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Abstract
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under expected utility preferences with an objectively or subjectively given probabilistic
model. Next, we develop a robust approach by explicitly taking uncertainty about the
probabilistic model (ambiguity) into account. The resulting robust certainty equivalents
and risk premia compound risk and ambiguity aversion. We provide explicit results on their
limits and rates of convergence, induced by Pareto optimal risk sharing in expanding pools.
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1 Introduction

Risk sharing constitutes a main principle in economic and mathematical risk theory. It refers
to a subdivision of the aggregate risk in a pool by exchanging and relocating risks among the
cooperative individuals that participate in the pool. Risk sharing provides a means of inducing
risk reduction for the individuals, in a potentially Pareto optimal sense. Since the seminal work
by Borch [8] it has been studied by numerous authors in a wide variety of settings; see e.g.,
Arrow [2], Wilson [67], DuMouchel [21], Gerber [32, 33], Bühlmann and Jewell [9], Landsberger
and Meilijson [49], and, more recently, Carlier and Dana [10], Heath and Ku [43], Barrieu and
El Karoui [3, 4], Dana and Scarsini [16], Jouini, Schachermayer and Touzi [45], Kiesel and
Rüschendorf [46], Ludkovski and Rüschendorf [50], Filipović and Svindland [24], Dana [17],
Ravanelli and Svindland [55], and the references therein.

This paper explores what happens when Pareto optimal risk sharing is combined with an
expanding pool of risks. In an expanding pool of independent and identically distributed (i.i.d.)
risks, the distribution of the aggregate risk spreads, but the average risk obeys the law of large
numbers and converges to its expectation (see e.g., Samuelson [59], Diamond [19] and Ross
[56] for a detailed discussion). We analyze when the individuals’ risk reduction induced by
Pareto optimal risk sharing may be exploited to the full limit: when, upon subdividing and
relocating the aggregate risk according to the Pareto optimal risk sharing rule in an expanding
pool of i.i.d. risks with cooperating individuals that have identical preferences, will risk sharing
eventually lead to annihilating risk beyond its expectation?

We answer this question by analyzing, in a general setting, the asymptotic behavior of the
certainty equivalents and risk premia in an expanding pool of risks under Pareto optimal risk
sharing. Adopting the classical expected utility model of Von Neumann and Morgenstern [65],
Pratt [54] studies the connection between the risk premium, defined as the expected value of a
given risk minus its certainty equivalent (the monetary amount that makes an agent indifferent
to the risk), and the utility function. He shows that greater local risk aversion (risk aversion
in the small) at all wealth levels implies greater global risk aversion (risk aversion in the large)
and vice versa, in the sense that the risk premia vary with the local risk aversion intensity.
Furthermore, Pratt [54] provides an expansion of the risk premium for a small and actuarially
fair risk, given by the local risk aversion times half the variance of the risk. Hence, with
vanishing variance of the average risk in an expanding pool of i.i.d. risks—as implied by the
law of large numbers—, the risk premium associated with the Pareto optimal risk sharing rule
can be seen to vanish, too. We analyze this convergence rigorously and derive results on the
risk premium’s rate of convergence. We first consider the relatively simple case of the expected
utility model, as in Pratt [54] but with refined results, and next turn to more advanced decision
models, for which the problem proves to be much more delicate.

In recent years, the distinction between risk (probabilities given) and ambiguity (probabil-
ities unknown) has received much attention. Under Savage’s [60] subjective expected utility
model this distinction is absent due to the assignment of subjective probabilities. Modeling
approaches that explicitly recognize the fact that a specific probabilistic model may be misspec-
ified are referred to as robust (see e.g., Hansen and Sargent [41, 42]). A popular class of models
for decision under risk and ambiguity is provided by the multiple priors models (Gilboa and
Schmeidler [35]; see also Schmeidler [61, 62]). It occurs as a special case of the rich variational
and homothetic preference models (Maccheroni, Marinacci and Rustichini [51], Cerreia-Vioglio
et al. [12] and Chateauneuf and Faro [13]). These models all reduce to the expected utility
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model of Von Neumann and Morgenstern [65] when ambiguity has resolved in the classical
Anscombe and Aumann [1] setup. A related strand of literature in financial mathematics is
that of convex measures of risk introduced by Föllmer and Schied [25], Frittelli and Rosazza
Gianin [31], and Heath and Ku [43]; see also the early Wald [66], Huber [44], Deprez and
Gerber [18], Ben-Tal and Teboulle [5, 6], and the more recent Carr, Geman and Madan [11],
Ruszczyński and Shapiro [58], Ben-Tal and Teboulle [7] and Goovaerts, Kaas and Laeven [40].
Föllmer and Schied [28, 29] and Laeven and Stadje [47, 48] provide precise connections between
the two strands of the literature. We explore the combination of optimal risk sharing and an
expanding pool of risks in the presence of uncertainty about the true probabilistic model.

More specifically, we start in this paper by considering classical expected utility, so that
the certainty equivalent U of a risk X is given by

U(X) = u−1(E [u(X)]), (1.1)

with u a utility function and E[·] the expectation under an objectively or subjectively given
probabilistic model. We analyze in this setting the precise limiting behavior and convergence
rates of the risk premium associated with the average risk Sn/n, where Sn =

∑n
i=1Xi for i.i.d.

risks Xi, n ∈ N, given by

π(v, Sn/n) = E [v + Sn/n]− U(v + Sn/n), (1.2)

corresponding to proportional (equal, 1/n) risk sharing of the aggregate risk among n coop-
erative individuals with identical utility function u and initial wealth v, which we prove to be
Pareto optimal in this setting under mild conditions.

Next, we explicitly take uncertainty about the probabilistic model into account and adopt
a robust approach. This setting turns out to be intriguingly more delicate. It is best thought
of as featuring probabilistic models that are the Kolmogorov extensions of a family of product
probability measures. We first consider certainty equivalents that are “robustified” over a class
of such probabilistic models P:

UP(X) = inf
Q∈P

UQ(X) + α(Q), (1.3)

with UQ(X) = u−1(EQ [u(X)]) and where α : P → R∪{∞} is a penalty function that measures
the plausibility of the probabilistic model Q ∈ P. We prove that the proportional risk sharing
rule remains Pareto optimal in this setting. Furthermore, we prove that in an expanding pool
of risks the robustified certainty equivalent of the average risk converges to the robustified
expectation, and we provide explicit bounds on the corresponding convergence rates. We find
in particular that the convergence rates are dictated by the individuals’ coefficient of absolute
risk aversion and the robustified first two moments, expectation and variance.

Finally, we naturally extend the risk premium of Pratt [54] to our setting with risk and
ambiguity, by considering

π(v,X) =W(v +X)−WP(v +X) and π(v,X) = U(v +X)− VP(v +X),

in the case of homothetic and variational preferences, respectively, with

W(X) = inf
Q∈P

EQ [X]β(Q) and WP(X) = u−1
(

inf
Q∈P

EQ [u(X)]β(Q)

)
,

3



where β : P → [1,∞] is a penalty function, and

U(X) = inf
Q∈P

EQ [X] + α(Q) and VP(X) = u−1
(

inf
Q∈P

EQ [u(X)] + α(Q)

)
.

The robustified certainty equivalents and risk premia compound risk and ambiguity aversion
(Ghirardato and Marinacci [36]). We prove that under Pareto optimal risk sharing in an
expanding pool of risks the robust risk premium converges to zero in the homothetic case, but,
for non-trivial α, will not vanish in the limit in the variational case, in which case it converges
to U(v +X1)− V(v +X1), with

V(X) = u−1
(

inf
Q∈P

u(EQ [X]) + α(Q)

)
,

and we analyze the corresponding convergence rates.
Our convergence results may be compared to the convergence results obtained by Föllmer

and Knispel [26, 27]. These authors analyze the limiting behavior of the risk capital per
financial position, when computing capital requirements for large and expanding portfolios of
i.i.d. financial positions, in the absence of optimal risk sharing (and in the more restrictive
setting of convex measures of risk rather than the general setting provided by homothetic and
variational preferences, as is considered here). This seemingly related problem requires much
different techniques and leads to completely different results. For example, without optimal
risk sharing, the certainty equivalent per position in an expanding portfolio of n i.i.d. risks
under expected utility with exponential utility (which yields a prototypical example of a convex
measure of risk, up to a sign change) is constant in n. By contrast, with Pareto optimal risk
sharing, the certainty equivalent of the average risk in an expanding pool of n i.i.d. risks under
expected utility with exponential utility (and the same coefficient of absolute risk aversion for
all n individuals) converges to the plain expectation, as n tends to infinity.

The remainder of this paper is organized as follows. In Section 2 we analyze the asymptotic
behavior of the certainty equivalents and risk premia with optimal risk sharing in an expanding
pool under the expected utility model. In Section 3 we study optimal risk sharing under
ambiguity and investigate the asymptotic behavior of the robustified certainty equivalents.
In Section 4 we consider robust risk premia and analyze their limits and convergence rates.
Conclusions are in Section 5.

2 Optimal Risk Sharing: Certainty Equivalents and Risk Pre-
mia

Let u : R→ [−∞,∞) be a utility function.1 Unless explicitly stated otherwise, we assume all
utility functions considered in this paper to be strictly increasing on their domain domu :=
{x ∈ R | u(x) > −∞}, concave and twice continuously differentiable on the interior of their
domain int domu. We denote by u−1 the inverse of u. The inverse is well-defined on the
image Imu ∩ R since u is strictly increasing on domu, and we extend u−1 to Imu by setting
u−1(−∞) := −∞. Moreover, we assume that u−1 is continuously differentiable on int domu−1.

