
Let us now check how condition (31) translates into the alternative characterization of the risk
measures

ρµ(X) =
∫

(0,1]

AVaRλ(X)µ(dλ), µ ∈M1((0, 1]), (53)

in terms of concave distortions. More precisely, let ρ be defined as the Choquet integral

ρ(X) =
∫

(−X) dcψ (54)

=
∫ 0

−∞
(cψ(−X > x)− 1) dx+

∫ ∞
0

cψ(−X > x) dx

with respect to the submodular set function

cψ[A] := ψ(P [A]),

where ψ is an increasing and concave function on [0, 1] with ψ(0) = 0 and ψ(1) = 1, cf. [10],
Section 4.6. A coherent risk measure is of the form (53) with some probability measure µ on (0, 1]
if and only if it is of the form (54), and the corresponding concave distortion ψ is determined by

ψ′+(t) =
∫

(t,1]

s−1 µ(ds), 0 < t < 1; (55)
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cf., e. g., [10], Theorem 4.70 and Corollary 4.77.

Lemma 4.1. The probability measure µ in (53) satisfies our integrability condition (31) if and
only if the corresponding distortion function ψ in (55) satisfies the condition∫ 1

0

log
(

1
t

)
ψ′+(t) dt <∞. (56)

Proof. Since

λ log
(

1
λ

)
=
∫ λ

0

log
(

1
t

)
dt− λ,

the equivalence of the two conditions follows immediately by applying Fubini’s theorem:∫ 1

0

log
(

1
λ

)
µ(dλ) =

∫ 1

0

1
λ

∫ λ

0

log
(

1
t

)
dt µ(dλ)− 1

=
∫ 1

0

log
(

1
t

) ∫ 1

t

1
λ µ(dλ) dt− 1

=
∫ 1

0

log
(

1
t

)
ψ′+(t) dt− 1.

Let us now consider the class of concave distortion functions {ψλ|λ ≥ 0} defined by ψλ(0) = 0
and

ψ′λ(t) := ϕ(Φ−1(t)+λ)
ϕ(Φ−1(t)) ;

cf. Wang [19]. As before we denote by ϕ and Φ the density and the distribution function of the
standard normal distribution.

Proposition 4.1. For any λ ≥ 0, condition (56) is satisfied for the concave distortion functions
ψλ, and so the convergence in (36) holds for the mixing measure µ corresponding to ψλ via (55).

Proof. For λ = 0 we get ψ0(x) = x and µ = δ1, hence

ρ(X) = AVaR1(X) = EP [−X].

In particular, we have ψ′0(0+) = 1, and condition (56) is clearly satisfied.
For λ > 0 we have ψ′λ(0+) =∞. Using the change of variables t = Φ(x) we get∫ 1

0

log
(

1
t

)
ψ′+(t) dt ≤

∫ 1

0

t−
1
2ψ′+(t) dt =

∫ ∞
−∞

Φ(x)−
1
2ϕ(x+ λ) dx,

and applying the standard estimate Φ(x) ≥ (|x|+ 1
|x| )
−1ϕ(x) on (−∞, c] for any c < 0, we see that

the right-hand side is finite.

4.2 Coherent and truncated versions of the entropic risk measure

As we have seen in the Introduction, the capital requirements specified by a convex entropic risk
measure eγ , defined by (3) for γ > 0, do not have the desired behavior as the portfolio becomes
large. We have also seen in (2) that the situation is different for the coherent entropic risk measures
ρc defined by

ρc(X) := sup
Q:H(Q|P )≤c

EQ[−X] (57)
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for c > 0; cf. [8], Corollary 4.1. We are now going to explain how our results in [8] fit into the
framework of Section 3. To this end, we first derive the representation of ρc in terms of mixtures
of AVaR. As before, we denote by qµ the function on (0, 1) associated to µ ∈M1((0, 1]) via

qµ(t) :=
∫

(1−t,1]

1
s µ(ds). (58)

Proposition 4.2. The entropic risk measure ρc satisfies

ρc(X) = sup
µ∈Mc

∫ 1

0

AVaRλ(X)µ(dλ), (59)

where the class of mixing measuresMc is given by

Mc := {µ ∈M1((0, 1])|
∫ 1

0

qµ(t) log qµ(t) dt ≤ c}.

