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Abstract

We study, for functions and sets, the relation between law invariance, preserving the
convex or uniform order, and dilatation monotonicity based on duality arguments.

Keywords: law invariance, convex order, uniform order, second order stochastic domi-
nance, dilatation monotonicity
MSC 2010 Classifications: 46N10, 46N30, 91G99.

1 Introduction

The purpose of this note is to exploit a characterization, given in Theorem 2.1, of law invariant
convex functions in terms of preservation of the convex order, dilatation monotonicity, and
preservation of the uniform preference order. It combines and extends results from Cherny
and Grigoriev [2] and Dana [3]. Based on this result we will study law invariant and order
monotone sets and functions on Lp := Lp(Ω,F ,P), p ∈ [1,∞], where the underlying probability
space (Ω,F ,P) is assumed to be standard and have no atoms. Our main result is an extension
of an important result by Cherny and Grigoriev in [2] which states that dilatation monotone,
norm continuous, real-valued functions on L∞ are automatically law invariant. We show
that for a lower semicontinuous function on Lp dilatation monotonicity is equivalent to order
monotonicity with respect to the convex order (Theorem 2.7). Both conditions imply law
invariance of that function. Typical examples of the class of functions we study are law
invariant risk measures and law invariant robust utilities. The latter class are also referred to
as probabilistic sophisticated variational preferences in the decision sciences. Along the path
we also give alternative proofs of results by Ryff [6], Dana [3], and Ekeland and Schachermayer
[5] on the convex and uniform order; see Theorem 2.3.

2 Main results

In the following we will write X
d
= Y to indicate that the random variables X and Y on the

standard atomless probability space (Ω,F ,P) are equally distributed under P, i.e. law(X) =
law(Y ), where law(X) denotes the distribution of a random variable X under P:

law(X)(A) = P(X ∈ A) for all A ∈ B(R).
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Throughout this paper all equalities and inequalities between random variables are understood
in the P-almost sure (a.s.) sense. The convex (partial-) order � defined on L1 (and thus on
Lp ⊂ L1) is given by

(X � Y ) ⇔ (E[c(X)] ≥ E[c(Y )] for every convex function c : R→ R).

Another important (partial-) order on L1 is the uniform preference order �uni which is given
by

(X �uni Y ) ⇔ (E[u(X)] ≥ E[u(Y )] for every increasing concave function u : R→ R).

This ordering is also called second order stochastic dominance and plays an important role
in economics because X �uni Y means that every expected utility agent prefers the random
position X to Y . Thus the preference of X to Y is uniform in the market. In order to be more
consistent with the convex order we will however use

(X �dc Y ) ⇔ (E[c(X)] ≥ E[c(Y )] for all decreasing convex functions c : R→ R)

instead of �uni. Clearly

(2.1) (X � Y ) ⇒ (X �dc Y ) ⇔ (X �uni Y ).

For a set C ⊂ Lp the (convex analytic) indicator function δ(· | C) is defined by

δ(X | C) =

{
0 if X ∈ C
∞ otherwise

.

We call a function f : Lp → [−∞,∞] lower semicontinuous (lsc) if its level sets Ek := {X ∈ Lp |
f(X) ≤ k}, k ∈ R, are all closed in the norm topology induced by the p-norm ‖·‖p = E[| · |p]1/p
on Lp. This is equivalent to f(X) ≤ lim infn→∞ f(Xn) whenever the sequence (Xn)n∈N ⊂ Lp

converges to X in (Lp, ‖·‖p). A main ingredient to our studies is the following characterization
of law invariance. It basically combines results from [2] and [3].

Theorem 2.1. Let f : Lp → (−∞,∞] be a convex, lsc function where p ∈ [1,∞]. Then the
following are equivalent:

(i) f is law invariant, i.e. f(X) = f(Y ) whenever X
d
= Y .

(ii) f is �-monotone, i.e. X � Y implies f(X) ≥ f(Y ).

(iii) f is dilatation monotone, i.e. f(E[X | G]) ≤ f(X) for all X ∈ Lp and all sub-σ-algebras
G ⊂ F .

If f is in addition antitone with respect to the P-a.s. order, i.e. X ≥ Y implies that f(X) ≤
f(Y ), then either of the conditions (i), (ii) or (iii) above is equivalent to

(iv) f is �dc-monotone, i.e. X �dc Y implies f(X) ≥ f(Y ).