1We allow u to take the value −∞ in order to incorporate utility functions with bounded domains such as
power utilities or logarithmic utilities, etc.
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Let (Ω,F , P ) denote some fixed probability space and E [·] the expectation with respect
to P . Furthermore, let X ∈ L1 := L1(Ω,F , P )2. Consider an agent whose preferences are
described by the expected utility criterion E [u(X)], with a subjective utility function u. The
certainty equivalent corresponding to u is given by

U(X) := u−1(E [u(X)]), X ∈ L1, (2.1)

which takes values in [−∞,∞) (by Jensen’s inequality). Suppose the agent has initial wealth
v ≥ 0 and considers taking an additional risk X. The associated risk premium, π(v,X), is then
obtained as the solution to the equivalent utility equation

u(v + E [X]− π(v,X)) = E [u(v +X)] , i.e., π(v,X) = v + E [X]− U(v +X). (2.2)

The risk premium makes the agent indifferent between taking the risk on the one hand and
earning the expectation of the risk minus the risk premium with certainty on the other.

A special case of interest occurs if we consider exponential utility, u(x) = 1 − exp(−γx),
γ > 0, which exhibits constant absolute risk aversion (CARA), because −u′′(x)/u′(x) = γ.
Then the certainty equivalent is given by

U(X) = −1

γ
log E [exp(−γX)] , (2.3)

with U(X)→ E [X] when γ ↓ 0 and U(X)→ ess inf X when γ ↑ ∞, and which is non-increasing
in γ. It corresponds to minus the entropic measure of risk (Föllmer and Schied [28]), or minus
the exponential premium for the loss −X (Gerber [33], Goovaerts, de Vylder and Haezendonck
[38] and Goovaerts et al. [39]). It is particularly popular in decision theory (see e.g., Gollier
[37]) and financial mathematics (see e.g., Rouge and El Karoui [57], Mania and Schweizer [52]
and the references therein). The corresponding risk premium is given by

π(v,X) = E [X] +
1

γ
log E [exp(−γX)] ,

which is independent of v.
Optimal risk sharing under the expected utility model was studied e.g., by Borch [8], Wilson

[67], DuMouchel [21], Gerber [32, 33], Bühlmann and Jewell [9] and Gerber and Pafumi [34].
We consider a market or pool of n expected utility maximizers with identical utility function
u and with aggregate random endowment W . We are interested in the problem of finding
the “most efficient” subdivision of W among the n agents. We let A(W ) := {(Y1, . . . , Yn) ∈
L1 |

∑
i Yi = W} be the set of all possible (full) allocations of W . The following lemma

and proposition prove Pareto optimality and uniqueness of the proportional (equal, 1/n) risk
sharing rule under mild conditions:

Lemma 2.1 Suppose that all n agents apply the same expected utility criterion E [u(X)],
X ∈ L1, and that the aggregate random endowment W satisfies W/n ∈ int domu P -a.s. and
E [u(W/n)] ∈ R. Then, the allocation which assigns the share W/n of W to each agent is
Pareto optimal. Indeed we have that

nE

[
u

(
W

n

)]
= max

(Y1,...,Yn)∈A(W )

n∑
i=1

E [u(Yi)] . (2.4)

2Throughout the paper, for the sake of brevity, we will stick to the convention of not differentiating between
random variables and the P -almost sure equivalence classes they induce.
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Furthermore, if u is strictly concave on domu, then the allocation (W/n, . . . ,W/n) is the only
solution to (2.4).

Proof. Let (Y1, . . . , Yn) be an allocation of W such that
∑n

i=1 E [u(Yi)] ∈ R (the case in which∑n
i=1 E [u(Yi)] = −∞ can be ignored since the maximum is never attained for such allocations).

Then we must have Yi ∈ domu P -a.s. for all i = 1, . . . , n. Jensen’s inequality now yields:

1

n

n∑
i=1

E [u(Yi)] ≤ E

[
u

(
1

n

n∑
i=1

Yi

)]
= E

[
u

(
W

n

)]
.

The final assertion about uniqueness is a direct consequence of the strict concavity of u. 2

Proposition 2.2 Suppose that all n agents apply the same certainty equivalent criterion U
as in (2.1). Also suppose that the aggregate random endowment W satisfies W/n ∈ int domu
P -a.s. and E [u(W/n)] ∈ R. Then, the allocation which assigns the share W/n of W to each
agent is Pareto optimal from the perspective of the certainty equivalents. Furthermore, if n ≥ 3,
domu = R, and E [u(W )] ∈ R, then

nU

(
W

n

)
= max

(Y1,...,Yn)∈A(W )

n∑
i=1

U(Yi), (2.5)

and any Pareto optimal allocation of W must maximize the right hand side of (2.5). In that
case, if U is strictly concave,

i.e., if P (X 6= Y ) > 0 implies U(λX + (1− λ)Y ) > λU(X) + (1− λ)U(Y ) for all λ ∈ (0, 1),

then W/n is the unique Pareto optimal allocation of W . If U is the certainty equivalent given
by (2.3), then W/n is the unique Pareto optimal allocation of W up to a reallocation of cash,
i.e., all Pareto optimal allocations are elements of {(W/n+m1, . . . ,W/n+mn) |

∑n
i=1mi = 0}.

Proof. The fact that W/n is Pareto optimal from the perspective of the certainty equivalents
follows from Lemma 2.1 and the fact that u−1 is strictly increasing on domu−1 = Imu ∩ R.
Next, for any Pareto optimal allocation (X1, . . . , Xn) there are weights λ1, . . . , λn ≥ 0, not all
equal to 0, such that

n∑
i=1

λiU(Xi) = sup
(Y1,...,Yn)∈A(W )

n∑
i=1

λiU(Yi);

see e.g., Gerber [33]. Suppose that n ≥ 3, domu = R, and E [u(W )] ∈ R. Then, in particular
U(m) = m for all m ∈ R. Suppose furthermore that λ1 > λ2. Then,

n∑
i=1

λiU(Xi) = sup
(Y1,...,Yn)∈A(W )

n∑
i=1

λiU(Yi)

≥ sup
m>0

(λ1 − λ2)m+ λ3U(3W/n) +

n∑
i=4

λiU(W/n),

where we choose the allocation Y1 = m, Y2 = −m, Y3 = 3W/n, and Yi = W/n for all i ≥ 4 in the
last step, and U(3W/n) > −∞ follows from concavity of u and E [u(W )] ∈ R. Letting m→∞
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yields a contradiction. Hence, λ1 = λ2, and similarly it follows that indeed λ1 = λ2 = . . . = λn.
Consequently we may assume that λi = 1 for all i. This proves (2.5). Now suppose that U is
in addition strictly concave, and that there is another Pareto optimal allocation (X1, . . . , Xn)
of W different from (W/n, . . . ,W/n). Then there is at least one j ∈ {1, . . . , n} such that
P (Xi 6= W/n) > 0. By strict concavity of U , we have that

n∑
i=1

U

(
1

2
(Xi +W/n)

)
>

1

2

n∑
i=1

(U(Xi) + U(W/n)) = nU(W/n),

which contradicts (2.5). If U is the certainty equivalent given by (2.3), then U is strictly concave
up to constants in the sense that if X−Y 6∈ R, then U(λX+(1−λ)Y ) > λU(X)+(1−λ)U(Y )
for all λ ∈ (0, 1). This proves the last assertion. 2

In general, U need not be (strictly) concave. For conditions guaranteeing concavity of U ,
we refer to Ben-Tal and Teboulle [5, 7].

In the remainder of this section, we let Xi ∈ L1, i = 1, 2, . . ., be an i.i.d. sequence of risks
and let Sn given by Sn =

∑n
i=1Xi, n ∈ N, be the aggregate risk in a pool. Then, Sn/n→ E [X1]

P -a.s. as n→∞ by the strong law of large numbers. With this benchmark result in mind, and
using Lemma 2.1 and Proposition 2.2, we analyze the behavior of the certainty equivalents and
risk premia, induced by Pareto optimal risk sharing of the aggregate risk among n cooperative
agents with identical expected utility preferences, as the pool expands.

Lemma 2.3 Consider a certainty equivalent U as in (2.1). Then U(Sn/n) ≤ E [X1] and
U(Sn/n) is increasing in n. Thus π(v, Snn ) is decreasing in n.

