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Abstract

We show constructively that every quasi-convex uniformly contin-
uous function f : C → R+ has positive infimum, where C is a convex
compact subset of Rn. This implies a constructive separation theorem
for convex sets.

1 Introduction and main results

A well-known reformulation of Brouwer’s fan theorem for detachable bars
states that every uniformly continuous function f : [0, 1] → R+ has positive
infimum, i.e. inf f > 0, see [1, 7]. Here R+ = {x ∈ R | x > 0} . It is also
well-known that Brouwer’s fan theorem does not hold in constructive math-
ematics in the tradition of Errett Bishop [6]. In this paper we prove within
Bishop’s constructive mathematics [3, 4] that under the additional assump-
tion of quasi-convexity of f we have inf f > 0. More generally, this holds for
arbitrary convex domains. Note that a function f : C → R, where C is a
convex subset of Rn, is called quasi-convex if

f(λx+ (1− λ)y) ≤ max{f(x), f(y)}

for all λ ∈ [0, 1] and x, y ∈ C. Hence, in particular, any convex function
f : C→ R, i.e.

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all λ ∈ [0, 1] and x, y ∈ C, is quasi-convex. Our main result is:

Theorem 1. Fix a convex and compact subset C of Rn and suppose that
f : C→ R+ is uniformly continuous and quasi-convex. Then inf f > 0.
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We will prove Theorem 1 in Section 2. In [2, Proposition 1] we showed that
any uniformly continuous convex function

f : Xn =

{
(x1, . . . , xn) ∈ R |

n∑
i=1

xi = 1 and xi ≥ 0 for all i

}
→ R+

has positive infimum. The generalization to the class of quasi-convex func-
tions, which is by far richer than the class of convex functions, and in particu-
lar the generalization of the domain Xn to arbitrary convex compact subsets
C of Rn provides interesting new insights. For instance, as a consequence
of Theorem 1 we obtain Theorem 2, a separation result for convex sets in
Rn which is almost as powerful as its classical counterpart. Here classical
mathematics refers to mathematics with the law of excluded middle as an
admitted proof tool and the usual weaker existential quantifier. Before we
formulate Theorem 2, we like to clarify our notation and to recall a few
standard definitions from constructive mathematics.

Set N := {1, 2, 3, . . .}, and for n ∈ N set In := {1, . . . , n}. Moreover, for
x, y ∈ Rn we set

• 〈x, y〉 :=
∑

i∈In xi · yi

• ‖x‖ :=
√
〈x, x〉

• d(x, y) := ‖y − x‖ .

Fix ε > 0 and sets D ⊆ C ⊆ Rn. The set D is an ε-approximation of C if for
every x ∈ C there exists y ∈ D with d(x, y) < ε. The set C is

• inhabited, if it has an element

• totally bounded if for every n there exist elements x1, . . . , xm of C such
that {x1, . . . , xm} is a 1/n-approximation of C

• closed or complete if every Cauchy sequence in C has a limit in C

• compact if it is totally bounded and complete

• convex if λx+ (1− λ)y ∈ C for all x, y ∈ C and λ ∈ [0, 1]

• located if it is inhabited and if for every x ∈ Rn the distance

d(x,C) := inf {d(x, c) | c ∈ C}

exists.
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The following Lemma [5, Corollary 2.2.7] provides an important criterion for
the existence of infima and suprema.

Lemma 1. If C is totally bounded, and f : C→ R is uniformly continuous,
then the infimum of f ,

inf f = inf {f(y) | y ∈ C}

does exist. The same holds for the supremum

sup f = sup {f(y) | y ∈ C} .

Theorem 2. Let C, Y ⊆ Rn such that

1. C is convex and compact;

2. Y is convex, closed, and located;

3. d(c, y) > 0 for all c ∈ C and y ∈ Y .

Then there exist p ∈ Rn and reals α, β such that

〈p, c〉 < α < β < 〈p, y〉

for all c ∈ C and y ∈ Y .

We prove this theorem throughout Section 3.

2 Proof of Theorem 1

We start with some technical lemmas. For a subset C of Rn, i ∈ In, and
t ∈ R set

Ct
i = {x ∈ C | xi = t} .

Lemma 2. Fix a convex subset C of Rn, t ∈ R and i ∈ In. Suppose further
that there are y, z ∈ C with yi < t < zi. Then there exists λ ∈ (0, 1) such
that

λy + (1− λ)z ∈ Ct
i .

Proof. Set λ = zi−t
zi−yi .