Proof of Theorem 2.1. The relations (i) ⇔ (ii) and, in case f is antitone with respect to the
P-a.s. order, (i) ⇔ (iv) are proved in [3, Theorem 4.1].

(ii) ⇒ (iii): follows from Jensen’s inequality.
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(iii) ⇒ (i): First, it follows from results in [2] that f |L∞ is law invariant. Indeed Cherny and

Grigoriev show in [2] that for every X,Y ∈ L∞ with X
d
= Y and ε > 0 there exists a finite

sequence (Gk)Kk=1 of sub-σ-algebras of F such that

‖X − E[. . . E[E[Y | G1] | G2] . . . | GK ]‖∞ < ε.

Therefore, we may choose a sequence (Gnk )
K(n)
k=1 of such finite sequences of sub-σ-algebras such

that the sequence
Yn := E[. . . E[Y | Gn1 ] . . . | GnK(n)], n ∈ N,

converges to X. As ‖ · ‖∞-convergence implies ‖ · ‖p-convergence, f |L∞ is lsc on (L∞, ‖ · ‖∞)
and by dilatation monotonicity we obtain

f(X) ≤ lim inf
n→∞

f(Yn) ≤ f(Y ).

Interchanging the role of X and Y in the argument above also yields f(Y ) ≤ f(X), so f(X) =

f(Y ). Finally, if p < ∞, let X,Y ∈ Lp with X
d
= Y . Consider the partition An

i := (i/n, (i +
1)/n], i = −n2, . . . , n2 − 1, and An

n2 := (n,∞), An
−n2−1 := (−∞,−n] of R and let Bi := {X ∈

Ai} and Ci := {Y ∈ Ai}. Also let An := σ(Bi | i = −n2 − 1, . . . , n2) and Gn := σ(Ci | i =

−n2 − 1, . . . , n2). Then for each n ∈ N we have E[X | An]
d
= E[Y | Gn] and the sequences of

bounded random variables E[X | An] and E[Y | Gn] converge in Lp to X and Y respectively.
By lsc and dilatation monotonicity of f we obtain:

f(X) ≤ lim inf
n→∞

f(E[X | An]) ≤ f(X),

so
f(X) = lim

n→∞
f(E[X | An])

and similarly
f(Y ) = lim

n→∞
f(E[Y | Gn]).

Moreover, the already proved law invariance of f on L∞ finally yields

f(X) = lim
n→∞

f(E[X | An]) = lim
n→∞

f(E[Y | Gn]) = f(Y ).

Note that the proof of Theorem 2.1, in particular the part where we refer to [3], relies on
a frictionless probability space in the sense that it be atomless.

Remark 2.2. Indeed, (iii) ⇒ (i) in the proof of Theorem 2.1 shows that a lsc dilatation
monotone function f : Lp → (−∞,∞] is law invariant, i.e. in this direction we may drop the
convexity assumption. However, the converse is not true as δ(· | {Y | law(Y ) = µ}) for a
non-degenerate probability distribution µ with finite p-th moment is a lsc ({Y | law(Y ) = µ}
is closed) and law invariant function on Lp which is not dilatation monotone (and neither
�-monotone). 3

For a probability distribution µ on R with finite first moment let

M(µ) = {X ∈ L1 | law(X) = µ} and C(µ) = {X ∈ L1 | law(X) � µ}.
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The fact that the convex order � is indeed an order on the probability distributions of random
variables clarifies the definition of C(µ). Ryff [6] and later also Ekeland and Schachermayer
[5, Theorem 16] show that C(µ) = coM(µ) where coM(µ) denotes the closed convex hull of
M(µ) and the closure is taken with respect to the 1-norm ‖ · ‖1 in L1. Moreover, Dana shows
in [3, Lemma 2.3] that D(µ) = C(µ) + L1

+ where

D(µ) := {X ∈ L1 | law(X) �dc µ}.

Based on Theorem 2.1 we are able to give easy alternative proofs of these results and add yet
some other characterizations. To this end let

E(Y ) := {E[. . . E[Y | G1] . . . | GK ] | Gk, k = 1, . . . ,K, are sub-σ-algebras of F , K ∈ N}

be the smallest dilatation monotone set containing Y ∈ L1. Note that the closures in the
following theorem are in (L1, ‖ · ‖1).

Theorem 2.3. (i) C(µ) = coM(µ) = co E(Y ) for every random variable Y such that
law(Y ) = µ.