Proof. By [10], Lemma 4.60, we obtain

ρc(X) = sup
Q:H(Q|P )≤c

EP [−XϕQ]

= sup
Q:H(Q|P )≤c

∫ 1

0

q−X(t)qϕQ(t) dt, (60)

where ϕQ is the density of Q with respect to P , and where q−X , qϕQ denote quantile functions of
−X resp. ϕQ under P . As in the proof of Theorem 4.62 in [10] we can write∫ 1

0

q−X(t)qϕQ(t) dt =
∫ 1

0

AVaRλ(X)µ(dλ), (61)

where µ is the probability measure on (0, 1] such that the function qµ in (58) coincides a. e. on
(0, 1) with qϕQ . Moreover, the condition H(Q|P ) ≤ c translates into∫ 1

0

qµ(t) log qµ(t) dt =
∫ 1

0

qϕQ(t) log qϕQ(t) dt = EP [ϕQ logϕQ] = H(Q|P ) ≤ c.

Thus we have µ ∈Mc, and this yields “≤” in equation (59).
Conversely, let µ ∈Mc be given. In that case, the function qµ can be seen as a quantile function

of the density ϕ := qµ(U) of a measure Q ∈M1(P ) satisfying H(Q|P ) ≤ c, where U has a uniform
distribution on (0, 1). In view of (60) and (61) this completes the proof of (59).

Proposition 4.1 in [8] shows that the premia πMc,n computed in terms of the coherent entropic
risk measure ρc satisfy

lim
n↑∞

√
n(πMc,n − EP [−X1]) = σP

√
2c,

using explicit computations for exponential families. The following proposition derives the same
result as a special case of Theorem 3.2, and it gives an alternative description of the factor

√
2c.

Proposition 4.3. The classMc satisfies our integrability condition (42). Thus

lim
n↑∞

√
n(πMc,n − EP [−X1]) = σP sup

µ∈Mc

∫ 1

0

1
λϕ(Φ−1(λ))µ(dλ), (62)

and the right-hand side coincides with σP
√

2c.
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Proof. The proof of Corollary 3.1 shows that Mc satisfies condition (42), and so Theorem 3.2
implies (62). It remains to show that

sup
µ∈Mc

∫ 1

0

1
λϕ(Φ−1(λ))µ(dλ) =

√
2c. (63)

For this purpose, note that∫ 1

0

1
λϕ(Φ−1(λ))µ(dλ) =

∫ 1

0

1
λ

∫ λ

0

Φ−1(1− α) dαµ(dλ)

=
∫ 1

0

Φ−1(1− α)
∫ 1

α

1
λ µ(dλ) dα

=
∫ 1

0

Φ−1(α)qµ(α) dα

=
∫ 1

0

Φ−1(α) ν(dα),

where the first identity follows from (28) combined with −Φ−1(α) = Φ−1(1 − α), and where ν
denotes the probability measure on [0, 1] defined by the Radon-Nikodym density qµ with respect
to the Lebesgue measure on [0, 1], denoted by λ[0,1]. The condition∫ 1

0

qµ(α) log qµ(α) dα ≤ c

translates into the constraint
H(ν|λ[0,1]) ≤ c

for the relative entropy of ν with respect to λ[0,1]. The computation of the left-hand side in (63)
thus amounts to maximizing the expectation of Φ−1 with respect to all ν such that H(ν|λ[0,1]) ≤ c.
This is a standard problem, and the solution ν∗ is given by the Radon-Nikodym density

eβΦ−1
(
∫ 1

0

eβΦ−1(α) dα)−1

with respect to λ[0,1], with β > 0 such that H(ν∗|λ[0,1]) = c; cf., e. g., [8], Proposition 3.1. Thus
we have

sup
µ∈Mc

∫ 1

0

1
λϕ(Φ−1(λ))µ(dλ) =

∫ 1

0

Φ−1(α) ν∗(dα)

=(
∫ 1

0

eβΦ−1(α) dα)−1

∫ 1

0

Φ−1(α)eβΦ−1(α) dα

=(
∫ ∞
−∞

eβxϕ(x) dx)−1

∫ ∞
−∞

xeβxϕ(x) dx

=
∫ ∞
−∞

xeβx−
1
2β

2
ϕ(x) dx

=β, (64)

where we have used the substitution x = Φ−1(α) in the third line. On the other hand,H(ν∗|λ[0,1]) =
1
2β

2, and so the condition H(ν∗|λ[0,1]) = c implies β =
√

2c. In view of (64) we have thus shown
(63).
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As our last example, we consider a truncated version of the convex entropic risk measure eγ
defined in (3).

Definition 4.1. For parameters γ > 0 and c > 0, we define the truncated entropic risk measure
eγ,c by

eγ,c(X) := sup
Q:H(Q|P )≤c

{EQ[−X]− 1
γH(Q|P )}. (65)

Clearly, eγ,c is a convex risk measure such that

eγ,c(X) ≤ min{ρc(X), eγ(X)}.