We call Ct
i admissible if there exist y, z ∈ C with yi < t < zi.
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Lemma 3. Assume that n > 1. Fix a subset C of Rn and suppose that Ct
i is

convex and compact. Then there exists a convex compact subset Ĉ of Rn−1

and a uniformly continuous bijection

g : Ĉ→ Ct
i

which is affine in the sense that

g(λx+ (1− λ)y) = λg(x) + (1− λ)g(y)

for all λ ∈ [0, 1] and x, y ∈ Ĉ.

Proof. We can assume that i = 1. Set

Ĉ =
{

(x2, . . . , xn) ∈ Rn−1 | (t, x2, . . . , xn) ∈ Ct
1

}
and

g(x2, . . . , xn) = (t, x2, . . . , xn) .

The next lemma is crucial for the proof of Theorem 1, and of interest of its
own. Its proof is based on the fact that if C ⊆ Rn is totally bounded and
f : C→ Rm is uniformly continuous, then

f(C) = {f(c) | c ∈ C}

is also totally bounded, see [4, Chapter 4, Proposition 4.2].

Lemma 4. If C ⊆ Rn is convex and compact and Ct
i is admissible, then Ct

i

is convex and compact.

Proof. Let C ⊆ Rn be convex and compact and let Ct
i be admissible. Without

loss of generality, we may assume that t = 0 and i = 1. There exist y, z ∈
C with y1 < 0 < z1. Let

M = C0
1 , L = {x ∈ C | x1 ≤ 0} , and R = {x ∈ C | x1 ≥ 0} .

We show that the sets L, R andM are convex and compact. It is clear that
these sets are convex and complete. It remains to show that they are totally
bounded. We start with the case of R. Set

κ : R → R, s 7→ max(−s, 0)

and

f : Rn → Rn, x 7→ z1
z1 + κ(x1)

x+
κ(x1)

z1 + κ(x1)
z

and note that
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• f is uniformly continuous

• f maps C onto R.

In order to prove the latter, we proceed step by step and show that

i) f(C) ⊆ C

ii) f(C) ⊆ R

iii) f(C) = R.

The property i) follows from the convexity of C. In order to show ii), fix
x ∈ C. We show that the assumption that the first component of f(x) is
negative is contradictive. So assume that

z1
z1 + κ(x1)

x1 +
κ(x1)

z1 + κ(x1)
z1 < 0.

Then x1 < 0 and therefore κ(x1) = −x1. We obtain

z1 · x1 − x1 · z1 < 0,

a contradiction. The property iii) follows from the fact that f leaves the
elements of R unchanged. So we have shown that R is totally bounded.
Analogously, we can show that L is totally bounded. Next, we show that

M = f(L),

which implies that M is totally bounded as well. To this end, fix x ∈ L.
Then κ(x1) = −x1 and therefore

z1
z1 + κ(x1)

x1 +
κ(x1)

z1 + κ(x1)
z1 = 0,

which implies that f(x) ∈M.

The following Lemma 5 basically already proves Theorem 1.

Lemma 5. Fix a convex compact subset C of Rn and suppose that

f : C→ R+

is convex and uniformly continuous. Assume further that

inf
{
f(x) | x ∈ Ct

i

}
> 0

for every admissible Ct
i. Then inf f > 0.
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Proof. Note that inf f exists by Lemma 1. We define a sequence (xm) in C
and an weakly increasing binary sequence (λm) such that

• λm = 0 ⇒ f(xm) < min {2−m, f(xm−1)}

• λm = 1 ⇒ inf f > 0 and xm = xm−1

for every m ≥ 2. Note that under these conditions the sequence (f(xm)) is
weakly decreasing.

Let x1 be an arbitrary element of C and set λ1 = 0. Assume that xm and λm

have already been defined.

case 1 If 0 < inf f or λm = 1, set xm+1 = xm and λm+1 = 1.

case 2 If
inf f < min

{
2−(m+1), f(xm)

}
,

choose xm+1 in C with

f(xm+1) < min
{

2−(m+1), f(xm)
}

and set λm+1 = 0.

We show that the sequence (xm) converges.

It is sufficient to show that for each component i ∈ In the sequence (xmi )m∈N
is a Cauchy sequence. We consider the case i = 1. Fix ε > 0. Let D be the
image of C under the projection onto the first component, i.e.

D = {pr1(x) | x ∈ C} .

