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Abstract

In this paper we provide the complete solution to the existence and
characterization problem of optimal capital and risk allocations for not
necessarily monotone, law-invariant convex risk measures on the model
space Lp, for any p ∈ [1,∞]. Our main result says that the capital and risk
allocation problem always admits a solution via contracts whose payoffs
are defined as increasing Lipschitz continuous functions of the aggregate
risk.

Key words: exact convolutions, law-invariant risk measures, optimal
capital and risk allocations.

1 Introduction

The problem of optimal capital and risk allocation among economic agents,
or business units, has played a predominant role in the respective academic
and industrial research areas for decades. The introduction of coherent and
convex risk measures by Artzner et al. [3], Föllmer and Schied [19], and Frittelli
and Rosazza-Gianin [20], respectively, has drawn the attention to study this
problem using a new kind of approach (see Barrieu and El Karoui [5], Jouini
et al. [21], Filipović and Kupper [14], Burgert and Rüschendorf [7], Acciaio [1],
Ludkovski and Rüschendorf [24]). For some overview of the vast related finance
literature we refer to Dana and Scarsini [11], Burgert and Rüschendorf [7] and
the references therein.
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In this paper we provide the complete solution to the existence and char-
acterization problem of optimal capital and risk allocations for not necessarily
monotone, law-invariant convex risk measures on the model space Lp, for any
p ∈ [1,∞]. That is, we consider n agents, or business units, with initial endow-
ments X1, . . . , Xn ∈ Lp, who assess the riskiness of their positions by means of
some not necessarily monotone, law-invariant convex risk measures ρi on Lp. In
order to minimize total and individual risk, the agents redistribute the aggre-
gate endowment X = X1 + · · ·+Xn among themselves. An optimal capital and
risk allocation Y1, . . . , Yn satisfies Y1 + · · ·+ Yn = X and

ρ1(Y1) + · · ·+ ρn(Yn) = inf∑n
i=1 Zi=X

(ρ1(Z1) + · · ·+ ρn(Zn)) . (1.1)

As is often the case in practice, this redistribution procedure may be subject to
frictions (e.g. limited fungibility of capital, see [15, 16]) in the sense that not
every allocation of X is admissible. This can be formalized by restricting the
risk measures ρi accordingly, as proposed in [14], see also section 7 below. The
restricted ρi are typically not monotone, even though the original ρi may be so.
But this goes well with our framework, since we do not require monotonicity of
ρi right from the start. Examples for ρi are mean-risk type risk measures, such
as mean-variance, which obviously are convex law- and cash-invariant, but not
monotone on Lp.

Our main result says that there always exists a solution to (1.1) in Lp of the
form Yi = fi(X), for some increasing Lipschitz continuous functions fi : R→ R
with

∑n
i=1 fi = IdR. In other words, the capital and risk allocation problem (1.1)

always admits a solution via contracts whose payoffs are defined as (increasing
Lipschitz continuous) functions of the aggregate risk X. This extremely useful
fact is often assumed in economic contract theory. We now set this prevalent
economic assumption on a sound mathematical basis.

As regards the uniqueness of the optimal allocation, one has always the
freedom to rebalance the cash (section 3). We will show that some kind of
strict convexity of ρ1 is a sufficient condition for uniqueness of the optimal
allocation up to rebalancing the cash. However, we also provide an example
which illustrates that this condition is not necessary.

The existence proof is constructive. Following along the lines of Landsberger
and Meilijson [25], we approximate the optimal allocation by simple random
variables. At each level of approximation, the respective approximate solution is
comonotone and optimal with respect to the approximate aggregate endowment.
This allows, in principle, to compute the approximate optimal capital and risk
allocation at any given level of accuracy. A useful fact, that will be explored
elsewhere.

The article of Jouini et al. [21] has been most influential for this paper.
Indeed, Jouini et al. [21] provide existence of optimal allocations for monotone
law-invariant convex risk measures ρi on L∞. Our motivation was to understand
and extend their results beyond L∞, which from an applied perspective is a
very limited model space (e.g. L∞ does not contain normal distributed random
variables). Moreover, in view of the predominant use of mean-variance risk
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preferences in the literature and also the framework in [14], it was necessary to
abandon the monotonicity assumption. Acciaio [1] provides further examples of
this kind.

The remainder of the paper is as follows. In section 2, we state our main
existence result (theorem 2.5) and illustrate it with various examples. In sec-
tion 3, we elaborate on the uniqueness of optimal allocations. In section 4, we
reduce the n-agent problem on Lp to the case n = 2 and p = 1. Section 5
contains the core of the proof of theorem 2.5. This is a result of Landsberger
and Meilijson [25], which however they only proved for simple random variables.
We thus provide a full and comprehensive proof. In section 6, we accomplish
the proof of theorem 2.5. Section 7 discusses the above mentioned optimal al-
location problem under constraints. Sections A and B contain lemmas that are
needed for the proof of our main results.

2 Existence of Optimal Allocations

Throughout this paper (Ω,F ,P) denotes an atom-less standard probability
space. All equalities and inequalities between random variables are understood
in the P-almost sure (a.s.) sense. If not specified otherwise, in the sequel, we
let p ∈ [1,∞], and write Lp = Lp(Ω,F ,P) and ‖ · ‖p = ‖ · ‖Lp . The topological
dual space of Lp is denoted by (Lp)∗. It is well known that (Lp)∗ = Lq with
q = p

p−1 for p <∞, and that (L∞)∗ ⊃ L1 can be identified with ba, the space of

all bounded finitely additive signed measures on (Ω,F) which vanish on P-null
sets. With some facilitating abuse of notation, we shall write (X,Z) 7→ E[XZ]
for the dual pairing on (Lp, (Lp)∗) also for the case p =∞.