Proof. It follows from Jensen’s inequality that always U(Sn/n) ≤ E [X1]. Next we show that
U(Sn/n) is increasing in n. Indeed, we may rewrite

Sn+1 =
1

n

n+1∑
i=1

Sin, where Sin :=
n+1∑

j=1, j 6=i
Xj ,

and thus by concavity of u,

E

[
u

(
Sn+1

n+ 1

)]
= E

[
u

(
1

n+ 1

n+1∑
i=1

Sin
n

)]
≥ 1

n+ 1

n+1∑
i=1

E

[
u

(
Sin
n

)]
= E

[
u

(
Sn
n

)]
, (2.6)

because Sin and Sn are identically distributed under P . Hence, U(Sn/n) ≤ U(Sn+1/(n + 1))
since u−1 is increasing. The final statement follows from applying the first statement of the
lemma to the i.i.d. sequence v+Xi, and recalling the definition of the risk premium in (2.2).2

Lemma 2.3 shows that optimally pooling and relocating the aggregate risk reduces the risk
premium. Moreover, the following result shows that typically U(Sn/n) → E [X1] as n → ∞,
i.e., the risk premium π(v, Snn ) vanishes (converges to 0) in the limit:

Proposition 2.4 Suppose that X1 ∈ L2, X1 ∈ int domu P -a.s., E [u(X1)] ∈ R, and that
u′(Sn/n) is bounded from above by some square integrable random variable independent of n.
Then,

lim sup
n→∞

√
nπ

(
v,
Sn
n

)
= lim sup

n→∞

√
n

(
v + E [X1]− U

(
v +

Sn
n

))
≤ σP (X1), (2.7)
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where σP (X1) :=
√

E [(X1 − E [X1])2] denotes the standard deviation of X1. In particular,
(2.7) holds already in case u is only once continuously differentiable (instead of twice).

However, under some additional assumptions we can say even more about the rate of
convergence:

Theorem 2.5 Suppose that X1 ∈ L4, X1 ∈ int domu P -a.s., E [u(X1)] ∈ R, and that u′′ is
bounded from below on the range of v +X1. Then,

lim
n→∞

nπ

(
v,
Sn
n

)
= lim

n→∞
n

(
v + E [X1]− U

(
v +

Sn
n

))
=

1

2
R(v + E [X1])σ

2
P (X1), (2.8)

where R(x) := −u′′(x)/u′(x) is the Arrow-Pratt coefficient of absolute risk aversion.

Note that the bound on the right hand side of (2.7) does not depend on the utility function
u, contrary to the far right hand side of (2.8). Also, note that if, for instance, X1 with
ess inf X1 ∈ int domu is bounded, then, because u′′ is continuous, it is always bounded on the
compact set {v} + [ess inf X1, ess supX1], so that the requirement on u′′ in Theorem 2.5 is
satisfied. The proof of Proposition 2.4 and Theorem 2.5 is provided in Appendix A.1.

Examples 2.6 Consider the exponential utility u(x) = 1 − e−γx for some γ > 0. Then (2.8)
becomes

lim
n→∞

nπ

(
v,
Sn
n

)
=

1

2
γσ2P (X1).

For power utility u(x) = x1−χ−1
1−χ , x > 0, where χ > 0, χ 6= 1, (and u(x) = −∞, x ≤ 0), (2.8)

becomes

lim
n→∞

nπ

(
v,
Sn
n

)
=

χ

2(v + E [X1])
σ2P (X1).

In case of the logarithmic utility u(x) = log x, x > 0, (and u(x) = −∞, x ≤ 0), (2.8) becomes

lim
n→∞

nπ

(
v,
Sn
n

)
=

1

2(v + E [X1])
σ2P (X1).

Remark 2.7 Suppose that the i.i.d. assumption on the sequence of random variables (imposed
just above Lemma 2.3) is not satisfied. For instance, let X be a standard normal random
variable and consider the sequence Xi = (−1)iX, i ∈ N. Then all Xi are identically distributed
but apparently not independent. Clearly, Sn =

∑n
i=1Xi = −X whenever n is odd and Sn = 0

otherwise. Hence, Sn/n → 0 = E [X1] for n → ∞. Take u(x) = 1 − e−γx. Then for odd n
we compute nU(Sn/n) = −γ/(2n) whereas for even n we have nU(Sn/n) = 0. Thus, the left
hand side of (2.8) for this case equals limn→∞−nU(Sn/n) = 0. However, the right hand side
of (2.8) would be γ/2; see Examples 2.6. Hence, requiring independence of the sequence Xi is
crucial in Theorem 2.5. (This counterexample also generalizes to the robust case considered in
the next section.)

Example 2.8 (Optimal risk sharing for entropic measures of risk.) Consider optimal risk
sharing among n agents that apply the same certainty equivalent criterion U with exponential
utility and aggregate risk Sn. Then,

ρP,γ(X) := −U(X) =
1

γ
log E

[
e−γX

]
,
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is the so-called entropic risk measure. According to Proposition 2.2, the optimal relocation, Y ∗i ,
is given by Y ∗i = Sn/n, i = 1, . . . , n. It follows that, after optimal exchange and relocation of
risks, the cooperating pool of agents, all using the same entropic measure of risk, can also be
seen to use the entropic measure of risk at the aggregate level, with parameter γn := γ/n, in
the sense that

nρP,γ(Y ∗i ) = n(1/γ) log E [exp(−γY ∗i )] = n(1/γ) log E [exp(−γ(1/n)Sn)]

= (1/γn) log E [exp(−γnSn)] = ρP,γn(Sn).

Hence, Proposition 2.4 implies that under Pareto optimal risk sharing, and thus different from
Föllmer and Knispel [26, 27], the pooling, exchange and relocation of risks has the effect that
the gross entropic risk measure per position decreases to minus the expectation, as follows:

lim
n→∞

1

n
ρP,γn(Sn) = lim

n→∞
ρP,γ(Sn/n) = E [−X1] .

By contrast, in Föllmer and Knispel [26, 27], who consider 1
nρP,γ(Sn),

1

n
ρP,γ(Sn) =

1

n
(1/γ) log E [exp(−γSn)] = (1/γ) log E [exp(−γX1)] = ρP,γ(X1),

and hence

lim
n→∞

1

n
ρP,γ(Sn) = ρP,γ(X1).

3 Optimal Risk Sharing under Ambiguity: Robust Certainty
Equivalents

So far we have fixed a reference probabilistic model P which is assumed to be (objectively or
subjectively) known. Let us now consider the situation of model uncertainty in which P is
replaced by a class P of probabilistic models on the measurable space (Ω,F). Such a situation
occurs naturally, as follows. The utility function u is determined by preferences on the constants
R only, and we thus assume that it is (subjectively) given. The assumption that the sequence of
risks (Xi)i∈N is i.i.d. is typical and commonly adopted, of course depending on the collection of
data, and corresponds to the setting of the previous section. However, the choice of the “right”
probabilistic model/distribution may be a very delicate problem. Hence, one may consider all
probabilistic models such that the i.i.d. assumption on (Xi)i∈N is satisfied, maybe reduce this
class further due to some additional probabilistic information, and yet end up with a class P of
probabilistic models, considered as possible generators of the observed (Xi)i∈N, that contains
more than only a single element.

In probabilistic model terms one may start with any class of probability measures P̃ on
some measurable space (Σ,A) and corresponding distributions of the random variable X on
(Σ,A) that one wants to consider. Now one may think of P as the collection of probability
measures on the product space (Ω,F) := (ΣN,A⊗N) such that each P ∈ P is the Kolmogorov
extension for some Q ∈ P̃ of the family of product probability measures {Q⊗n | n ∈ N}, i.e.
P|A⊗n = Q⊗n; see, for instance, Dudley [20] Section 8.2. Then, the sequence Xi : ΩN → R
given by Xi(ω1, ω2, . . .) := X(ωi) is i.i.d. under each P ∈ P.

9



Henceforth, we let P be a non-empty set of probability measures on (Ω,F) (not necessarily
dominated). In this section we restrict ourselves to the model space

L∞P := {X : Ω→ R | X is F-measurable,∃m > 0 ∀P ∈ P : P (|X| ≤ m) = 1}/∼,

where X ∼ Y if and only if P (X = Y ) = 1 for all P ∈ P. (L∞P , ‖ · ‖P,∞) where

‖X‖P,∞ := inf{m ∈ R | ∀P ∈ P : P (|X| ≤ m) = 1},

is a Banach space. Note that in case P is dominated, i.e., if there exists a probability measure P
on (Ω,F) such that Q� P for all Q ∈ P,3 then L∞P may be viewed as a subset of L∞(Ω,F , P )
with L∞P = L∞(Ω,F , P ) if P ≈ P.4 In the sequel, we say that a property holds P-a.s. if the
set A ∈ F of ω ∈ Ω with that certain property satisfies P (A) = 1 for all P ∈ P. For every
Q ∈ P, we let

UQ(X) := u−1(EQ [u(X)]), X ∈ L∞P ,

be the corresponding certainty equivalent under Q associated with the utility function u. In
the following, we consider robust certainty equivalents of the form (cf. Eqn. (2) in Laeven and
Stadje [47])

UP(X) := inf
Q∈P

UQ(X) + α(Q), X ∈ L∞P , (3.1)

where α : P → R ∪ {∞} is a penalty function such that infQ∈P α(Q) > −∞. The latter
assumption ensures that for any X ∈ L∞P such that

ess infP X := sup{m ∈ R | ∀P ∈ P : P (X ≥ m) = 1} ∈ domu,

we have
UP(X) ≥ ess infP X + inf

Q∈P
α(Q) > −∞,

in which we used the obvious estimate UQ(X) ≥ ess infP X. The penalty function represents
the esteemed plausibility of the probabilistic model. It is also referred to as an ambiguity index.
Robust certainty equivalents compound risk and ambiguity aversion in the sense of Ghirardato
and Marinacci [36]. Any robust certainty equivalent UP has an associated robust expectation
(or robust monetary utility) U given by

U(X) := inf
Q∈P

EQ [X] + α(Q), X ∈ L∞P . (3.2)

Note that Jensen’s inequality implies UP(X) ≤ U(X) for all X ∈ L∞P .
As a special case of interest, we consider the robust version of the certainty equivalent under

exponential utility, given by

inf
Q∈P
− 1
γ log EQ

[
e−γX

]
= − sup

Q∈P

1
γ log EQ

[
e−γX

]
.