Consider now a position X with finite exponential moments and variance σ2
P (X) > 0. Let

{QX,β |β ∈ R} be the exponential family defined by −X and P , i. e., QX,β is given by the density

e−βX−Z(β)

with Z(β) := logEP [e−βX ]. If p(X) := P [X = ess inf X] > 0, then we include as limiting case
the measure QX,∞ := limβ↑∞QX,β = P [·|X = ess inf X]. Note that the expectations EQX,β [−X]
only depend on the distribution of X under P . For a ∈ (0,− log p(X)), let β(a) denote the unique
parameter β > 0 such that H(QX,β |P ) = a, and define β(a) :=∞ for a ≥ − log p(X).

Lemma 4.2. For X as above, the supremum in (65) is attained by the measure QX,γ∧β(c). In
particular, the convex risk measure eγ,c is law-invariant.

Proof. 1. Let us first consider the case c < c∗ := − log p(X). For a given value H(Q|P ) = a ≤ c
we then have

a = H(Q|P ) = H(Q|QX,β(a)) + EQ[−β(a)X]− Z(β(a)),

hence
EQ[−X] ≤ 1

β(a) (a+ Z(β(a))) = EQX,β(a) [−X].

The computation of eγ,c(X) is thus reduced to maximizing the function

f(a) := m(β(a))− a
γ

on the interval [0, c]. Here we denote by m(β) the expectation and by σ2(β) the variance of −X
under QX,β . Since m(β) = Z ′(β), m′(β) = σ2(β), and H(QX,β |P ) = βm(β)− Z(β), we get

∂
∂βH(QX,β |P ) = βσ2(β),

hence
1 = ∂

∂aH(QX,β(a)|P ) = β(a)σ2(β(a))β′(a).

This implies
f ′(a) = 1

β(a) −
1
γ .

The maximum of f over [0, c] is therefore attained in a(γ) := H(QX,γ |P ) if γ < β(c), and in c if
γ ≥ β(c). The corresponding maximizing measure Q in (65) is thus given by QX,γ∧β(c).

2. If p(X) > 0, then the limiting measure QX,∞ satisfies H(QX,∞|P ) = c∗ and EQX,∞ [−X] =
ess sup(−X). Note that p(X) > 0 implies ess sup(−X) <∞, since X is integrable. For c ≥ c∗, we
thus obtain

sup
Q:H(Q|P )∈[c∗,c)

{EQ[−X]− 1
γH(Q|P )} = ess sup(−X)− c∗

γ ,

where the maximum is attained for QX,∞. In view of step 1 this implies

eγ,c(X) = max{ sup
a∈[0,c∗)

f(a), ess sup(−X)− c∗

γ }.
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Since lima↑c∗ β(a) =∞, we have

lim
a↑c∗

f(a) = lim
a↑c∗

(
m(β(a))− a

γ

)
= ess sup(−X)− c∗

γ ,

and step 1 shows that the maximum of f over [0, c∗) is attained in a(γ) := H(QX,γ |P ). This
completes the proof.

The asymptotic behavior of the premia

πγ,c,n := 1
neγ,c(Sn)

now follows immediately from Theorem 3.3 and Proposition 4.3:

Corollary 4.1. The premia πγ,c,n induced by the truncated entropic risk measure eγ,c converge to
the fair premium EP [−X1], and

lim
n↑∞

√
n(πγ,c,n − EP [−X1]) = σP

√
2c. (66)

Proof. The assumptions of Theorem 3.3 are clearly satisfied, and the coherent risk measure asso-
ciated to eγ,c via (52) is the coherent entropic risk measure ρc in (1). Thus (66) follows from (51)
and Proposition 4.3.

5 Beyond law-invariance
Let us now consider a situation of model ambiguity where P is replaced by a whole class P of
probability measures on (Ω,F). As in [8] we will assume that all measures P ∈ P are equivalent
to some reference measure R on (Ω,F), and that the family of densities

ΦP := {dPdR |P ∈ P}

is convex and weakly compact in L1(R). Throughout this section, the subscript P indicates the
dependence on a specific measure P ∈ P. In particular, we use the notation

ρP,M(X) := sup
µ∈M

∫
(0,1]

AVaRP,λ(X)µ(dλ)

for a law-invariant coherent risk measure with respect to P ∈ P specified the subset M ⊆
M1((0, 1]). In the face of model ambiguity, we consider the robust version of ρP,M defined by

ρP,M(X) := sup
P∈P

ρP,M(X) = sup
P∈P

sup
µ∈M

∫
(0,1]

AVaRP,λ(X)µ(dλ).