We suppose the reader is familiar with standard terminology and basic du-
ality theory for convex functions as outlined in [26] or [13]. We call a function
F : Lp → [−∞,∞]

(i) convex if F (λX+(1−λ)Y ) ≤ λF (X)+(1−λ)F (Y ) for all λ ∈ [0, 1] (here
∞−∞ :=∞),

(ii) proper if F > −∞ and the (effective) domain dom F := {F <∞} 6= ∅,

(iii) cash-invariant if F (0) ∈ R and F (X +m) = F (X)−m for all m ∈ R,

(iv) monotone if X ≥ Y implies F (X) ≤ F (Y ),

(v) positively homogeneous if F (tX) = tF (X) for all t ≥ 0,

(vi) law-invariant if F (X) = F (Y ) for all identically distributed X ∼ Y .

The conjugate function

F ∗(Z) = sup
X∈Lp

(E[ZX]− F (X))
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of F is lower semi-continuous (l.s.c.) and convex on (Lp)∗. The Fenchel–Moreau
theorem (proposition 4.1 in [13]) states that F ∗∗ = F if F is l.s.c. proper convex.
The indicator function of a set C is defined as

δ(X | C) :=

{
0, X ∈ C
+∞, X /∈ C.

Definition 2.1. A convex risk measure on Lp is a monotone convex cash-
invariant function Lp → (−∞,∞]. A coherent risk measure is a convex risk
measure which in addition is positively homogeneous.

Convex risk measures on Lp and more general model spaces have been stud-
ied, among others, in [6, 8, 18, 23]. Let ρ : Lp → (−∞,∞] be a convex cash-
invariant function. The set of all acceptable positions with respect to ρ is
Aρ := {X ∈ Lp | ρ(X) ≤ 0}. Note that, by cash-invariance, ρ is l.s.c. if and
only if its acceptance set Aρ is closed.

Prominent examples of convex risk measures on Lp are

(i) Average Value at Risk at level α ∈ [0, 1], defined as

AVaRα(X) :=

{
− 1
α

∫ α
0
qX(s) ds, α > 0,

−essinf(X), α = 0
(2.2)

where qX denotes the left-continuous quantile function of X, in particular,
AVaR1(X) = E[−X],

(ii) the entropic risk measure with parameter β > 0, defined as

Entrβ(X) =
1

β
logE[e−βX ]. (2.3)

It is well known, and can be found in e.g. [18], that AVaRα is continuous on Lp

for α > 0, and −essinf and Entrβ are l.s.c. on Lp and continuous on L∞.
We now formalize the above capital and risk allocation problem. Let n ≥ 2

and F1, . . . , Fn : Lp → (−∞,∞] some proper convex functions. Their (infimal)
convolution at X ∈ Lp is defined as

2ni=1Fi(X) = F12 . . .2Fn(X) := inf
X1, . . . , Xn ∈ Lp∑n

i=1Xi = X

n∑
i=1

Fi(Xi).

The following properties are well known (see e.g. [26]).

Lemma 2.2. (i) 2ni=1Fi : Lp → [−∞,∞] is a convex function,

(ii) dom 2ni=1Fi =
∑n
i=1 dom Fi,

(iii) (2ni=1Fi)
∗ =

∑n
i=1 F

∗
i ,
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(iv) dom (2ni=1Fi)
∗ =

⋂n
i=1 dom F ∗i .

Definition 2.3. Let X ∈ Lp. An n-tuple (X1, X2, . . . , Xn) ∈ Lp× . . .×Lp such
that

∑n
i=1Xi = X is called an allocation of X. The convolution 2ni=1Fi is said

to be exact at X if there exists an allocation (X1, X2, . . . , Xn) of X such that
2ni=1Fi(X) =

∑n
i=1 Fi(Xi). Such a minimizing allocation is called an optimal

allocation of X. The convolution is said to be exact if it is exact at every point
X ∈ Lp.

Hence, the capital and risk allocation problem outlined in section 1 is equiv-
alent to finding an optimal allocation for the convolution 2ni=1ρi of n convex
cash-invariant functions ρi.

Definition 2.4. An allocation (X1, . . . , Xn) of X ∈ Lp is called comonotone if
there exist increasing functions f1, . . . , fn : R→ R such that

∑n
i=1 fi = IdR and

Xi = fi(X) for all i. These functions fi are obviously 1-Lipschitz-continuous.

The following existence theorem is the main result of this paper. The proof
is given in section 6.

Theorem 2.5. Let ρ1, . . . , ρn : Lp → (−∞,∞] be l.s.c. law-invariant convex
cash-invariant functions. Then 2ni=1ρi is a l.s.c. law-invariant convex cash-
invariant function on Lp. Moreover, for every X ∈ Lp there exists a comonotone
allocation (X1, . . . , Xn) such that

2ni=1ρi(X) =

n∑
i=1

ρi(Xi) . (2.4)

In other words, 2ni=1ρi is exact, and amongst the optimal allocations of any
X ∈ Lp there is always a comonotone one.