It equals minus the robust version, ρP,γ , of the (convex) entropic risk measure, ρQ,γ , defined
by

ρP,γ(X) := sup
Q∈P

ρQ,γ(X) = 1
γ sup
Q∈P

log EQ
[
e−γX

]
, (3.3)

3Here, Q� P means that for all A ∈ F we have that P (A) = 0 implies Q(A) = 0.
4Here, P ≈ P means that for all A ∈ F we have P (A) = 0 if and only if (Q(A) = 0 for all Q ∈ P).
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which belongs to the class of entropy coherent measures of risk (Laeven and Stadje [47]); see
also Föllmer and Knispel [26]. More generally, one may consider the class of entropy convex
measures of risk (Laeven and Stadje [47]): the mapping ρP,γ,α : L∞P → R is called a γ-entropy
convex measure of risk if there exists a penalty function α : P → [0,∞] with infQ∈P α(Q) = 0,
such that

ρP,γ,α(X) = sup
Q∈P
{ρQ,γ − α(Q)}, γ > 0. (3.4)

We state the following lemma, which proves that the proportional risk sharing rule remains
Pareto optimal in this general setting with ambiguity:

Lemma 3.1 Consider n agents with the same robust certainty equivalent criterion (3.1). Let
W ∈ L∞P be such that W/n ∈ int domu P-a.s. and ess infPW/n ∈ domu. Moreover, suppose
that

UP(W/n) = min
Q∈P

UQ(W/n) + α(Q). (3.5)

Then the allocation which assigns the share W/n of W to each agent is Pareto optimal. Fur-
thermore, if n ≥ 3, and domu = R, then

nUP
(
W

n

)
= max

(Y1,...,Yn)∈A(W )

n∑
i=1

UP(Yi), (3.6)

and any Pareto optimal allocation of W must maximize the right hand side of (3.6). In that
case, if UP is strictly concave, then W/n is the unique Pareto optimal allocation of W .

Proof. Let (Y1, . . . , Yn) be an allocation of W such that UP(Yi) ≥ UP(W/n) for all i = 1, . . . , n.
By assumption, there exists a Q ∈ P such that

UP(W/n) = UQ(W/n) + α(Q).

Then UQ(Yi) ≥ UQ(W/n) for all i = 1, . . . , n which implies UQ(Yi) = UQ(W/n) for all i =
1, . . . , n according to Proposition 2.2. Hence, also

UP(Yi) ≤ UQ(Yi) + α(Q) = UQ(W/n) + α(Q) = UP(W/n),

so indeed UP(Yi) = UP(W/n) for all i = 1, . . . , n, so W/n is Pareto optimal. The last assertion
follows as in the proof of Proposition 2.2, noting that UP(m) = m+infQ∈P α(Q) for all m ∈ R.2

We note that, in general, UP need not be concave. However, it is proved in Ben-Tal and
Teboulle [5, 7] that UQ(·) is concave if and only if the function R 3 x 7→ 1/R(x) is concave.
Hence, in that case also UP as an infimum over concave functions is concave. If this concavity
turns out to be strict, we have uniqueness of the Pareto optimal allocation.

The next lemma stipulates a situation in which condition (3.5) is automatically satisfied.

Lemma 3.2 Suppose that P is dominated by some probability measure P on (Ω,F). More-

over, suppose that P is weakly compact in the sense that the set of densities
{
dQ
dP | Q ∈ P

}
is

weakly compact, i.e., σ(L1(Ω,F , P ), L∞(Ω,F , P ))-compact, and that α is weakly lower semi-
continuous in the sense that the lower level sets of densities

Ek :=

{
dQ

dP
| Q ∈ P, α(Q) ≤ k

}
, k ∈ R,
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of the penalty function α in (3.1) are closed in σ(L1(Ω,F , P ), L∞(Ω,F , P )). Then,

UP(X) = min
Q∈P

UQ(X) + α(Q) for all X ∈ L∞(Ω,F , P ) such that ess inf{P}X ∈ domu,

and
U(X) = min

Q∈P
EQ [X] + α(Q) for all X ∈ L∞(Ω,F , P ).

Proof. Let X ∈ L∞(Ω,F , P ) with ess inf{P}X ∈ domu. Choose a sequence (Qn)n∈N ⊂ P such
that

UP(X) = lim
n→∞

(UQn(X) + α(Qn)).

As P is weakly compact, (by the Eberlein-Smulian theorem; see e.g., Dunford and Schwartz
[22]) there is a subsequence which for simplicity we also denote by (Qn)n∈N such that dQn

dP

converges weakly to dQ
dP for a Q ∈ P. Hence,

EQ [u(X)] = EP

[
dQ

dP
u(X)

]
= lim

n→∞
EP

[
dQn
dP

u(X)

]
= lim

n→∞
EQn [u(X)] ,

because u(X) ∈ L∞(Ω,F , P ). By lower semicontinuity of α we have α(Q) ≤ lim infn→∞ α(Qn).
Thus we conclude that

UQ(X) + α(Q) ≤ lim inf
n→∞

UQn(X) + α(Qn) = UP(X),

and therefore
UP(X) = UQ(X) + α(Q).

The result for U follows similarly. 2

In the remainder of this section, we analyze the asymptotic behavior of the robust certainty
equivalents associated with the Pareto optimal risk sharing contract, as the pool expands to
include a growing multitude of risks.

Proposition 3.3 Let (Xi)i∈N ⊂ L∞P be i.i.d. under all Q ∈ P, and suppose that ess infP X1 ∈
int domu. Also, let Sn :=

∑n
i=1Xi. Then UP(Sn/n) is increasing in n with

UP
(
Sn
n

)
≤ U(X1),

and

lim
n→∞

UP
(
Sn
n

)
= U(X1),

where U is the robust monetary utility associated to UP . Moreover, there is a constant K
depending on X1 and u such that

lim sup
n→∞

√
n

(
U(X1)− UP

(
Sn
n

))
≤ K.
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Proof. First of all, the facts that UP(Sn/n) is increasing in n and UP(Sn/n) ≤ U(X1) follow
from the facts that UQ(Sn/n) is increasing in n and UQ(Sn/n) ≤ EQ [X1] for all Q ∈ P; see
Lemma 2.3.

Let Qn ∈ P such that UQn(Snn ) + α(Qn) ≤ UP(Snn ) + 1
n2 , n ∈ N. Then

U(X1)− UP
(
Sn
n

)
≤ EQn [X1]− UQn

(
Sn
n

)
+

1

n2

≤ 1

n2
+ sup
Q∈P

{
EQ [X1]− UQ

(
Sn
n

)}
. (3.7)

Recalling (A.5), we further estimate:

sup
Q∈P

EQ [X1]− UQ
(
Sn
n

)
≤ L sup

Q∈P

σQ(X1)√
n

≤ L
2‖X1‖P,∞√

n
,

where we used Hölder in the first inequality and

L := (u−1)′(u(ess supP X1) + u′(ess infP X1)2‖X1‖P,∞)u′(ess infP X1)

is a constant. (Here ess supP is defined analogously to ess infP above.) In the rough estimate
leading to L we used the fact that the function

int domu 3 x 7→ (u−1)′(x) =
1

u′(u−1(x))

is positive and increasing and the known bounds for Yn and yn in (A.5). 2

Proposition 3.3 shows that, also in this general robust framework that explicitly accounts
for ambiguity, optimally pooling and relocating risk reduces the difference between the (robust)
expectation and the (robust) certainty equivalent,

U(X1)− UP(Sn/n);

it eventually vanishes in the limit as n→∞.

Theorem 3.4 Let (Xi)i∈N ⊂ L∞P be i.i.d. under all Q ∈ P, and suppose that ess infP X1 ∈
int domu. Also, let Sn :=

∑n
i=1Xi. Furthermore, suppose that u is three times continuously

differentiable on int domu whereas u−1 is two times continuously differentiable on int domu−1.
Then,

lim sup
n→∞

n

(
U(X1)− UP

(
Sn
n

))
≤ 1

2
sup
Q∈P

R(EQ [X1])σ
2
Q(X1). (3.8)

Moreover, if Q ∈ P satisfies U(X1) = EQ [X1] + α(Q) (see Lemma 3.2), then

lim inf
n→∞

n

(
U(X1)− UP

(
Sn
n

))
≥ 1

2
R(EQ [X1])σ

2
Q(X1). (3.9)

Note that supQ∈P R(EQ [X1])σ
2
Q(X1) ≤ L4‖X1‖2P,∞ < ∞ where L > 0 is an upper bound

of the continuous function int domu 3 x 7→ R(x) on the compact set [ess infP X1, ess supP X1].
The proof of Theorem 3.4 is provided in Appendix A.2.
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Remark 3.5 Note that the limit of UP(Sn/n), namely U(X1), depends on the penalty function
α, but the speed of convergence derived in Theorem 3.4 does not; it is the same for every α as
long as P and u are left unchanged. Moreover, the robustness induced by the class P affects
the speed of convergence only via worst case first moments and variances.