Clearly, ρP,M is again a coherent risk measure. Specific examples are the robust Average Value at
Risk defined by

AVaRP,λ(X) := sup
P∈P

AVaRP,λ(X)

for λ ∈ (0, 1], and the robust extension ρP,c of the coherent entropic risk measure (57) given by

ρP,c(X) := sup
P∈P

ρP,c(X) = sup
Q∈M1:infP∈P H(Q|P )≤c

EQ[−X]

for parameters c > 0; cf. [8], Section 5.
In this section we look at the behavior of the robust premia

πP,M,n := 1
nρP,M(Sn).

For this purpose, we introduce the following assumption:

19



Assumption 5.1. We assume that the random variables X1, X2, . . . are i. i. d. under any P ∈ P,
that the exponential moments of X1 are bounded uniformly in P ∈ P, i. e.,

sup
P∈P

EP [eα|X1|] <∞ for any α > 0, (67)

and that the variances σ2
P of X1 under P satisfy

inf
P∈P

σP > 0. (68)

For the class of mixing measuresM we impose the integrability condition

sup
µ∈M

∫
(0,1]

log
(

1
λ

)
µ(dλ) <∞. (69)

Remark 5.1. Only the distribution of X1 is subject to model ambiguity, since we retain the
structural i. i. d. assumption for any P ∈ P. Here again, the i. i. d. assumption could be replaced
by weaker conditions of homogeneity and weak dependence, as pointed out in Remark 3.1.

The following theorem yields an upper bound for the asymptotics of the robustified risk premia
πP,M,n − supP∈P EP [−X1] as the portfolio becomes large. As to a lower bound, see Remark 5.2
below.

Theorem 5.1. We have
lim
n↑∞

πP,M,n = sup
P∈P

EP [−X1],

and the decay of the risk premia satisfies

lim
n↑∞

√
n(πP,M,n − sup

P∈P
EP [−X1]) ≤ sup

P∈P
σP sup

µ∈M

∫
(0,1]

1
λϕ(Φ−1(λ))µ(dλ). (70)

Proof. 1. In order to verify (70), we use the estimate
√
n(πP,M,n − sup

P∈P
EP [−X1]) ≤ sup

P∈P

√
n( 1

nρP,M(Sn)− EP [−X1])

= sup
P∈P

(
σP sup

µ∈M

∫
(0,1]

AVaRP,λ(S∗P,n)µ(dλ)

)

≤ sup
P∈P

σP · sup
P∈P

sup
µ∈M

∫
(0,1]

AVaRP,λ(S∗P,n)µ(dλ)

in terms of the P -standardized random variables

S∗P,n = Sn−nEP [X1]√
nσP

.

Thus (70) follows if we can prove the uniform convergence

lim
n↑∞

sup
P∈P

sup
µ∈M

|
∫

(0,1]

AVaRP,λ(S∗P,n)µ(dλ)−
∫

(0,1]

AVaRP,λ(ZP )µ(dλ)| = 0, (71)

where ZP is standard normally distributed under P ∈ P. Indeed, denoting by qP,n any quantile
function of S∗P,n with respect to P , the inequality (38) yields

sup
P∈P

sup
µ∈M

|
∫

(0,1]

AVaRP,λ(S∗P,n)µ(dλ)−
∫

(0,1]

AVaRP,λ(ZP )µ(dλ)|

≤2 sup
P∈P
‖qP,n − Φ−1‖h sup

µ∈M

∫
(0,1]

1

λ(h∗)−1
“

1
λ

” µ(dλ).
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By condition (69) and Lemma 3.1 the last term at the right-hand side is finite. In the second step
of this proof we are going to show that

lim
n↑∞

sup
P∈P
‖qP,n − Φ−1‖h = 0. (72)