Remark 2.6. The economic message of theorem 2.5 is that the capital and risk
allocation problem (1.1) always admits a solution via contracts whose payoffs
are defined as (increasing Lipschitz continuous) functions fi(X) of the aggregate
risk X. We note that this extremely useful fact is often assumed in economic
contract theory. Theorem 2.5 now sets this prevalent economic assumption on
a sound mathematical basis. ‖

We note that the functions ρi in theorem 2.5 do not have to be monotone.
In case at least one of them is monotone (i.e. a convex risk measure), we may
draw the following stronger conclusion:

Corollary 2.7. Let ρ1, . . . , ρn : Lp → (−∞,∞] be l.s.c. law-invariant convex
cash-invariant functions, of which at least one is a convex risk measure. Then,
2ni=1ρi is a l.s.c. law-invariant convex risk measure on Lp. Moreover, for every
X ∈ Lp there exists a comonotone optimal allocation.

Proof. In view of theorem 2.5 it remains to prove that 2ni=1ρi is monotone. But
this follows immediately from lemma 2.2 and the fact that a l.s.c. proper convex
function F : Lp → (−∞,∞] is monotone if and only if dom F ∗ ⊂ (Lp)∗− (see
e.g. [17] lemma 3.2).
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Next we apply theorem 2.5 to calculate optimal allocations for Average Value
at Risks and entropic risk measures, respectively. These convolutions are dis-
cussed thoroughly in e.g. [4] or [22] on L∞. In contrast, we provide our results
on L1.

Example 2.8. The Average Value at Risk (2.2) can be represented as

AVaRα(X) = sup

{
EQ[−X] | Q� P ,

dQ
dP
≤ 1

α

}
. (2.5)

This representation is well known for X ∈ L∞ (see e.g. [19]) and is extended to
L1 in [18]. Now let 0 ≤ β ≤ γ ≤ 1, then

AVaRβ 2AVaRγ = AVaRγ . (2.6)

This is easily verified employing theorem 2.5, lemma 2.2, the Fenchel–Moreau
theorem and the fact that dom AVaR∗γ ⊂ dom AVaR∗β , implied by (2.5). ‖

Example 2.9. The entropic risk measure (2.3) can be represented as

Entrβ(X) = sup
Q∈M(P)

EQ[−X]− 1

β
H(Q | P)

where H(Q | P) = EQ[log dQ
dP ] denotes the relative entropy and M(P) is the set

of all probability measures Q on (Ω,F) such that Q� P and dQ/dP is bounded.
This representation is well known for X ∈ L∞ (see e.g. [19]) and is extended to
L1 in [18]. Now let 0 < β ≤ γ. Theorem 2.5 and lemma 2.2 justify the following
dual approach, for any X ∈ L1:

Entrβ 2Entrγ(X) = sup
Q∈M(P)

EQ[−X]− 1

β
H(Q | P)− 1

γ
H(Q | P)

= sup
Q∈M(P)

EQ[−X]− β + γ

βγ
H(Q | P)

= Entr βγ
β+γ

(X) .

Now, in the search for comonotone optimal allocations, the following ansatz
seems natural. We guess that for any X ∈ L1 there must be an (obviously
comonotone) optimal allocation amongst the allocations of type (aX, bX) where
a ∈ [0, 1] and b := 1− a. If so, then

β + γ

βγ
logE[e−

βγ
β+γX ] =

1

β
logE[e−βaX ] +

1

γ
logE[e−γbX ]

which is equivalent to

logE[e−
βγ
β+γX ] =

γ

β + γ
logE[e−βaX ] +

β

β + γ
logE[e−γbX ] .

Clearly, a = γ
β+γ and b = β

β+γ satisfy this equation. Hence, ( γ
β+γX,

β
β+γX) is a

comonotone optimal allocation of X. ‖
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Remark 2.10. The l.s.c. requirement in theorem 2.5 cannot be dropped, as the
following example shows. Let ρ1(X) = −E[X] + δ(X− | L∞), and ρ2 = AVaRα

on L1, for some α ∈ (0, 1). Clearly, the acceptance set Aρ1 of ρ1 is not closed
and thus ρ1 is not l.s.c. on L1. We claim that

ρ12ρ2 = −E. (2.7)

Indeed, on the one hand, we know that ρ∗1 = δ(· | {−1}) and that ρ∗2(−1) = 0
(see (A.17) below). Hence, (ρ12ρ2)∗ = ρ∗1 + ρ∗2 = δ(· | {−1}) which implies
ρ12ρ2 ≥ −E. On the other hand,

ρ12ρ2(X) = inf
X1+X2=X

E[−X1] + δ(X−1 | L∞) + AVaRα(X2)

≤ inf
K∈N

E[−X1{X>−K}] + AVaRα(X1{X≤−K})

≤ E[−X] + lim
K→∞

AVaRα(X1{X≤−K}) = E[−X]

because AVaRα is continuous and X1{X≤−K} → 0 in L1 for K → ∞. This
proves (2.7).

Now, choose any X ∈ L1 being unbounded from below. Suppose there
is an optimal allocation (X1, X2) of X. Then X1 must be bounded and X2

unbounded from below, respectively. In view of lemma 2.11 below, we thus
have AVaRα(X2) > E[−X2], and hence

ρ12ρ2(X) = ρ1(X1) + ρ2(X2)

= E[−X1] + δ(X−1 | L∞) + AVaRα(X2)

> E[−X1] + E[−X2] = E[−X],

which contradicts (2.7). Hence, there exists no optimal allocation of X. ‖

Lemma 2.11. Let 0 ≤ β < γ ≤ 1. Then

AVaRβ(X) ≥ AVaRγ(X),

and equality holds if and only if X ≥ c a.s. and P[X = c] ≥ γ for some constant
c ∈ R. In particular, AVaRβ(X) = E[−X] if and only if X is constant.

