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Complex systems – such as gas turbines, industrial plants
and infrastructure networks – are of paramount importance
to modern societies. However, these systems are subject
to various threats. Novel research does not only focus on
monitoring and improving the robustness and reliability of
systems but also their recovery from adverse events. The
concept of resilience encompasses these developments. Ap-
propriate quantitative measures of resilience can support
decision-makers seeking to improve or to design complex
systems. In this paper, we develop comprehensive and widely
adaptable instruments for resilience-based decision-making.
Integrating an appropriate resilience metric together with a
suitable systemic risk measure, we design numerically ef-
ficient tools aiding decision-makers in balancing different
resilience-enhancing investments. The approach allows for a
direct comparison between failure prevention arrangements

and recovery improvement procedures, leading to optimal
trade-offs with respect to the resilience of a system. In addi-
tion, the method is capable of dealing with the monetary as-
pects involved in the decision-making process. Finally, a grid
search algorithm for systemic risk measures significantly re-
duces the computational effort. In order to demonstrate its
wide applicability, the suggested decision-making procedure
is applied to a functional model of a multi-stage axial com-
pressor, and to the U-Bahn and S-Bahn system of Germany’s
capital Berlin.

1 Introduction
Modern societies rely on the operations of various com-

plex systems, such as gas turbines, industrial plants or in-
frastructure networks. These form complex capital goods
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whose construction, improvement and regeneration are of
paramount importance. However, these systems are subject
to various threats. Evidence shows that a wide range of nat-
ural, technical and anthropogenic impacts at all scales can
severely affect the functionality of these systems. Due to
their high and increasing complexity, it is infeasible to iden-
tify all potential adverse impacts and to prevent them ac-
cordingly. Novel developments are therefore important that
do not only focus on monitoring and improving the robust-
ness and reliability of systems but also their recovery from
adverse events [1]. The concept of resilience encompasses
these developments: analyzing and optimizing robustness,
reliability and recovery of systems – both from a technical
and from an economic perspective [2–4]. Resilience ap-
plied to the artificial systems of our modern society leads
to a paradigm shift. Secure systems cannot only be based on
strategies that prevent failures but must include strategies for
the efficient recovery in cases of failure.

The concept of resilience in the context of engineering
applications has gained growing popularity in recent years
[5], [6]. The term “resilience” appears in several differ-
ent domains like ecology, economy, psychology as well as
in the context of mechanical and infrastructure systems and
is derived from the Latin word “resilire” which means “to
bounce back”. The concept of resilience first appeared in
the domain of ecological systems by Holling [7]. He de-
fined resilience as “[. . . ] a measure of the persistence of sys-
tems and their ability to absorb change and disturbance and
still maintain the same relationships between populations or
state variables.”. Although many different definitions of re-
silience were introduced in the context of engineering and
complex systems (see e.g. [8–12]), the early definition from
Holling [7] captures key aspects of all of them.

Ayyub [13] provides a review of the literature and devel-
ops a comprehensive definition of resilience in the context of
complex systems which is based on the content of the Pres-
idential Policy Directive (PPD) on critical infrastructure se-
curity and resilience [14]: “Resilience notionally means the
ability to prepare for and adapt to changing conditions and
withstand and recover rapidly from disruptions. Resilience
includes the ability to withstand and recover from distur-
bances of the deliberate attack types, accidents, or naturally
occurring threats or incidents. The resilience of a system’s
function can be measured based on the persistence of a cor-
responding functional performance under uncertainty in the
face of disturbances.”. This novel definition embraces the
former definitions, and provides a solid basis for the quan-
tification of resilience.

Our paper suggests a novel quantitative approach to re-
silience enabling decision-makers to efficiently design and
improve complex systems present all over our modern com-
munities [1,15]. Resources are not unlimited, and resiliences
cannot arbitrarily be improved in reality; realistic models
must reflect constraints and methods must be developed
that support decision-makers in choosing between different
resilience-enhancing investments [4], [16].