Remark 3.6 If P = {P}, then Theorem 3.4 reduces to Theorem 2.5. Hence, the bounds
in Theorem 3.4 cannot in general be sharpened. Moreover, under the conditions stated in
Lemma 3.2 we have that (3.9) is always satisfied, so the lower bound is always sharp in that
case. Clearly, the upper bound (3.8) may or may not be sharp in specific cases. As already
mentioned it is trivially sharp if P = {P}. But suppose, for instance, that Xi takes only two
values, 1 and −1, and that P is rich enough in the sense that it contains probability measures
which put all mass on any possible atom. Moreover, suppose that α ≡ 0. Then, U(X1) = −1
and also UP(Sn/n) = −1, so the left hand side of (3.8) equals 0. On the other hand, the right
hand side of (3.8) is larger than 1

2R(EQ[X1])σ
2
Q(X1) = 1

2R(0) where Q ∈ P is a probability
measure such that EQ[X1] = 0. Hence, in this case, provided u′′ < 0, the upper bound is not
sharp.

Example 3.7 Consider u(x) = 1 − e−γx for some γ > 0, so that the corresponding robust
certainty equivalent is minus an entropy convex (coherent) risk measure. Then (3.8) becomes

lim sup
n→∞

n

(
U(X1)− UP

(
Sn
n

))
≤ 1

2
sup
Q∈P

γσ2Q(X1).

Moreover, if Q ∈ P satisfies U(X1) = EQ [X1] + α(Q) (see Lemma 3.2), then (3.9) becomes

lim inf
n→∞

n

(
U(X1)− UP

(
Sn
n

))
≥ 1

2
γσ2Q(X1).

Similarly, one can easily derive the bounds (3.8) and (3.9) explicitly for the power and log
utilities considered in Examples 2.6.

Examples 3.8 (Risk sharing for entropy coherent and entropy convex measures of risk.) Sup-
pose that n equally risk and ambiguity averse agents with entropy coherent measure of risk
ρP,γ at some level γ > 0 pool their risks X1, . . . , Xn and optimally relocate the aggregate risk
Sn = X1 + . . . + Xn. In the face of model uncertainty, we assume that the random variables
X1, . . . , Xn belong to L∞P and are i.i.d. under any Q ∈ P. The optimal redistribution of risk
is then given by Y ∗i = Sn/n, i = 1, . . . , n. Let γn = γ/n. Then, similar to the non-robust case
(see Example 2.8),

nρP,γ(Y ∗i ) = n
1

γ
sup
Q∈P

log EQ

[
e−γY

∗
i

]
=

1

γn
sup
Q∈P

log EQ
[
e−γnSn

]
= ρP,γn(Sn). (3.10)

Thus, per position, ρP,γ(Y ∗i ) = ρP,γn(X1). According to Proposition 3.3, ρP,γ(Y ∗i ) ≤ ρP,γ(X1),
i.e., optimally pooling and relocating the aggregate Sn is beneficial from the perspective of the
entropy coherent measure of risk. In this case, this is also easily verified directly, because γn < γ
(when n ≥ 2) and Jensen’s inequality imply

ρP,γ(Y ∗i ) =
1

γn
sup
Q∈P

log EQ
[
e−γnX1

]
≤ 1

γ
sup
Q∈P

log EQ
[
e−γX1

]
= ρP,γ(X1).
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Moreover, by Proposition 3.3, we have that

lim
n→∞

1

n

1

γn
sup
Q∈P

log EQ
[
e−γnSn

]
= sup

Q∈P
EQ [−X1] ,

with the speed of convergence given in Example 3.7.
Assume now that the n equally risk and ambiguity averse agents apply an entropy convex

measure of risk ρP,γ,α at some level γ > 0. According to Lemma 3.1, the optimal redistribution
is again equal to Y ∗i = Sn/n, and

n∑
i=1

ρP,γ,α(Yi) = n sup
Q∈P
{ρQ,γ(Sn/n)− α(Q)} = sup

Q∈P
{ρQ,γn(Sn)− nα(Q)}.

Note that this corresponds to an entropy convex risk measure at level γ/n with penalty function
nα. Moreover, per position, 1

n supQ∈P{ρQ,γ/n(Sn) − nα(Q)} = supQ∈Q{ρQ,γn(X1) − α(Q)},
and, by Proposition 3.3, we have that

lim
n→∞

sup
Q∈P
{ρQ,γn(X1)− α(Q)} = sup

Q∈P
{EQ [−X1]− α(Q)},

with the speed of convergence given in Example 3.7.

Example 3.9 (Esscher densities and the relative entropy.) As is well-known (Csiszár [14]),
we may represent the entropic risk measure ρP,γ as a robust expectation with a supremum over
the set of Esscher densities given by

P = {Q� P | dQ/dP = e−γX/EP
[
e−γX

]
, X ∈ L∞(Ω,F , P )}, (3.11)

and with penalization α(Q) = γH(Q|P ), Q ∈ P, γ > 0, where

H(Q|P ) =

 EQ

[
log
(dQ
dP

)]
, if Q� P ;

∞, otherwise;

is the relative entropy or Kullback-Leibler divergence. The relative entropy is a metric of the
distance between the probability measures Q and P and a special case of a ϕ-divergence (Ben-
Tal and Teboulle [5, 6]). It is widely applied in macroeconomics (Hansen and Sargent [41, 42]),
decision theory (Strzalecki [63, 64]), and financial mathematics (Frittelli [30] and Föllmer and
Schied [28]). Note that P given in (3.11) is the minimal set needed to represent ρP,γ.

In the specific case of (3.11), assuming that Xi is i.i.d. for any Q ∈ P is equivalent to
X1 = Xi being constant. Indeed, to see this, note first that this P contains all Q � P such
that dQ/dP is bounded from above and bounded away from zero (simply let X = − 1

γ log dQ
dP ).

Next, suppose there is a Borel set A of R such that 0 < P (X1 ∈ A) < 1 and consider Q given
by dQ

dP = 1
c (21{X1∈A} + 1{X1 6∈A}), where c = 2P (X1 ∈ A) + P (X1 6∈ A). Then, as P ∈ P, we

have that X1 and X2 are independent under P and P (X1 ∈ A) = P (X2 ∈ A). At the same
time, for Q we obtain Q(X1 ∈ A) = 2

cP (X1 ∈ A) and

Q(X2 ∈ A) =
1

c
(2P (X1 ∈ A)P (X2 ∈ A) + P (X1 6∈ A)P (X2 ∈ A))

=
1

c
(P (X1 ∈ A)P (X2 ∈ A) + P (X2 ∈ A))

=
1

c
P (X1 ∈ A)(P (X1 ∈ A) + 1) <

2

c
P (X1 ∈ A),
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so X1 and X2 cannot be identically distributed under Q which contradicts the existence of
such a set A. Hence, Xi = X1 is constant. Thus, due to the required i.i.d. assumption for all
Q ∈ P, the convergence results of this section induce degeneracy in the case of a robust certainty
equivalent with (subjectively given) linear utility and P given by (3.11). However, recall that
the results of Section 2 already apply to ρP,γ, when viewed as minus the certainty equivalent
under expected exponential utility, (2.3), without inducing degeneracy; see Example 2.8.

Furthermore, invoking the Kolmogorov extension discussed in the beginning of this section,
one may, for a given random variable X on (Σ,A), let P̃ = {Pγ | γ ≥ 0} where Pγ is generated

by the Esscher density
dPγ
dP = e−γX

EP [e−γX ]
with respect to some reference probabilistic model P .

We finally note that, the use of the relative entropy as an example of a penalty function
in the main results of this section is not ruled out despite its connection to (3.11) (see e.g.,
Föllmer and Schied [28], Section 3.2); just the set P must be smaller than (3.11).

Remark 3.10 (Risk and ambiguity.) Observe that while, as n→∞, risk reduction by pooling
is achieved and exploited to the full limit, in the sense that the difference between the robust
expectation and the robust certainty equivalent, U(X1) − UP(Sn/n), vanishes (just like the
risk premium in the previous section in which P = {P}), ambiguity still remains: the robust
certainty equivalent UP(Sn/n) is normalized by the robust expectation U(X1) rather than by a
plain expectation.

In the spirit of Marinacci [53] (see also Epstein and Schneider [23], Section 2.2), the pool of
cooperative agents may learn in the long run the true common loss distribution of the Xi’s from
observations obtained by drawing from the loss distribution. Indeed, adopting a setup in which
agents can observe realizations from their common yet unknown loss distribution, one expects
the agents to learn the true loss distribution as the number of observations tends to infinity.
This intuition is formalized in Marinacci [53] in a predictive parametric setting by sampling
with replacement from ambiguous urns. Then ambiguity fades away when sampling frequently
enough, and risk (unambiguous uncertainty) remains in the limit. Our setting pertains naturally
to the short(er) run perspective in which at most only a limited number of draws is observed
which does not plausibly resolve ambiguity.

4 Robust Risk Premia

Rather than robustifying the certainty equivalent, as in Section 3, one may consider to take
ambiguity into account when defining the risk premium via the equivalent utility equation.
Just like the robust certainty equivalents, the resulting robust risk premia compound risk
and ambiguity aversion. We consider first the theory of homothetic preferences and next the
variational preferences as our model for decision under risk and ambiguity.