This implies (71), and we have thus verified the upper bound (70) for the rate of decay.
2. In order to check (72), it suffices to show that

lim
n↑∞

sup
P∈P

∫ 1

0

eβ|qP,n(α)−Φ−1(α)| dα ≤ 1 (73)

for all β > 0, in analogy to the proof of Theorem 3.1. In part 3 we are going to show that for all
ε, δ > 0 there exists n0(ε, δ) such that

sup
P∈P

sup
δ≤α≤1−δ

|qP,n(α)− Φ−1(α)| ≤ ε (74)

for all n ≥ n0(ε, δ). Using (74) for given ε, δ > 0 and applying Cauchy-Schwarz, we obtain the
estimate

sup
P∈P

∫ 1

0

eβ|qP,n(α)−Φ−1(α)| dα ≤eβε + sup
P∈P

∫ 1

0

eβ|qP,n(α)|eβ|Φ
−1(α)|1[0,δ]∪[1−δ,1](α) dα

≤eβε + sup
P∈P

(
∫ 1

0

e2β|qP,n(α)| dα)
1
2 (2

∫ δ

0

e2β|Φ−1(α)| dα)
1
2

≤eβε + (sup
n∈N

sup
P∈P

EP [e2β|S∗P,n|])
1
2 (2

∫ δ

0

e2β|Φ−1(α)| dα)
1
2

for all n ≥ n0(ε, δ). As shown in part 4, the first factor is finite. For any a > 1, we can therefore
choose constants ε, δ > 0 such that the right-hand side is less than a for all n ≥ n0(ε, δ). But this
translates into (73).

3. Under our assumptions (67) and (68) the Berry-Esseen theorem applies and yields uniform
convergence of the distribution functions FP,n of S∗P,n to the standard normal distribution function
Φ. More precisely,

sup
x∈R
|FP,n(x)− Φ(x)| ≤ C√

n
EP [|X1|3]

σ3
P

with some constant C. In view of (67) and (68), the bound

C√
n

sup
P∈P

EP [|X1|3]( inf
P∈P

σ3
P )−1 <∞.

is valid uniformly for all P ∈ P. It is now easy to check that the corresponding quantile functions
qp,n converge to Φ−1 uniformly on each interval [δ, 1− δ] and uniformly in P ∈ P, i. e., we obtain
(74).

4. It remains to show that

sup
n∈N

sup
P∈P

EP [eα|S
∗
P,n|] <∞ for any α > 0.

Indeed, condition (67) ensures that both supP∈P EP [eαX1 ] and supP∈P EP [e−αX1 ] are finite for
any α > 0, and we may assume without loss of generality that EP [X1] = 0 for any P ∈ P. Then
the functions ZP (λ) := logEP [eλX1 ], λ ≥ 0, are smooth and satisfy

ZP (λ) = ZP (0) + Z ′P (0)λ+ 1
2Z
′′
P (λ̃)λ2 = 1

2Z
′′
P (λ̃)λ2
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for some λ̃ ∈ [0, λ]. Since EP [eλ̃X1 ] ≥ eλ̃EP [−X1] = 1, we see that

Z ′′P (λ̃) ≤EP [eλ̃X1X2
1 ](EP [eλ̃X1 ])−1

≤(EP [e2λ̃X1 ])
1
2 (EP [X4

1 ])
1
2

≤ sup
P∈P

(EP [e2λ|X1|]EP [X4
1 ])

1
2 =: c(λ),

and this implies supP∈P ZP (λ) ≤ 1
2λ

2c(λ) for the increasing function c. Thus we have

sup
P∈P

logEP [e
α
Sn√
n ] = n sup

P∈P
ZP ( α√

n
) ≤ 1

2α
2c( α√

n
).

For fixed α > 0, the right-hand side decreases to a finite limit as n tends to ∞, and this yields a
bound which is uniform in n. Applying the same argument also to −X1, we finally obtain that

sup
P∈P

EP [eα|S
∗
n|] ≤ sup

P∈P
EP [e

α( inf
P∈P

σP )−1 Sn√
n ] + sup

P∈P
EP [e

−α( inf
P∈P

σP )−1 Sn√
n ]

remains bounded uniformly in n, and this completes the proof of Theorem 5.1.

Remark 5.2. Suppose that
sup
P∈P

EP [−X1] = EP∗ [−X1] (75)

for some P ∗ ∈ P. Then we have

lim
n↑∞

√
n(πP,M,n − sup

P∈P
EP [−X1]) ≥σP∗ sup

µ∈M

∫
(0,1]

1
λϕ(Φ−1(λ))µ(dλ)

≥ inf
P∈P

σP sup
µ∈M

∫
(0,1]

1
λϕ(Φ−1(λ))µ(dλ).

Indeed, since πP,M,n ≥ 1
nρP∗,M(Sn), we obtain

√
n(πP,M,n − sup

P∈P
EP [−X1]) ≥

√
n( 1

nρP∗,M(Sn)− EP∗ [−X1]),

and so the lower bound for the rate of decay follows immediately from Theorem 3.2. Note that, due
to our compactness assumption on P, condition (75) does hold if X1 is bounded.
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