The present paper provides an efficient method for iden-
tifying the cost-effective allocations of different resilience-
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Fig. 1. In the evolution of a system after the impact of a disruptive
event, different phases can be distinguished: (i) the original stable
state, (ii) disruptive impact, vulnerability, (iii) disrupted state and re-
covery. These are separated by the following points in time: to -
beginning of the original stable state; te - end of the original stable
state due to the occurrence of a disruptive event; td - end of disrup-
tive impact and beginning of disrupted state; ts - end of disrupted
state and beginning of system recovery; t f - end of system recovery
and beginning of new stable state; adapted from [19].

enhancing investments by combining the resilience metric of
Ouyang, Dueñas-Osorio & Min [17] and the systemic risk
measure of Feinstein, Rudloff & Weber [18]. A grid search
algorithm for systemic risk measures significantly reduces
the computational effort. In order to demonstrate its wide
applicability, the suggested decision-making procedure is ap-
plied to a functional model of a multi-stage axial compressor,
and to the U-Bahn and S-Bahn system of Germany’s capital
Berlin.

The paper is structured as follows. Section 2 describes
the theoretical foundations: the quantification of resilience,
the systemic risk measure and its adaptation to technical sys-
tems, and the grid search algorithm. Section 3 develops on
this basis a novel resilience-based decision-making process.
In Section 4 and 5, the methods are, first, applied to a func-
tional model of an axial compressor and, second, to Berlin’s
suburban train (S-Bahn) and subway (U-Bahn) network. The
final Section 6 summarizes the results and discusses ques-
tions for future research.

2 Theoretical Fundamentals
2.1 Resilience Quantification

Applications of resilience to engineering problems rely
on the availability of quantitative measures of resilience.
Within the last two decades, various methodologies have
been developed. Comprehensive discussions of different re-
silience metrics are provided by Bergstöm et al. [5], Hosseini
et al. [15] and Linkov & Palma-Oliveira [20] . In addition,
Hosseini et al. [15] propose a specific classification system
for these metrics. Most resilience metrics are performance-
based, and the majority of performance-based measures of
resilience are assigned to the category of “generic resilience
metrics”. These determine resilience by comparing the per-
formance of a system before and after a disruptive event.
Further subcategories are constructed by distinguishing be-
tween time-dependent or time-independent and deterministic
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Fig. 2. Resilience triangle; adapted from [21]

or probabilistic metrics, respectively.
Performance-based approaches may be ratio-based,

integral-based, or both. When a system is exposed to a
disruptive event and recovers its functionality afterwards, it
passes through three essential phases: (i) The original stable
state whose duration can be interpreted as the reliability of
the system forms the first phase. (ii) The second phase is the
vulnerability of the system, represented by a loss of perfor-
mance after the occurrence of a disruptive event; the robust-
ness of the system mitigates the loss of performance. (iii)
The disrupted state of the system and its recovery to a new
stable state represent the recoverability and the last phase.
The three phases are illustrated in Fig. 1, with Q(t) denoting
the system performance at time t. The new stable state may
differ from the original state, e.g. in terms of its performance
which may be higher or lower.

The majority of resilience metrics in the literature is
based on system performance, i.e. on these three states and
their transitions. A quantitative measure of resilience thus
depends on the specific choice and definition of system per-
formance [3].

Bruneau et al. [21] propose a time-dependent metric of
the resilience of communities under seismic disruption in a
deterministic setting. If t0 is the time of occurrence of a dis-
ruptive event, t1 the time of complete recovery and Q(t) the
quality of the community infrastructure at time t, a specific
type of system performance, their metrics can be expressed
in the following form:

RBr =
∫ t1

t0
[100−Q(t)]dt. (1)

For systems with random performance this metric defines a
pathwise measure of resilience. Bruneau et al. [21] also in-
troduce the well-known principle of a “resilience triangle” as
illustrated in Fig. 2. Their approach was applied in various
contexts and forms a strong basis for several, later proposed
metrics [22–24]. Further resilience metrics in the context of
deterministic models were e.g. suggested by [25–29].