4.1 The homothetic case

Let P be a non-empty set of probability measures on (Ω,F) (not necessarily dominated), as in
Section 3. Furthermore, let β : P → (0,∞) be a penalty function (ambiguity index), with

inf
Q∈P

β(Q) = 1 and sup
Q∈P

β(Q) ∈ R. (4.1)
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The robust risk premium under homothetic preferences, π(v,X), with initial wealth v ≥ 0 and
X ∈ L∞P such that ess infP X ∈ domu, is obtained as the solution to

inf
Q∈P
{u(EQ [v +X]β(Q)− π(v,X))} = inf

Q∈P
{EQ [u(v +X)]β(Q)} ,

or equivalently, by continuity and monotonicity of u,

u(W(v +X)− π(v,X)) = inf
Q∈P
{EQ [u(v +X)]β(Q)} ,

where
W(X) := inf

Q∈P
EQ [X]β(Q), X ∈ L∞P .

Here, the criterion
W(u(X)) = inf

Q∈P
EQ [u(X)]β(Q), X ∈ L∞P ,

corresponds to the homothetic preferences model as introduced by Cerreia-Vioglio et al. [12]
and Chateauneuf and Faro [13]; see also Dana [15]. Let

WP(X) := u−1
(

inf
Q∈P

EQ [u(X)]β(Q)

)
= u−1(W(u(X))), X ∈ L∞P . (4.2)

Then,

π(v,X) =W(v +X)− u−1
(

inf
Q∈P

EQ [u(v +X)]β(Q)

)
=W(v +X)−WP(v +X). (4.3)

Using similar arguments as in the proofs of Lemmas 3.1 and 3.2, one can prove the following
results:

Lemma 4.1 Consider n agents with the same robust certainty equivalent criterion (4.2). Let
W ∈ L∞P be such that W/n ∈ int domu P-a.s. and ess infPW/n ∈ domu. Moreover, suppose
that

W(u(W/n)) = min
Q∈P

EQ [u(W/n)]β(Q).

Then the allocation which assigns the share W/n of W to each agent is Pareto optimal. Fur-
thermore, if n ≥ 3, and domu = R, then

nWP
(
W

n

)
= max

(Y1,...,Yn)∈A(W )

n∑
i=1

WP(Yi), (4.4)

and any Pareto optimal allocation of W must maximize the right hand side of (4.4). In that
case, if WP is strictly concave, then W/n is the unique Pareto optimal allocation of W .

Lemma 4.2 Suppose that P is dominated by a probability measure P on (Ω,F). Moreover,
suppose that P is weakly-compact in the sense of Lemma 3.2, and that β is weakly continuous,
i.e., σ(L1(Ω,F , P ), L∞(Ω,F , P ))-continuous. Then,

W(X) = min
Q∈P

EQ [X]β(Q), X ∈ L∞(Ω,F , P ).

Moreover, for all X ∈ L∞(Ω,F , P ) with ess inf{P}X ∈ domu, we have that

WP(X) = u−1
(

min
Q∈P

EQ [u(X)]β(Q)

)
= min

Q∈P
u−1 (EQ [u(X)]β(Q)) .
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Clearly, if, in the dominated case, P is weakly-compact and β is weakly-continuous, then (4.1)
is automatically satisfied modulo a multiplicative constant which we norm to 1.

Note that
WP(X) = inf

Q∈P
u−1

(
E
Q̃

[u(X)]
)
,

where Q̃ is the measure on (Ω,F) given by β(Q)Q, and recall (4.1). Using the property that β
is bounded, we observe that one may argue as in Proposition 3.3 and Theorem 3.4 with α ≡ 0
to find the following results. To this end notice that W(v + Sn

n ) = W(v + X1). (We omit the
detailed proofs to save space.)

Proposition 4.3 Let (Xi)i∈N ⊂ L∞P be i.i.d. under all Q ∈ P, and suppose that ess infP X1 ∈
int domu. Also let Sn :=

∑n
i=1Xi. Then WP(v + Sn/n) is increasing in n with

WP
(
v +

Sn
n

)
≤ W(v +X1),

and

lim
n→∞

WP
(
v +

Sn
n

)
=W(v +X1), i.e., lim

n→∞
π

(
v,
Sn
n

)
= 0.

Moreover, there is a constant K depending on X1 and u such that

lim sup
n→∞

√
nπ

(
v,
Sn
n

)
= lim sup

n→∞

√
n

(
W(v +X1)−WP

(
v +

Sn
n

))
≤ K.

Theorem 4.4 Let (Xi)i∈N ⊂ L∞P be i.i.d. under all Q ∈ P, and suppose that ess infP X1 ∈
int domu. Also let Sn :=

∑n
i=1Xi. Furthermore, suppose that u is three times continuously

differentiable on int domu whereas u−1 is two times continuously differentiable on int domu−1.
Then,

lim sup
n→∞

nπ

(
v,
Sn
n

)
= lim sup

n→∞
n

(
W(v +X1)−WP

(
v +

Sn
n

))
≤ 1

2
sup
Q∈P

R (EQ [v +X1]β(Q))σ2Q(X1)β(Q).

Moreover, if Q ∈ P satisfies W(v +X1) = EQ [v +X1]β(Q), then

lim inf
n→∞

nπ

(
v,
Sn
n

)
≥ 1

2
R(EQ [v +X1]β(Q))σ2Q(X1)β(Q).

Hence, upon Pareto optimal pooling and relocation of risks, the robust risk premium under
homothetic preferences diminishes, and eventually vanishes in the limit as the multitude of risks
tends to infinity, with a speed of convergence that can be controlled according to Theorem 4.4.

Example 4.5 Suppose that Lemma 4.2 applies. Consider the subfamily of the power utility
family of the form u(x) = xp, x ≥ 0, where 0 < p < 1, (and u(x) = −∞, x < 0), normalized
such that u(0) = 0. Then,

WP(X) = inf
Q∈P

(EQ [Xp]β(Q))1/p

= inf
Q∈P

β̃(Q) (EQ [Xp])1/p = inf
Q∈P

β̃(Q)‖X‖Q,p,
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with β̃(Q) = β(Q)1/p and ‖X‖Q,p = (EQ [Xp])1/p. That is, in this case, WP(X) is a worst case
“β̃(Q)-accrued” p-norm, and exhibits the convergence lim supn→∞ π

(
v, Snn

)
= 0, for which the

convergence bounds in Theorem 4.4 apply.

4.2 The variational case

Let P and α : P → R ∪ {∞} be as in Section 3 and suppose, for ease of exposition, that
infQ∈P α(Q) = 0. We define the robust risk premium under variational preferences, π(v,X),
with initial wealth v ≥ 0 and risk X ∈ L∞P with ess infP X ∈ domu, as the solution to

inf
Q∈P
{u(v + EQ [X] + α(Q)− π(v,X))} = inf

Q∈P
{EQ [u(v +X)] + α(Q)} ,

or equivalently,

u(v + U(X)− π(v,X)) = inf
Q∈P
{EQ [u(v +X)] + α(Q)} ,

where, as before,
U(X) = inf

Q∈P
EQ [X] + α(Q), X ∈ L∞P ,

is the corresponding robust expectation. Here, the criterion

C(X) := U(u(X)) = inf
Q∈P

EQ [u(X)] + α(Q), X ∈ L∞P ,

corresponds to the variational preferences model as introduced by Maccheroni, Marinacci and
Rustichini [51]. Let

VP(X) := u−1
(

inf
Q∈P

EQ [u(X)] + α(Q)

)
, X ∈ L∞P , (4.5)

and

V(X) := u−1
(

inf
Q∈P

u(EQ [X]) + α(Q)

)
, X ∈ L∞P .

Then,

π(v,X) = v + U(X)− u−1
(

inf
Q∈P

EQ [u(v +X)] + α(Q)

)
= v + U(X)− VP(v +X).

By continuity and monotonicity of u−1 we have for all X ∈ L∞P with ess infP X ∈ domu
that

VP(X) = u−1
(

inf
Q∈P

EQ [u(X)] + α(Q)

)
= inf

Q∈P
u−1 (EQ [u(X)] + α(Q)) ,

and

V(X) = u−1
(

inf
Q∈P

u(EQ [X]) + α(Q)

)
= inf

Q∈P
u−1 (u(EQ [X]) + α(Q)) .

Also in this case of robust risk premia under variational preferences, the respective coun-
terparts of Lemmas 3.1 and 3.2 remain true:
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Lemma 4.6 Consider n agents with the same variational criterion (4.5). Let W ∈ L∞P be
such that W/n ∈ int domu P -a.s. and ess infPW/n ∈ domu. Moreover, suppose that

C(W/n) = min
Q∈P

(EQ [u(W/n)] + α(Q)) .

Then the allocation which assigns the share W/n of W to each agent is Pareto optimal. Fur-
thermore, if n ≥ 3, and domu = R, then

nVP
(
W

n

)
= max

(Y1,...,Yn)∈A(W )

n∑
i=1

VP(Yi), (4.6)

and any Pareto optimal allocation of W must maximize the right hand side of (4.6). In that
case, if VP is strictly concave, then W/n is the unique Pareto optimal allocation of W .

Lemma 4.7 Suppose that P is dominated by a probability measure P on (Ω,F). Moreover,
suppose that P is weakly-compact, and that α is weakly lower semicontinuous. Then, for all
X ∈ L∞P with ess infP X ∈ domu, we have that

C(X) = min
Q∈P

EQ [u(X)] + α(Q),

and

V(X) = u−1
(

min
Q∈P

u(EQ [X]) + α(Q)

)
= min

Q∈P
u−1 (u(EQ [X]) + α(Q)) .