Proof. The case β = 0 is obvious. Suppose β > 0. Since qX is increasing, we
obviously have

(γ − β)

∫ β

0

qX(s) ds ≤ β
∫ γ

β

qX(s) ds,

with equality if and only if qX(s) = qX(γ) for all s ≤ γ. This proves the
claim.

Remark 2.12. Also the law-invariance requirement in theorem 2.5 cannot be
dropped: let Z ≥ 0 non-constant with E[Z] = 1. Then ρ1 = −E and ρ2 =
E[−Z·] are convex risk measures on L∞ and ρ2 is not law-invariant. Thus
theorem 2.5 does not apply. Indeed, the convolution ρ12ρ2 ≡ −∞ is not exact.‖
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3 Uniqueness of Optimal Allocations

Let ρ1, . . . , ρn : Lp → (−∞,∞] be convex cash-invariant functions. Due to
cash-invariance of ρi, uniqueness of an optimal allocation can only hold up to
rebalancing the cash. That is, (X1, . . . , Xn) is an optimal allocation of X if and
only if (X1+c1, . . . , Xn+cn) is so, for all cash positions ci ∈ R with

∑n
i=1 ci = 0.

The following sufficient condition for uniqueness is straightforward.

Proposition 3.1. Suppose ρ1, . . . , ρn−1 are strictly convex in the sense that

ρi(λX + (1− λ)Y ) < λρi(X) + (1− λ)ρi(Y ) for all λ ∈ (0, 1), (3.8)

for all X,Y ∈ dom ρi with X − Y /∈ R. Then any optimal allocation of X ∈ Lp
with 2ni=1ρi(X) <∞ is unique up to rebalancing the cash.

Proof. Let X ∈ Lp with 2ni=1ρi(X) < ∞. We argue by contradiction and
suppose (X1, . . . , Xn) and (Y1, . . . , Yn) are optimal allocations of X with Xj −
Yj /∈ R for some 1 ≤ j ≤ n− 1. Then, for any λ ∈ (0, 1), Zi = λXi + (1− λ)Yi
is an allocation of X with

n∑
i=1

ρi(Zi) < λ

n∑
i=1

ρi(Xi) + (1− λ)

n∑
i=1

ρi(Yi) = 2ni=1ρi(X).

But this contradicts the optimality of Xi, whence the claim.

For instance, the optimal allocation for the entropic risk measure in exam-
ple 2.9 is unique up to rebalancing the cash. More recent examples of strictly
convex risk measures can be found in [10].

Without the strict convexity assumption in proposition 3.1, uniqueness does
not hold in general. A trivial example is

(−E)2(−E) = −E.

In this case, all allocations of any X ∈ L1 are optimal allocations of X.
Moreover, the following example shows that uniqueness may even fail in

the class of comonotone allocations without the strict convexity assumption in
proposition 3.1.

Example 3.2. Let 0 ≤ β ≤ γ < 1. In view of (2.5), there exists some A ∈ F
with P[A] > 0 and some Q � P with dQ/dP ≤ 1/γ ≤ 1/β and Q[A] = 0.
Consequently,

0 = AVaRβ(1A) = AVaRγ(1A) = AVaRβ 2AVaRγ(1A).

Hence, both (1A, 0) and (0, 1A) are comonotone optimal allocations of 1A. ‖
On the other hand, the strict convexity assumption in proposition 3.1 is

not necessary for uniqueness up to rebalancing the cash. This is shown by the
following example.

Example 3.3. Let β ∈ (0, 1) . We know that AVaRβ 2−E = −E (example 2.8).
Suppose (Y,X − Y ) is an optimal allocation of X. This implies AVaRβ(Y ) +
E[−(X − Y )] = E[−X], that is, AVaRβ(Y ) = E[−Y ]. In view of lemma 2.11
we conclude that Y must be constant, i.e. a cash position. ‖
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4 Problem Reduction

First note that it is enough to prove theorem 2.5 for n = 2, the rest follows by
induction. Indeed, if ρ12 · · ·2ρn−1 > −∞ then associativity holds:

2ni=1ρi =
(
2n−1i=1 ρi

)
2ρn.

For the sake of simplicity, we will further restrict our studies to the case
p = 1. By nature of the arguments presented in the proof of theorem 2.5
(section 6), it will become clear that they all literally carry over to Lp, simply
by replacing L1 with Lp and choosing the appropriate dual. However, in what
follows, we give another justification for the retreat to L1 by proving that the
assertions of theorem 2.5 for the Lp-cases can be derived as a corollary from
knowing it for the case of L1. The main ingredient to this is the following
result:

Theorem 4.1. Let ρ : Lp → (−∞,∞] be a l.s.c. law-invariant convex cash-
invariant function. Then, there is a unique l.s.c. law-invariant convex cash-
invariant function ρ̃ : L1 → (−∞,∞] such that ρ = ρ̃|Lp .

Proof. see [18].

Let
A := {(f, g) | f, g : R→ R are increasing , f + g = IdR} .

Clearly, if (f, g) ∈ A, then both f and g are 1-Lipschitz-continuous. Hence,
|f(X)| ≤ |X|+ |f(0)| and |g(X)| ≤ |X|+ |g(0)|, implying that

if X ∈ Lp then (f(X), g(X)) ∈ Lp × Lp. (4.9)

Thus, for any X ∈ Lp the set {(f(X), g(X)) | (f, g) ∈ A} is the set of all
comonotone 2-dimensional allocations of X.