Pathwise metrics do not rely on probabilities and do not
capture quantities that depend on probabilities – such as the
rates of occurrences of disruptive events and the distribu-
tions or moments of the random size of disruptions or the

random times of their recovery. Such quantities require the
existence and knowledge of a probability measure on the sce-
nario space together with probabilistic resilience metrics, see
e.g. [12,30–33]. Very informative resilience metrics were in-
troduced by Ouyang et al. [17] and Ayyub [13]; both metrics
are probabilistic, time-dependent and universally applicable.

In this paper we utilize the probabilistic resilience met-
ric by Ouyang et al. [17]. Denoted by Res, it is defined as
the expectation of the ratio of the integral of the system per-
formance Q(t) over a time interval [0,T ] and the integral of
the target system performance T Q(t) during the same time
interval:

Res = E[Y ], where Y =

∫ T
0 Q(t)dt∫ T

0 T Q(t)dt
. (2)

System performance Q(t) is a stochastic process. T Q(t) is
generally considered as a stochastic process as well, but for
simplicity it is assumed to be a non-random constant T Q in
this work.

Sometimes it is useful to rewrite Eqn. (2) in terms of a
sum of the impact areas of failure events. If t1, t2, t3, . . . is
the sequence of the consecutive occurrences of failures, the
random number of failures up to time T is N(T ) = sup{n :
tn ≤ T}. The impact area AIAn is the expected area between
the reduced system performance curve and the target sys-
tem performance curve caused by the n-th failure within the
considered time interval. Under the assumption that the sys-
tem fully recovers before its next failure, one obtains that
AIAn = E

(∫ tn+1
tn [T Q−Q(t)]dt

)
. In this case, Eqn. (2) can

be written as

Y = 1− ∑
N(T )
n=1 AIAn

T Q ·T
. (3)

The resilience metric takes values between 0 and 1. The
value Res = 1 indicates a system performance corresponding
to the target performance, while Res = 0 captures that the
system is not working during the considered time period.

2.2 Systemic Risk Measure
Feinstein et al. [18] propose a novel approach to mea-

suring risk inherent in complex systems. Their methodology
is based on two key components: first, a suitable descrip-
tive input-output model; and, second, an acceptance crite-
rion representing the normative safety standards of a regula-
tory authority. These systemic risk measures were e.g. con-
sidered in finance, see Weber & Weske [34], and applied to
power transmission, see Cassidy et al. [35].

Let (Ω,F,P) be a probability space, l ∈ N the number
of entities in the considered system and k ∈ Rl a vector of
controls. For each scenario ω ∈ Ω and a control vector k,
we denote by Yk(ω) the relevant stochastic outcome of the
system; for each k ∈ Rl , Yk is a random variable.

In the context of financial systems, the vector k is the
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“endowment” and describes the capital allocation to the en-
tities of the system. The underlying input-output model of
the system is given by Y = (Yk)k∈Rl , a non-decreasing ran-
dom field taking values in some vector space X of random
variables. The monotonicity property encodes that a larger
capital allocation, ki ≤ mi ∀ i = 1, . . . , l, increases the ran-
dom outcome, i.e. Yk ≤ Ym. The acceptance criterion is de-
scribed by the set A ⊆ X of random variables meeting the re-
quirements of a decision-maker; for a survey on acceptance
sets and monetary risk measures we refer to Föllmer & We-
ber [36].

The systemic risk measure constructed from these two
basic ingredients, the input-output model and the acceptance
criterion, is the set of allocations of additional capital leading
to random outputs that satisfy the acceptance criterion, i.e.

R(Y ;k) =
{

m ∈ Rl | Yk+m ∈ A
}
. (4)

2.3 Adapted Systemic Risk Measure
The systemic risk measure introduced in the previous

section can be applied to engineering systems with compo-
nents of multiple types with several endowment properties.
We consider technical systems for which a meaningful sys-
tem performance Q(t) can be determined. It is assumed that
the system consists of l system components each character-
ized by their type and n properties that influence the system
performance. For convenience, we replace the vector nota-
tion of the previous section by matrix notation.