Note that D is a totally bounded interval. Denote its infimum by a and its
supremum by b.

case 1 If b− a < ε, then
∣∣xk1 − xl1∣∣ ≤ ε for all k, l.

case 2 If b − a > 0, there exists a finite ε
2
-approximation F of (a, b). Note

that for every t with a < t < b the set Ct1 is admissible. Hence, we can choose
an l0 such that

f(x) > 2−l0

for all t ∈ F and all x ∈ Ct1. Fix k, l ≥ l0. We show that
∣∣xk1 − xl1∣∣ ≤ ε.

case 2.1 If λl0 = 1, then xk = xl.
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case 2.2 If λl0 = 0, then f(xk) < 2−l0 and f(xl) < 2−l0 . Suppose that
xk1 − xl1 > ε. Then there exists t ∈ F with xk1 < t < xl1. According to
Lemma 2 there is λ ∈ [0, 1] such that λxk + (1 − λ)xl ∈ Ct

1, and by quasi-
convexity of f we obtain

f(λxk + (1− λ)xl) ≤ max{f(xk), f(xl)} < 2−l0

which contradicts the construction of l0. Therefore, xk1−xl1 ≤ ε, and similarly
also xl1 − xk1 ≤ ε.

Let x ∈ C be the limit of the sequence (xm). There exists an l such that

f(x) > 2−l

and a k such that

d(x, y) < 2−k ⇒ |f(x)− f(y)| < 2−(l+1)

for all y ∈ C. Finally, pick N > l such that

d(x, xN) < 2−k.

Then f(xN) ≥ 2−N , therefore λN = 1, therefore inf f > 0.

of Theorem 1. We conduct induction over the dimension n.

If n = 1, then every admissible set Ct
1 equals {t}, so inf f > 0 follows from

Lemma 5.

Now fix n > 1 and assume the assertion of Theorem 1 holds for n − 1.
Furthermore, let C be a convex compact subset of Rn, and suppose that

f : C→ R+

is convex and uniformly continuous. Fix an admissible subset Ct
i of C. By

Lemma 4, Ct
i is convex and compact. Using Lemma 3 construct the convex

compact set Ĉ ⊆ Rn−1 and the uniformly continuous affine bijection

g : Ĉ→ Ct
i.

Then F : Ĉ→ R+ given by F = f ◦ g is quasi-convex and uniformly contin-
uous. The induction hypothesis now implies that

inf
{
f(x) | x ∈ Ci

t

}
= inf

{
F (x) | x ∈ Ĉ

}
> 0 .

Thus, inf f > 0 follows from Lemma 5.
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3 Proof of Theorem 2

We use the following result from [2].

Lemma 6. Let Y be an inhabited convex subset of Rn and x ∈ Rn such that
d = d(x,Y) exists. Then there exists a unique a ∈ Y such that ‖a− x‖ = d.
Furthermore, we have

〈a− x, c− a〉 ≥ 0

and therefore
〈a− x, c− x〉 ≥ d2

for all c ∈ Y.

of Theorem 2. Since

|d(x, Y )− d(y, Y )| ≤ d(x, y)

for all x, y ∈ Rn, the function

f : C→ R, c 7→ d(c, Y )

is uniformly continuous. Since Y is closed, Lemma 6 implies that for every
c ∈ C there is a unique y ∈ Y with

f(c) = d(c, y).

Therefore, f is positive-valued and also convex, as we can see as follows. Fix
c1, c2 ∈ C and λ ∈ [0, 1]. There are y0, y1, y2 ∈ Y such that

f(c1) = d(c1, y1) , f(c2) = d(c2, y2) ,

and
f(λc1 + (1− λ)c2) = d(λc1 + (1− λ)c2, y0) .

We obtain

f(λc1 + (1− λ)c2) = d(λc1 + (1− λ)c2, y0)

≤ d(λc1 + (1− λ)c2, λy1 + (1− λ)y2)

≤ λd(c1, y1) + (1− λ)d(c2, y2)

= λf(c1) + (1− λ)f(c2) .

By Theorem 1, inf f > 0. The set

Z = {y − c | x ∈ C, y ∈ Y }
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is inhabited and convex. Since we have

inf { ‖y − c‖ | x ∈ C, y ∈ Y } = inf f ,

we can conclude that δ = d(0, Z) exists and is positive. By Lemma 6, there
exists p ∈ Rn such that

〈p, y〉 ≥ δ2 + 〈p, c〉

for all y ∈ Y and c ∈ C. Setting η = sup {〈p, c〉 | c ∈ C} (which exists by
Lemma 1),

α =
δ2

3
+ η and β =

δ2

2
+ η ,

we obtain
〈p, c〉 < α < β < 〈p, y〉

for all c ∈ C and y ∈ Y .
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