(ii) D(µ) = C(µ) + L1
+ = co(M(µ) + L1

+) = co(E(Y ) + L1
+) for every random variable Y

such that law(Y ) = µ.

Proof. (i): First equality: It is readily verified that C(µ) is closed and convex in L1. As
M(µ) ⊂ C(µ) we must therefore have coM(µ) ⊂ C(µ). The converse inclusion can be derived
by realizing that the indicator function δ(· | coM(µ)) is convex, lsc, and law invariant. The law
invariance of the set coM(µ) follows from Lemma 2.4 below. Thus Theorem 2.1 implies that
δ(· | coM(µ)) is �-monotone. Hence, δ(X | coM(µ)) ≤ δ(Y | coM(µ)) = 0 whenever X � Y
and Y has the distribution µ. This in turn means that X ∈ coM(µ) and so C(µ) ⊂ coM(µ)
follows.

Second equality: On the one hand, clearly E(Y ) ⊂ C(µ), so co E(Y ) ⊂ C(µ). On the other
hand, δ(· | co E(Y )) is a lsc convex and dilatation monotone function. Hence it is law invariant
and preserving the convex order according to Theorem 2.1. Thus the same argument as in the
proof of C(µ) ⊂ coM(µ) yields C(µ) ⊂ co E(Y ).

(ii): First we show

(2.2) co(M(µ) + L1
+) = C(µ) + L1

+.

The inclusion C(µ) + L1
+ ⊂ co(M(µ) + L1

+) is clear from (i). For the converse inclusion note
that C(µ) = coM(µ) is weakly compact (i.e. compact in the σ(L1, L∞) topology). Indeed, for
every X ∈M(µ) and m ≥ 0 we have that

E[|X|1{|X|≥m}] =

∫
|x|1{|x|≥m}dµ(x)

which does not depend on X and thus shows that M(µ) is uniformly integrable. Hence,
M(µ) is relatively weakly compact by the Dunford-Pettis theorem ([4], Theorem IV.8.9), and
so is its convex hull according to the Krein-Smulian theorem ([1], Theorem 10.15). Since
any convex subset of a Banach space (in this case (L1, ‖ · ‖1)) is weakly closed if and only
if it is norm closed, C(µ) = coM(µ) is weakly compact. In this respect we also recall the
Eberlein-Smulian theorem ([1], Theorem 10.13) which states that for a subset of a Banach
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space weakly sequentially compactness is equivalent to relative weak compactness. Now we
show that C(µ)+L1

+ is closed: Let (Xn)n∈N ⊂ C(µ)+L1
+ be a sequence which converges to X

in (L1, ‖ · ‖1). Then for every n we find Yn and Pn such that Xn = Yn +Pn and Yn ∈ C(µ) and
Pn ∈ L1

+. As C(µ) is weakly sequentially compact in (L1, σ(L1, L∞)) there is a subsequence of
(Yn)n∈N which we without loss of generality also denote by (Yn)n∈N which converges weakly to
some Y ∈ C(µ). Hence Pn = Xn−Yn converges weakly to some P ∈ L1 such that X = Y +P ,
and as in particular 0 ≤ E[Pn1{P<0}] → E[P1{P<0}] we infer that P ≥ 0. Hence, C(µ) + L1

+

is closed. Since C(µ) + L1
+ is also convex and M(µ) ⊂ C(µ) we verify (2.2). In the same way

we deduce that co(E(Y )+L1
+) = C(µ)+L1

+ which proves the third equality. Since M(µ)+L1
+

is a law invariant set, applying Lemma 2.4 below and (2.2), we see that co(M(µ) + L1
+) is a

convex closed law invariant set with the property that X ∈ co(M(µ)+L1
+) and Y ≥ X implies

Y ∈ co(M(µ) + L1
+). Consequently δ(· | co(M(µ) + L1

+)) is convex, lsc, law invariant, and
antitione with respect to the P-a.s. order. By Theorem 2.1 we deduce that δ(· | co(M(µ)+L1

+))
is �dc-monotone. This implies D(µ) ⊂ co(M(µ) + L1

+). Now as D(µ) is easily verified to be
convex and closed and as M(µ)+L1

+ ⊂ D(µ), we also have the opposite inclusion which finally
yields D(µ) = co(M(µ) + L1

+).