We omit the proofs of Lemmas 4.6 and 4.7 to save space, because they follow similar arguments
as the proofs of Lemmas 3.1 and 3.2.

Furthermore, as a consequence of Proposition 3.3 and Theorem 3.4, we immediately ob-
tain the following convergence result as a starting point upon requiring α to be trivial—an
assumption that we will drop later:

Corollary 4.8 Suppose that α(Q) = 0 for all Q ∈ P. Then,

VP(X) = UP(X) and V(X) = U(X),

for all X ∈ L∞P with ess infP X ∈ domu. Hence, under the conditions of Proposition 3.3, we
have that

lim
n→∞

π

(
v,
Sn
n

)
= 0,

and under the additional conditions stated in Theorem 3.4, we have that

lim sup
n→∞

nπ

(
v,
Sn
n

)
≤ 1

2
sup
Q∈P

R(v + EQ [X1])σ
2
Q(X1),

and, furthermore,

lim inf
n→∞

nπ

(
v,
Sn
n

)
≥ 1

2
R(EQ [v +X1])σ

2
Q(X1),

whenever Q ∈ P satisfies V(X1) = EQ [X1] (see Lemma 4.7).
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For non-trivial α, however, the robust risk premium under variational preferences, while
still decreasing in the multitude of risks, will not vanish in the limit:

Proposition 4.9 Let (Xi)i∈N ⊂ L∞P be i.i.d. under all Q ∈ P, and suppose that ess infP X1 ∈
int domu. Also let Sn :=

∑n
i=1Xi. Then VP(Sn/n) is increasing in n with

lim
n→∞

VP(Sn/n) = V(X1). (4.7)

Hence,

lim
n→∞

π

(
v,
Sn
n

)
= U(v +X1)− V(v +X1).

Proof. The fact that C(Sn/n) and thus also VP(Sn/n) is increasing in n follows from (2.6).
Jensen’s inequality implies that

C(Sn/n) ≤ inf
Q∈P

u(EQ [X1]) + α(Q),

and thus also VP(Sn/n) ≤ V(X1). Moreover, for appropriate Qn ∈ P, we have that

inf
Q∈P
{u(EQ [X1]) + α(Q)} − C

(
Sn
n

)
≤ u(EQn [X1])− EQn

[
u

(
Sn
n

)]
+

1

n2

≤ EQn

[
u′(ξQn)

∣∣∣∣Snn − EQn [X1]

∣∣∣∣]+
1

n2

≤ L
σQn(X1)√

n
+

1

n2
≤ 2L‖X1‖∞√

n
+

1

n2
,

where ξQn is a random variable taking values between EQn [X1] and Sn/n and L is an upper
bound of u′ on the compact set [ess infP X1, ess supP X1]. Hence, limn→∞ VP(Sn/n) = V(X1)
follows from continuity of u−1. 2

We can also prove a result on the rate of convergence in (4.7), similar to Proposition 3.3
and Theorem 3.4. However, if α is non-trivial, so that we are not in the case of Corollary 4.8,
the result will not look as simple as in Theorem 3.4. To see this, consider any Q ∈ P. Then,

u−1 (u(EQ [X1]) + α(Q))− u−1
(

EQ

[
u

(
Sn
n

)]
+ α(Q)

)
= (u−1)′(ξ)

(
u(EQ [X1])− EQ

[
u

(
Sn
n

)])
=

1

u′(u−1(ξ))
EQ

[
−1

2
u′′(η)

(
Sn
n
− EQ [X1]

)2
]
, (4.8)

where ξ ∈ [u(EQ [X1]) + α(Q),EQ [u(Sn/n)] + α(Q)] and η is a random variable taking values
between EQ [X1] and Sn/n. As n→∞, we see that

n(4.8) →
−u′′(EQ [X1])

u′(u−1(u(EQ [X1]) + α(Q)))

σ2Q(X1)

2
. (4.9)

Thus, only if α(Q) = 0 the first factor on the right hand side of (4.9) equals R(EQ [X1]).
Otherwise this factor, which may be seen as a measure of risk aversion given X1 under the model
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Q, is larger than R(EQ [X1]). Hence, if V(X1) = u−1 (u(EQ [X1] + α(Q))) and α(Q) > 0—so
in the limit the risk premium is realized by a probabilistic model Q that the agent does not
consider to be fully plausible (α(Q) > 0)—then convergence to V(X1) is slower by an amount
depending on the level of (dis)plausibility α(Q).

Theorem 4.10 Let (Xi)i∈N ⊂ L∞P be i.i.d. under all Q ∈ P, and suppose that ess infP X1 ∈
int domu. Also let Sn :=

∑n
i=1Xi. Furthermore, suppose that supQ∈P α(Q) <∞. Then there

exists a constant K depending on X1, u and α such that

lim sup
n→∞

n

(
V(X1)− VP

(
Sn
n

))
≤ K.

Moreover, if Q ∈ P satisfies V(X1) = u−1 (u(EQ [X1] + α(Q))) (see Lemma 4.6), then

lim inf
n→∞

n

(
V(X1)− VP

(
Sn
n

))
≥

−u′′(EQ [X1])

u′(u−1(u(EQ [X1]) + α(Q)))

σ2Q(X1)

2
.

Proof. Let n be large enough and Q ∈ P (depending on n) be such that

VP(Sn/n) ≥ u−1
(
EQ [u(Sn/n)] + α(Q)− 1/n2

)
.

As in (4.8), there is ξ ∈ [u(EQ [X1])+α(Q),EQ [u(Sn/n)]+α(Q)−1/n2] and a random variable
η taking values between EQ [X1] and Sn/n such that

V(X1)− VP
(
Sn
n

)
≤ 1

u′(u−1(ξ))
EQ

[
−u′′(η)

(
Sn
n
− EQ [X1]

)2
]

≤ L

u′(u−1(u(ess supX1) + L̂))

σ2Q(X1)

n

≤ L

u′(u−1(u(ess supX1) + L̂))

4‖X1‖∞
n

,

where L̂ = supQ∈P α(Q) and where L is an upper bound for −u′′ on [ess infP X1, ess supP X1].
The final assertion follows from (4.9). 2

Note that if P is weakly compact and α is weakly continuous, then supQ∈P α(Q) < ∞ is
automatically satisfied.

Examples 4.11 Consider the robust risk premium under variational preferences of type

C(X) = inf
Q∈P

EQ
[
1− e−γX

]
,

i.e., α ≡ 0 and u is the exponential utility function. Then we are in the situation of Corol-
lary 4.8. Hence, the robust risk premium vanishes for n → ∞ with the given speed of conver-
gence. Note that in this case VP(X) = UP(X) = −ρP,γ(X) and V(X) = U(X) = infQ∈P EQ [X]
for all X ∈ L∞P , so we are essentially back in the entropy coherent case considered in Exam-
ples 3.8.

Now consider the robust risk premium under variational preferences of type

C(X) = inf
Q∈P

EQ
[
1− e−γX

]
+ α(Q),
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where α is non-trivial. In that case, Proposition 4.9 implies that

lim
n→∞

π

(
v,
Sn
n

)
= v + inf

Q∈P
(EQ [X1] + α(Q)) +

1

γ
log

(
inf
Q∈P

e−γ(EQ[X1]+v) + α(Q)

)
, (4.10)

with the speed of convergence given in Theorem 4.10. Note the difference to the entropy convex
case in Examples 3.8.

5 Conclusions

In this paper, we have derived the asymptotic behavior of the certainty equivalents and risk
premia associated with the Pareto optimal risk sharing contract, in an expanding pool of
cooperative agents bearing a growing multitude of risks. We have first studied the problem
under classical expected utility preferences and next we have considered the more delicate case
of ambiguity averse preferences to develop a robust approach that explicitly takes uncertainty
with respect to the probabilistic model into account. Our results make explicit, in a general
setting that allows for aversion to both risk and ambiguity, when and at what rate the key
principle of risk sharing by Pareto optimally pooling and relocating risks may be exploited
to the full limit. The results in this paper require the cooperating agents to have identical
preferences. They may serve as benchmark results in economic and mathematical risk theory.
In future work, one may analyze the same problem under heterogeneous preferences, in which
case the Pareto optimality of the proportional risk sharing rule will no longer remain valid.
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A Appendix

A.1 Proof of Proposition 2.4 and Theorem 2.5

Without loss of generality we may assume that v = 0, because if X1 satisfies the requirements
of Proposition 2.4 or Theorem 2.5, so does X1 + v, and σP (X1 + v) = σP (X1). We compute a
Taylor expansion of u around E [X1], either to the first or to the second order, which yields

u

(
Sn
n

)
= u(E [X1]) + u′(Yn)

(
Sn
n
− E [X1]

)
, (A.1)

and

u

(
Sn
n

)
= u(E [X1]) + u′(E [X1])

(
Sn
n
− E [X1]

)
+

1

2
u′′(Zn)

(
Sn
n
− E [X1]

)2

, (A.2)
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where Yn and Zn are random variables taking values between E [X1] and Sn
n . (Note that

Sn/n ∈ int domu as X1 ∈ int domu.) Taking expectations in (A.1) and (A.2) we arrive at

E

[
u

(
Sn
n

)]
= u(E [X1]) + E

[
u′(Yn)

(
Sn
n
− E [X1]

)]
,

and

E

[
u

(
Sn
n

)]
= u(E [X1]) + 0 +

1

2
E

[
u′′(Zn)

(
Sn
n
− E [X1]

)2
]
.