Corollary 4.2. Let ρ1, ρ2 : Lp → (−∞,∞] be two l.s.c. law-invariant convex
cash-invariant functions, and let ρ̃1 and ρ̃2 be the unique l.s.c. law-invariant
convex cash-invariant functions on L1 such that ρi = ρ̃i|Lp , i = 1, 2. Suppose
the assertions of theorem 2.5 hold for ρ̃12ρ̃2. Then ρ12ρ2 = ρ̃12ρ̃2|Lp . In
particular, the assertions of theorem 2.5 are true for ρ12ρ2 too.

Proof. By assumption, for any X ∈ Lp ⊂ L1 there is a comonotone allocation
(f(X), g(X)) such that ρ̃12ρ̃2(X) = ρ̃1(f(X))+ρ̃2(g(X)). Clearly, ρ̃12ρ̃2(X) ≤
ρ12ρ2(X), and since (f(X), g(X)) ∈ Lp × Lp by (4.9), we deduce that

ρ̃12ρ̃2(X) = ρ1(f(X)) + ρ2(g(X)) = ρ12ρ2(X) .

Hence, firstly, ρ12ρ2 is simply the restriction of ρ̃12ρ̃2 to Lp and thus a l.s.c.
(w.r.t. ‖·‖p) law-invariant convex cash-invariant function. (The l.s.c. stems from
the fact that ‖ · ‖p-convergence implies ‖ · ‖1-convergence.) Secondly, ρ12ρ2 is
exact and there is always a comonotone optimal allocation.
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5 Comonotone Concave Order Improvement

We denote by �c the concave order on L1, that is, X �c Y if and only if
E[u(X)] ≥ E[u(Y )] for all concave functions u : R→ R. Clearly, since IdR and
− IdR are concave functions, X �c Y implies E[X] = E[Y ]. Moreover,

X �c Y ⇔ E[X] = E[Y ] and E[(X − c)+] ≤ E[(Y − c)+] ∀ c ∈ R . (5.10)

For a proof of (5.10), we refer to corollary 2.62 in [19].
Proposition 5.1 below will turn out to be the basis of the proof of theorem 2.5.

It is based upon the results of Landsberger and Meilijson [25], and states that
every allocation is dominated in concave order by a comonotone allocation. The
importance of this results becomes clear by (A.14) where we establish that any
l.s.c. law-invariant convex function is monotone w.r.t. the �c-order.

Proposition 5.1. (see proposition 1 in [25]) For any allocation (Y, Z) of X ∈
L1, there is (f, g) ∈ A such that f(X) �c Y and g(X) �c Z.

Unfortunately, Landsberger and Meilijson [25] only proved this result for
random variables X supported by a finite set. For sake of completeness, we
thus give a full proof here.

Proof. We divide the proof into three steps.

Step 1: We start out as in [25] by noticing that Jensen’s inequality implies
that (E[Y | X], E[Z | X]) is an allocation of X which is at least as good as
(Y, Z), meaning that E[Y | X] �c Y and E[Z | X] �c Z. Let h1, h2 : R→ R be
measurable functions such that h1(X) = E[Y | X], h2(X) = E[Z | X]. Clearly,
we may assume that h1 + h2 = IdR. If h1 and h2 are increasing, we are done,
if not, we go on improving this allocation. However, we have now established
that during the remainder of this proof we may restrict ourselves to improve
allocations (Y, Z) of type Y = h1(X) and Z = h2(X) for some measurable
functions h1, h2 : R→ R such that h1 + h2 = IdR.

Step 2: Suppose X is a simple random variable, i.e. X =
∑n
i=1 xi1Ai for

a partition A1, . . . , An of Ω and real numbers xi such that xi 6= xj for i 6= j.
Let yi := h1(xi) and zi := h2(xi). Then h1(X) =

∑n
i=1 yi1Ai and h2(X) =∑n

i=1 zi1Ai . We set x := (x1, . . . , xn), y := (y1, . . . , yn), z := (z1, . . . , zn) and
pk := P(Ak), k = 1, . . . , n. Let π be a permutation of {1, . . . , n} such that
xπ := (xπ(1), . . . , xπ(n)) ∈ D := {x̃ ∈ Rn | x̃1 ≤ x̃2 ≤ . . . ≤ x̃n}. Observe that
(h1(X), h2(X)) is comonotone if and only if yπ, zπ ∈ D. For sake of brevity
we may and will assume w.l.o.g. that x ∈ D already. Supposing that (y, z) is
not comonotone, i.e. y 6∈ D or z 6∈ D or both, the following algorithm by M.
Landsberger and I. Meilijson transfers (y, z) into a comonotone allocation:

Since (y, z) is not comonotone, there must exist an i such that y1 ≤ . . . ≤ yi,
z1 ≤ . . . ≤ zi but either yi+1 < yi or zi+1 < zi. W.l.o.g. let us assume that
zi+1 < zi. Then there is a smallest j such that zi+1 < zj . For k = j, . . . , i we
set

ynewk = yk +
pi+1∑i+1
l=j pl

(zj − zi+1) and znewk = zk −
pi+1∑i+1
l=j pl

(zj − zi+1)
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whereas

ynewi+1 = yi+1 −
∑i
l=j pl∑i+1
l=j pl

(zj − zi+1) and znewi+1 = zi+1 +

∑i
l=j pl∑i+1
l=j pl

(zj − zi+1) .