Lemma 2.4. Let C ⊂ Lp, p ∈ [1,∞], be a law invariant set, i.e. X ∈ C and law(Y ) = law(X)
implies Y ∈ C. Then:

(i) The closure C of C in (Lp, ‖ · ‖p) is law invariant.

(ii) The closed convex hull coC of C in (Lp, ‖ · ‖p) is law invariant.

Proof. (i): The first assertion follows in the same way as the second step in the proof of (ii),
so we omit it.
(ii): Suppose that X

d
=
∑n

i=1 αiYi for some Yi ∈ C. Consider the partition Ak :=
(

k
2m ,

k+1
2m

]
,

k ∈ Z, of R and let Bk := {X ∈ Ak} and Ck := {
∑n

i=1 αiYi ∈ Ak}. Since the probability
space is standard and since P(Bk) = P(Ck) there is a measure preserving transformation
π : Ω → Ω such that π(Bk) = Ck and π(Ck) = Bk for all k. Let Ỹi := Yi ◦ π for i = 1, . . . , n.
Then the random vectors (Ỹ1, . . . , Ỹn) and (Y1, . . . , Yn) are identically distributed. Hence,

Xk :=
∑n

i=1 αiỸi
d
=
∑n

i=1 αiYi and also Xk ∈ coC because Ỹi
d
= Yi. Moreover, we have that

‖X −Xk‖∞ ≤ 1
2m . By letting m→∞ we infer that X ∈ coC.

If X
d
= Y = limn→∞ Yn for a sequence (Yn)n∈N ∈ coC, then, as above (case n = 1), there is for

any ε > 0 a measure preserving transformation π : Ω→ Ω such that ‖X − Y ◦ π‖∞ ≤ ε/2. As
Y ◦ π = limn→∞ Yn ◦ π, we may find an m ∈ N such that ‖X − Ym ◦ π‖p ≤ ε where Ym ∈ coC
according to the first step.

If µ has finite p-th moment for p ∈ [1,∞), then M(µ) ⊂ Lp and also C(µ) ⊂ Lp as x 7→ |x|p
is convex. Since ν � µ implies that the support of ν is contained in the closed convex hull
of the support of µ (otherwise convex functions which take positive values outside the closed
convex hull of the support of µ and 0 else would yield a contradiction) we observe that if µ
has a compact support, then C(µ) ⊂ L∞. Moreover, as Theorem 2.1 and Lemma 2.4 hold for
any p ∈ [1,∞], we infer by the same arguments as in the the proof of Theorem 2.3 (i) that if
there is Y ∈ Lp with distribution µ, then the closed convex hull of M(µ) or E(Y ) in (Lp, ‖ · ‖p)
coincides with the closed convex hull of M(µ) or E(Y ) in (L1, ‖ · ‖1), respectively, namely with
C(µ). Hence, the deduction of the following corollary is straightforward:

Corollary 2.5. Let Y ∈ Lp, p ∈ [1,∞], have distribution µ. Then
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(i) C(µ) = coM(µ) = co E(Y ) where the closures are taken in (Lp, ‖ · ‖p).

(ii) D(µ)∩Lp = C(µ) +Lp
+ = co(M(µ) +Lp

+) = co(E(Y ) +Lp
+) where the closures are taken

in (Lp, ‖ · ‖p).

As an immediate consequence of Corollary 2.5 we obtain that X �dc Y (i.e. X �uni Y ) if
and only if there exists Ỹ ∈ L1 and P ∈ L1

+ such that X � Ỹ and Y = Ỹ + P . If X ∈ Lp,

p ∈ [1,∞], then Ỹ in Lp and if also Y ∈ Lp, then also P ∈ Lp
+. This in turn implies the

well-known relation that X � Y if and only if X �dc Y and E[X] = E[Y ]. The ’only if’ part
is clear by (2.1) and since x 7→ x and x 7→ −x are convex functions. In order to show the ’if’
part decompose Y = Ỹ + P as above. As E[X] = E[Y ] and thus E[Y ] = E[Ỹ ], we conclude
that P = 0, so Y = Ỹ .

Let A be a sub-σ-algebra of F . We write

MA(µ) = {Y ∈M(µ) | Y is A-measurable} and CA(µ) = {Y ∈ C(µ) | Y is A-measurable}.