Invoking a Taylor expansion of u−1 around the point u(E [X1]) verifies that

U

(
Sn
n

)
= u−1

(
E

[
u

(
Sn
n

)])
= u−1

(
u(E [X1]) + E

[
u′(Yn)

(
Sn
n
− E [X1]

)])
= u−1 ◦ u(E [X1]) + (u−1)′(yn)E

[
u′(Yn)

(
Sn
n
− E [X1]

)]
= E [X1] + (u−1)′(yn)E

[
u′(Yn)

(
Sn
n
− E [X1]

)]
, (A.3)

for some real number yn between u(E [X1]) and u(E [X1]) + E
[
u′(Yn)(Snn − E [X1])

]
, and

U

(
Sn
n

)
= u−1

(
E

[
u

(
Sn
n

)])
= u−1

(
u(E [X1]) +

1

2
E

[
u′′(Zn)

(
Sn
n
− E [X1]

)2
])

= u−1 ◦ u(E [X1]) + (u−1)′(zn)
1

2
E

[
u′′(Zn)

(
Sn
n
− E [X1]

)2
]

= E [X1] + (u−1)′(zn)
u′′(E [X1])σ

2
P (X1)

2n

+(u−1)′(zn)
1

2
E

[
(u′′(Zn)− u′′(E [X1]))

(
Sn
n
− E [X1]

)2
]
, (A.4)

where zn ∈ [u(E [X1]) + 1
2E
[
u′′(Zn)(Snn − E [X1])

2
]
, u(E [X1])]. By an application of Hölder’s

inequality to the error term in (A.3) we obtain

|(u−1)′(yn)|E
[
|u′(Yn)

(
Sn
n
− E [X1]

)
|
]
≤ |(u−1)′(yn)|

√
E [u′(Yn)2]

σP (X1)√
n

. (A.5)

The dominated convergence theorem implies that
√

E [u′(Yn)2] → u′(E [X1]), because Yn →
E [X1] P -a.s., and 0 ≤ u′(Yn) ≤ u′(E [X1]) ∨ u′(Sn/n) where u′(Sn/n) is bounded by some
square integrable random variable independent of n by assumption. Also yn → u(E [X1]) and
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hence

(u−1)′(yn) =
1

u′(u−1(yn))
→ 1

u′(E [X1])
,

which proves (2.7). If X1 has finite fourth moment, then applying Hölder’s inequality to the
error term in (A.4) yields

E

[
|u′′(Zn)− u′′(E [X1])|

(
Sn
n
− E[X1]

)2
]

≤
√

E
[
(u′′(Zn)− u′′(E [X1]))

2
]√nMP (X1) + 3n(n− 1)σ2P (X1)2

n2

≤ 2

n

√
E
[
(u′′(Zn)− u′′(E [X1]))

2
]√

MP (X1) + σ2P (X1)2, (A.6)

where MP (X1) := E
[
(X1 − E [X1])

4
]
. We have E

[
(u′′(Zn)− u′′(E [X1]))

2
]
→ 0 by dominated

convergence since |u′′(Zn) − u′′(E [X1])| ≤ |u′′(Zn)| + |u′′(E [X1])| and u′′ is bounded on the
range of X1. Also zn → u(E [X1]) for n → ∞, and using (u−1)′(zn) = 1/u′(u−1(zn)), we
conclude from (A.4) that

n

(
U

(
Sn
n

)
− E [X1]

)
→ 1

2

u′′(E [X1])

u′(E [X1])
σ2P (X1).

A.2 Proof of Theorem 3.4

First we prove (3.8). To this end recall the proof of Proposition 3.3 and in particular (3.7).
Also recall (A.4) and (A.6). As X1 is bounded we estimate the last term in (A.4) for Q ∈ P
using (A.6) in the following way:

∆(n,Q) :=

∣∣∣∣∣(u−1)′(zQn )
1

2
EQ

[
(u′′(ZQn )− u′′(EQ [X1]))

(
Sn
n
− EQ [X1]

)2
]∣∣∣∣∣

≤ 2L
(4‖X1‖4P,∞ + ‖X1‖2P,∞)

1
2

n
EQ
[
|u′′(ZQn )− u′′(EQ [X1])|2

] 1
2

≤ 2L
(4‖X1‖4P,∞ + ‖X1‖2P,∞)

1
2

n
EQ
[
|u′′′(ζQ)|2|ZQn − EQ [X1] |2

] 1
2 .

Here L is an upper bound of the continuous function int domu 3 x 7→ 1/u′(x) on the compact
set [ess infP X1, ess supP X1], and we have used that zQn ≤ u(EQ [X1]) (because u′′ ≤ 0) while
the function int domu 3 x 7→ (u−1)′(x) = 1

u′(u−1(x))
is positive, increasing, and continuous, so

(u−1)′(zQn ) ≤ 1/u′(EQ [X1]). We also used the rough estimate

MQ(X1) + σ2Q(X1) ≤ 16‖X1‖4P,∞ + 4‖X1‖2P,∞.

Moreover, ζQ is a random variable taking values between ZQn and EQ [X1]. Note that ZQn is
the random variable taking values between EQ [X1] and Sn/n corresponding to Zn in (A.4).

Estimating |u′′′(ζQ)| from above by an upper bound L̂ of the continuous function int domu 3
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x 7→ |u′′′(x)| on the compact set [ess infP X1, ess supP X1], and using |ZQn −EQ [X1] | ≤ |Sn/n−
EQ [X1] | we conclude that

EQ
[
|u′′′(ζQ)|2|ZQn − EQ [X1] |2

]
≤ L̂EQ

[∣∣∣∣Snn − EQ [X1]

∣∣∣∣2
]

≤ L̂

n
σ2Q(X1) ≤

4‖X1‖2P,∞L̂
n

.

Thus, there is a constant K > 0, depending on X1 and u, but independent of n and Q, such
that

∆(n,Q) ≤ K

n3/2
.

By similar arguments as above, we observe that the second term in (A.4) satisfies

Γ(n,Q) :=
∣∣(u−1)′(zQn )− (u−1)′(u(EQ [X1]))

∣∣ |u′′(EQ [X1])|σ2Q(X1)

2n

≤

∣∣∣∣∣(u−1)′
(
u(EQ [X1]) +

1

2
EQ

[
u′′(ZQn )

(
Sn
n
− EQ [X1]

)2
])
− (u−1)′ (u(EQ [X1]))

∣∣∣∣∣ L̃n
for some constant L̃ only depending on X1 and u. In the first factor we used that (u−1)′ is
increasing and the bounds for zQn given after (A.4). As u−1 is twice continuously differentiable

there is ηQn ∈ [u(EQ [X1]) + 1
2EQ

[
u′′(ZQn )(Snn − EQ [X1])

2
]
, u(EQ [X1])] such that∣∣∣∣∣(u−1)′

(
u(EQ [X1]) +

1

2
EQ

[
u′′(ZQn )

(
Sn
n
− EQ [X1]

)2
])
− (u−1)′ (u(EQ [X1]))

∣∣∣∣∣
≤ |(u−1)′′(ηQn )|1

2
EQ

[
|u′′(ZQn )|

(
Sn
n
− EQ [X1]

)2
]
.

Consider the estimate

1

2
EQ

[
u′′(ZQn )

(
Sn
n
− EQ [X1]

)2
]
≥ − L̄

2
EQ

[(
Sn
n
− EQ [X1]

)2
]
≥ −L̄

2‖X1‖2P,∞
n

,

where −L̄ is a lower bound of u′′ on the compact set [ess infP X1, ess supP X1] (recall that
u′′ ≤ 0). Thus, for n0 ∈ N large enough such that for all n ≥ n0, we have

ess infP X1 − L̄
2‖X1‖2P,∞

n
∈ int domu,

and choosing an upper bound K̂ of the continuous function (u−1)′′ on the compact set

[u(ess infP X1 − L̄
2‖X1‖2P,∞

n0
), u(ess supP X1)],
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we may further estimate

|(u−1)′′(ηQn )|1
2

EQ

[
|u′′(ZQn )|

(
Sn
n
− EQ [X1]

)2
]
≤ K̂L̄

2‖X1‖2P,∞
n

.

Summing up, we have shown that there is a constant K̃ depending on X1 and u, but indepen-
dent of Q and n, such that

Γ(n,Q) ≤ K̃

n2
.

Thus, using (3.7) and our estimates above, we deduce that

n

(
U(X1)− UP

(
Sn
n

))
≤ 1

n
+ n sup

Q∈P

{
EQ [X1]− UQ

(
Sn
n

)}
≤ 1

2
sup
Q∈P

R(EQ [X1])σ
2
Q(X1) +

1 + K̃

n
+

K√
n
,

which proves (3.8). As for (3.9), let Q ∈ P such that U(X1) = EQ [X1] + α(Q). Then,

U(X1)− UP
(
Sn
n

)
≥ EQ [X1]− UQ

(
Sn
n

)
.

Hence, (3.9) follows from Theorem 2.5.
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