The other coordinates of y and z are left unchanged. Finally, set y := ynew and
z := znew and repeat the procedure in case the output is not comonotone.

Let (Y new, Znew) := (
∑n
i=1 y

new
i 1Ai ,

∑n
i=1 z

new
i 1Ai). Firstly, (Y new, Znew)

is obviously an allocation of X, secondly, we claim that Y new �c Y and Znew �c
Z, i.e. each cycle of the algorithm improves the allocation, and finally, it is
easily verified that the algorithm returns a comonotone allocation in at most
n(n−1)/2 cycles (observe that znewj = znewi+1 ). In order to show that Y new �c Y
and Znew �c Z, let u : R → R be any concave function. Introducing the
abbreviations

α :=
pi+1∑i+1
l=j pl

∈ (0, 1) and λk :=
zj − zi+1

zk − zi+1
∈ (0, 1]

and recalling that concavity is equivalent to

∀a < b < c :
u(b)− u(a)

b− a
≥ u(c)− u(a)

c− a
≥ u(c)− u(b)

c− b
, (5.11)

we compute:

i+1∑
k=j

u(znewk )pk =

i∑
k=j

u((1− αλk)zk + αλkzi+1)pk + u((1− α)zj + αzi+1)pi+1

≥
i∑

k=j

[(1− αλk)u(zk) + αλku(zi+1)] pk

+ [(1− α)u(zj) + αu(zi+1)] pi+1

=

i+1∑
k=j

u(zk)pk + (1− α)(u(zj)− u(zi+1))pi+1

− α
i∑

k=j

λk(u(zk)− u(zi+1))pk

(5.11)

≥
i+1∑
k=j

u(zk)pk ,

because λk(u(zk) − u(zi+1)) ≤ u(zj) − u(zi+1) by inequality (5.11). A similar
computation for Y new shows that Y new �c Y and Znew �c Z.

Step 3: Let X be any integrable random variable. Recalling the usual
monotone approximation from Lebesgue integration theory, let (Yn)n∈N and
(Zn)n∈N be sequences of simple random variables converging P-a.s. and in L1 to
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Y and Z respectively such that |Yn| ≤ |Y | and |Zn| ≤ |Z| for all n ∈ N. Then
Xn := Yn + Zn converges to X P-a.s. and in L1. By step 2, for each n ∈ N,
there exists a comonotone improvement (fn(Xn), gn(Xn)) of (Yn, Zn). Choose
N ∈ N such that ‖Yn‖1 ≤ ‖Y ‖1 + 1, ‖Zn‖1 ≤ ‖Z‖1 + 1, and ‖Xn‖1 ≤ ‖X‖1 + 1
for all n ≥ N . Since all fn (and gn) are 1-Lipschitz-continuous, we have that
|fn(0)| ≤ |Xn|+ |fn(Xn)|. Taking expectations on both sides yields

|fn(0)| ≤ E[|Xn|] + E[|fn(Xn)|] ≤ E[|Xn|] + E[|Yn|] ,

because fn(Xn) �c Yn and x 7→ −|x| is concave. Hence, if n ≥ N , we get
|fn(0)| ≤ ‖X‖1 + ‖Y ‖1 + 2 =: K1 and similarly |gn(0)| ≤ ‖X‖1 + ‖Z‖1 +
2 =: K2, and thus fn(0), gn(0) ∈ [−K,K] for K := max{K1,K2}. Therefore,
by lemma B.1, there is a subsequence (fnk)k∈N of (fn)n∈N and a 1-Lipschitz-
continuous increasing function f : R→ R such that f(a) = limk→∞ fnk(a), a ∈
R. Now it is easily verified that (gnk)k∈N converges pointwise to the 1-Lipschitz-
continuous increasing function g := IdR−f . Hence, the sequence fnk(Xnk)
converges P-a.s. to f(X), and gnk(Xnk) = Xnk − fnk(Xnk) converges P-a.s.
to g(X). Since |fnk(Xnk)| ≤ |Xnk | + K ≤ |Y | + |Z| + K and |gnk(Xnk)| ≤
|Y |+ |Z|+K for large enough k ∈ N, we can apply the dominated convergence
theorem which yields f(X), g(X) ∈ L1 and ‖f(X)− fnk(Xnk)‖1 → 0, ‖g(X)−
gnk(Xnk)‖1 → 0 for k →∞. Moreover, in view of (5.10), we have that

E[f(X)] = lim
k→∞

E[fnk(Xnk)] = lim
k→∞

E[Ynk ] = E[Y ] ,

and for all c ∈ R:

E[(f(X)− c)+] = lim
k→∞

E[(fnk(Xnk)− c)+]

≤ lim
k→∞

E[(Ynk − c)+] = E[(Y − c)+] ,

and similarly for g. Hence, (f(X), g(X)) is a comonotone allocation of X satis-
fying f(X) �c Y and g(X) �c Z according to (5.10).

6 Proof of Theorem 2.5

In view of section 4 we only have to prove theorem 2.5 for n = 2 and p = 1. To
this end, let ρ1, ρ2 : L1 → (−∞,∞] be l.s.c. law-invariant convex cash-invariant
functions. We divide the proof into four steps.

Step 1: ρ12ρ2 is proper, convex, and cash-invariant.