Lemma 2.6. Suppose there is X ∈ Lp, p ∈ [1,∞], with distribution µ. Let A and G be
independent sub-σ-algebras of F such that both (Ω,A,P) and (Ω,G,P) are non-atomic. Then

CA(µ) = {E[Y | A] | Y ∈M(µ)]}

where the closure is taken in (Lp, ‖ · ‖p).

Proof. According to Corollary 2.5 we know that CA(µ) = coMA(µ). Let Y1, . . . Yn ∈ MA(µ)
and αi > 0, i = 1, . . . , n, such that

∑
i αi = 1. Choose disjoint sets Ai ∈ G with P(Ai) = αi

and
⋃
Ai = Ω. Then ∑

i

αiYi = E[
∑
i

Yi1Ai | A]

because A and G are independent. Moreover, law(
∑

i Yi1Ai) = µ. Therefore, it follows that

coMA(µ) ⊂ {E[Y | A] | Y ∈M(µ)} and so CA(µ) ⊂ {E[Y | A] | Y ∈M(µ)}.

Conversely, we have that {E[Y | A] | Y ∈ M(µ)]} ⊂ CA(µ) since E[Y | A] is A-measurable
and law(E[Y | A]) � µ. Thus the assertion follows.

Based on Lemma 2.6 the following theorem now establishes the connection between di-
latation monotonicity and �- or �dc-monotonicity without any convexity assumption on the
underlying function.

Theorem 2.7. Let f : Lp → (−∞,∞], p ∈ [1,∞], be a lsc function. Then the following are
equivalent:

(i) f is �-monotone.

(ii) f is dilatation monotone.

Also the following are equivalent:

(iii) f is antitone with respect to the P-a.s. order and �-monotone.

(iv) f is antitone with respect to the P-a.s. order and dilatation monotone.
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(v) f is �dc-monotone.

If any of the conditions (i) – (v) is satisfied, then f is law invariant.

Proof. (i) ⇔ (ii): (i) ⇒ (ii) is obvious, so we only have to prove that dilatation monotonic-
ity implies that f preserves �. To this end let Y � X and choose A and G as in Lemma 2.6

and let X̃ be a A-measurable random variable such that X̃
d
= X. Then X̃ ∈ CA(law(Y ))

and Lemma 2.6 implies that there is (a probably trivial) sequence of conditional expectations
E[Yn | A] converging to X̃ such that Yn ∈ M(law(Y )) for all n. Hence, by law invariance
(Remark 2.2), lsc, and dilatation monotonicity of f we conclude that

f(X) = f(X̃) ≤ lim inf
n→∞

f(E[Yn | A]) ≤ lim inf
n→∞

f(Yn) = f(Y ).

(iii) ⇔ (iv) ⇔ (v): (iii) ⇔ (iv) follows from (i) ⇔ (ii), and (v) ⇒ (iii) from the fact
that both X ≤ Y or X � Y imply X �dc Y . Finally, in order to show that (iii) ⇒ (v) let
X �dc Y . As above we decompose Y = Ỹ + P where Ỹ � X and P ∈ Lp

+ (Corollary 2.5).
Then

f(Y ) = f(Ỹ + P ) ≤ f(Ỹ ) ≤ f(X).

Example 2.8. Let µ and ν be two distributions such that neither µ � ν nor ν � µ. Then
δ(· | C(µ)∪C(ν)) is a lsc., law invariant, and dilatation monotone function which is of course
also �-monotone, but which is not convex since C(µ) ∪ C(ν) is not convex. 3

Example 2.9. For a non-degenerate random variable Y ∈ Lp, the function δ(· | E(Y )) is
dilatation monotone, but not law invariant, and thus not preserving the convex order. The
point is that E(Y ) is not closed. 3

Since for every closed set A ⊂ Lp the indicator function δ(· | A) is lsc, we arrive at the
following version of Theorem 2.7 for sets.

Corollary 2.10. Let A ⊂ Lp, p ∈ [1,∞], be a closed set. Then the following are equivalent:

(i) For all Y ∈ A we have that C(law(Y )) ⊂ A.

(ii) For all Y ∈ A and any sub-σ-algebra G ⊂ F we have that E[Y | G] ∈ A.

Also the following are equivalent:

(iii) Property (i) holds and A+ Lp
+ = A.

(iv) Property (ii) holds and A+ Lp
+ = A.

(v) For all Y ∈ A we have that (D(law(Y )) ∩ Lp) ⊂ A.

If any of the conditions (i) – (v) is satisfied, then A is law invariant.
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