Proof. It is easily verified that the convolution preserves the convexity of ρ1 and
ρ2. By (A.16) we have that ρi(X) ≥ −E[X] + ρi(0) for all X ∈ L1 and i = 1, 2.
Hence,

ρ12ρ2(X) = inf
X1+X2=X

ρ1(X1) + ρ2(X2)

≥ inf
X1+X2=X

−E[X1]− E[X2] + ρ1(0) + ρ2(0)

= −E[X] + ρ1(0) + ρ2(0) ,
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so ρ12ρ2 is proper and ρ12ρ2(0) = ρ1(0) + ρ2(0) < ∞. Furthermore, for all
r ∈ R we get

ρ12ρ2(X + r) = inf
Y ∈L1

ρ1(X + r − Y ) + ρ(Y ) = ρ12ρ2(X)− r

due to the cash-invariance of ρ1.

Step 2: ρ12ρ2(X) = inf(f,g)∈A ρ1(f(X)) + ρ2(g(X)) , X ∈ L1.

Proof. This is an immediate consequence of proposition 5.1 and (A.14).

Step 3: ρ12ρ2 is exact, and for each X ∈ L1 there exists a comonotone
optimal allocation.

Proof. Suppose X ∈ L1 is such that ρ12ρ2(X) = ∞. Then every allocation
(f(X), g(X)), (f, g) ∈ A, is optimal.

Now let X ∈ dom ρ12ρ2 and choose a sequence (fn, gn) ∈ A, n ∈ N, such
that ρ12ρ2(X) = limn→∞ ρ1(fn(X)) + ρ2(gn(X)). By cash-invariance we may
assume that fn(0) = gn(0) = 0 for all n ∈ N. Hence, by lemma B.1, there is
a subsequence (fnk)k∈N of (fn)n∈N and a 1-Lipschitz-continuous and increasing
function f : R→ R such that f(a) = limk→∞ fnk(a) for all a ∈ R. Clearly, the
sequence fnk(X) converges P-a.s. to f(X) and gnk(X) = X − fnk(X) converges
P-a.s. to g(X) where g := IdR−f is a 1-Lipschitz-continuous increasing function.
Since |fnk(X)| ≤ |X| and |gnk(X)| ≤ |X| for all k ∈ N, we may apply the
dominated convergence theorem which yields f(X), g(X) ∈ L1 and ‖f(X) −
fnk(X)‖1 → 0, ‖g(X)− gnk(X)‖1 → 0 for k → ∞. On the one hand, by l.s.c.,
we have

ρ12ρ2(X) = lim
k→∞

ρ1(fnk(X)) + ρ2(gnk(X))

≥ lim inf
k→∞

ρ1(fnk(X)) + lim inf
k→∞

ρ2(gnk(X))

l.s.c.
≥ ρ1(f(X)) + ρ2(g(X)) .

On the other hand, by very definition of the convolution, we have ρ12ρ2(X) ≤
ρ1(f(X)) + ρ2(g(X)). Consequently, the comonotone allocation (f(X), g(X))
of X is optimal.

Step 4: ρ12ρ2 is l.s.c. and law-invariant.

Proof. We claim that Aρ12ρ2 is closed. To this end, let (Xn)n∈N ⊂ Aρ12ρ2
be a sequence converging to some X in L1. According to step 3 there are
(fn, gn) ∈ A, n ∈ N, such that 0 ≥ ρ12ρ2(Xn) = ρ1(fn(Xn)) + ρ2(gn(Xn)).
By cash-invariance we may assume that fn(0) = gn(0) = 0 for all n ∈ N.
Similar to step 3, employing lemma B.1, we find a subsequence (fnk , gnk)k∈N
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of (fn, gn)n∈N and (f, g) ∈ A such that fnk(Xnk) converges to f(X) in L1 and
gnk(Xnk) converges to g(X) in L1. By l.s.c. of ρ1 and ρ2 we get

ρ12ρ2(X) ≤ ρ1(f(X)) + ρ2(g(X))

≤ lim inf
k→∞

ρ1(fnk(Xnk)) + lim inf
k→∞

ρ2(gnk(Xnk))

≤ lim inf
k→∞

ρ1(fnk(Xnk)) + ρ2(gnk(Xnk)) ≤ 0 ,

and thus X ∈ Aρ12ρ2 . Hence, Aρ12ρ2 is closed, i.e. ρ12ρ2 is l.s.c.. The law-
invariance of ρ12ρ2 follows from lemma 2.2 and the fact that a l.s.c. convex
function on L1 is law-invariant if and only if its dual is (see (A.13)).

7 Optimal Risk Sharing under Constraints

This application is motivated and explained in [14]. Two agents with initial
endowments X1 and X2 in Lp, assess their individual risk by means of l.s.c.
law-invariant convex risk measures ρ1 and ρ2 on Lp, respectively. In order to
minimize total and individual risk, they redistribute the aggregate endowment
X = X1 + X2 amongst themselves. As is often the case in practice, this redis-
tribution procedure might be subject to some restrictions in the sense that not
every risk sharing of X is admissible. We formalize this by defining the set of
admissible risk sharings of X as

AX := {(Y1, Y2) ∈M1 ×M2 | Y1 + Y2 ≤ X}

where Mi ⊂ Lp are closed convex law-invariant cash-invariant (that is, Y ∈Mi

implies Y + a ∈ Mi for all a ∈ R) sets such that Xi ∈ Mi, i = 1, 2. Note that
we allow for “free disposal”, i.e. X − Y1 − Y2 ≥ 0 for all (Y1, Y2) ∈ AX . The
optimal risk sharing under constraints problem becomes

inf
(Y1,Y2)∈AX

ρ1(Y1) + ρ2(Y2). (7.12)

In order to solve (7.12), denote ρMi
i := ρi + δ(· |Mi), i = 1, 2. Then

(7.12) = inf
Y1,Y2∈Lp , Y1+Y2≤X

ρM1
1 (Y1) + ρM2

2 (Y2)

= ρM1
1 2ρM2

2 2δ(· | Lp+)(X)

= ρM1
1 2ρM2

2 2− essinf(X) .

Note that δ(· | Mi) is proper, l.s.c., law-invariant, and convex. By (A.15) we
know that δ(E[Y ] | Mi) ≤ δ(Y | Mi) for all Y ∈ Lp. Hence Y ∈ Mi implies
E[Y ] ∈Mi, and thus R ⊂Mi by cash-invariance. We conclude that ρM1

1 and ρM2
2

are l.s.c. law-invariant convex cash-invariant functions. Since −essinf is a l.s.c.
law-invariant coherent risk measure, we know by corollary 2.7 that ρM1

1 2ρM2
2 2−

essinf is a l.s.c. law-invariant convex risk measure, and that this convolution
admits a comonotone optimal allocation (Y1, Y2, Y3) ofX. If ρM1

1 (Y1)+ρM1
2 (Y2)−
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essinf(Y3) =∞, then any admissible risk sharing of X is optimal. Otherwise, if
ρM1
1 (Y1) + ρM1

2 (Y2)− essinf(Y3) <∞, then we have that −essinf(Y3) <∞, and
thus (Y1 + essinf(Y3), Y2) is a solution of the optimization problem (7.12). We
thus have established a substantial improvement of corollary 3.8 in [14]. Note
also that (Y1 + essinf(Y3), Y2) = (f(X), g(X)) for some increasing functions
f, g : R→ R.

A Law-invariant Convex Functions on Lp

The proof of theorem 2.5 draws heavily on the following properties, which are
proved [18]. Let F : Lp → (−∞,∞] be a proper l.s.c. convex function, then the
following conditions are equivalent:

F is law-invariant⇔ F ∗ is law-invariant (A.13)

⇔ X �c Y implies F (X) ≤ F (Y ). (A.14)

Consequently, by Jensen’s inequality, if F is law-invariant, then

F (E[X | G]) ≤ F (X) for all sub-σ-algebras G ⊂ F . (A.15)

Now let ρ : Lp → (−∞,∞] be a l.s.c. law-invariant convex cash-invariant
function. Then cash-invariance and (A.15) imply that

ρ(X) ≥ −E[X] + ρ(0) . (A.16)

Clearly,
ρ∗(−1) = sup

X∈Lp
E[−X]− ρ(X) ≥ −ρ(0) .

However, if ρ∗(−1) > −ρ(0), there must be some Y ∈ Lp such that E[−Y ] −
ρ(Y ) > −ρ(0). But this contradicts (A.16). We thus have shown

ρ∗(−1) = −ρ(0) . (A.17)

B An Arzela-Ascoli Type Argument

The following lemma is needed for the proofs in sections 5 and 6.

Lemma B.1. Let fn : R → R, n ∈ N, be a sequence of increasing 1-Lipschitz-
continuous functions such that fn(0) ∈ [−K,K] for all n ∈ N where K ≥ 0 is
a constant. Then there is a subsequence (fnk)k∈N of (fn)n∈N and an increasing
1-Lipschitz-continuous function f : R→ R such that limk→∞ fnk(x) = f(x) for
all x ∈ R.

Proof. The Lipschitz-continuity guarantees that fn(x) ∈ [−K,K + x] if x ≥ 0
and fn(x) ∈ [−K + x,K] if x ≤ 0. Hence, by a procedure well-known from
the standard proof of the Arzela-Ascoli theorem, we are able to extract a sub-
sequence (fnk)k∈N of (fn)n∈N such that limk→∞ fnk(q) exists for all q ∈ Q. In
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fact, we can easily show that the sequences (fnk(x))k∈N must converge for all
x ∈ R. To this end, let ε > 0 be arbitrary and choose q ∈ Q and N0 ∈ N such
that |q − x| < ε/3 and |fnk(q) − fnl(q)| < ε/3 for all k, l ≥ N0. Then for all
k, l ≥ N0:

|fnk(x)− fnl(x)| ≤ |fnk(x)− fnk(q)|+ |fnk(q)− fnl(q)|+
+|fnl(q)− fnl(x)|

≤ 2|x− q|+ |fnk(q)− fnl(q)| < ε ,

in which we did apply the Lipschitz-continuity twice. Now it is easily veri-
fied that f(x) := limk→∞ fnk(x), x ∈ R, is a 1-Lipschitz-continuous increasing
function.
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[19] Föllmer, H. and Schied, A. (2002), Stochastic Finance, An Introduction in
Discrete Time, de Gruyter Studies in Mathematics 27.

[20] Fritelli, M. and Rosazza Gianin, E. (2005), Law-invariant Convex Risk
Measures, Advances in Mathematical Economics, 7, 33–46.

[21] Jouini, E., Schachermayer, W. and Touzi, N. (2005), Optimal Risk Shar-
ing for Law-Invariant Monetary Utility Functions, Mathematical Finance,
forthcoming.

[22] Jouini, E., Schachermayer, W. and Touzi, N. (2006), Law-Invariant Risk
Measures have the Fatou Property, Advances in Mathematical Economics,
Vol. 9, 49–71.
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