Consider a component i ∈ {1, ..., l}. Such a component
can be characterized by a row vector

(ai; ji) = (ηi1,ηi2, ...,ηin; ji) ∈ R(1×n)×N, (5)

where (ηi1,ηi2, ...,ηin) are the numerical values of the n rele-
vant properties and ji ∈ {1,2, . . . ,b} ⊆N is its type. Once all
components are specified, the system is described by a pair
consisting of a matrix A ∈R(l×n) and a column vector z ∈Nl

that captures the types of the components:

(A;z) =


η11 η12 . . . η1n; z1
η21 η22 . . . η2n; z2

...
...

...
...

ηl1 ηl2 . . . ηln; zl

 . (6)

The input-output model Y = (Y(A;z)) is enumerated by these
pairs. In our case studies, we will typically assume that vec-
tor z of types is fixed and investigate the impact of a varying
matrix A.

A corresponding systemic risk measure is now con-
structed as follows. As a specific example, we choose the
acceptance set

A = {X ∈ X | E[X ]≥ α} with α ∈ [0,1]. (7)

A corresponding risk measure is defined by

R(Y ;K) = R(Y ;(K;z)) =
{

A ∈ Rl×n | Y(K+A;z) ∈ A
}
, (8)

which is the set of all allocations of modifications of the sys-
tem properties A such that the altered system characterized
by (K +A;z) possesses a resilience greater or equal to α. In
order to keep the notation simple and without loss of gener-
ality we set K = 0, and R(Y ;0) is written as R(Y ).

For practical applications it is often necessary to impose
restrictions on the structure of the matrix in Eqn. (6). For ex-
ample, it might be required that any component of a specific
type is configured in the same way, meaning that the corre-
sponding row vectors ai must be equal. As described in [18],
such constraints can be captured by monotonously increasing
functions gz : Rp→R(l×n), a′ 7→ (A;z) where z ∈Rl denotes
the types of the components; these functions map a lower-
dimensional set of parameters a′ ∈ Rp to the description of
the system.

To illustrate this, we consider a system with l = 5 com-
ponents of b = 2 types. Each component is characterized by
its two endowment properties and its type, i.e. (ηi1,ηi2; ji),
and we assume that ηi2 is a function of the type ji of the
component i. More specifically, we suppose that ηi2 = 3 for
type 1 and ηi2 = 5 for type 2. We choose p = 5 and consider
as an example the types z = (1,1,1,2,2)>. This leads to the
following characterization of the system:

g1
1
1
2
2




q1
q2
q3
q4
q5

=


q1 3; 1
q2 3; 1
q3 3; 1
q4 5; 2
q5 5; 2

= (A;z). (9)

In this example, the constraint reduces the dimension from
10 = 5×2 to 5.

The dimension of the space of parameters can be further
reduced, if more constraints are introduced. Consider e.g.
the additional condition that the first endowment property ηi1
is a function of the type of the components, but that it can
otherwise freely be chosen. This implies for the given types
z = (1,1,1,2,2)> that q1 = q2 = q3 and q4 = q5. In this case,
p = 2 becomes the appropriate dimension of the parameter
space.

2.4 Grid Search Algorithm
Set-valued systemic risk measures can be computed via

a combination of a grid search algorithm and stochastic sim-
ulation, see [18]. To employ this algorithm, a box-shaped
subset of endowments which are of interest is subdivided by
a grid of equally spaced points.

The grid search algorithm proceeds as follows. In a first
step, the search is started at the origin of the considered box;
we assume that the origin is outside of R(Y ); from here, the
acceptance criterion is successively evaluated for each adja-
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cent grid point, lying on the diagonal of the grid identified
by the direction (1,1, . . . ,1)>. Each evaluation typically re-
quires stochastic simulation. The search along the diagonal
direction is interrupted as soon as a point satisfying the ac-
ceptance criterion is identified. Due to the monotonicity of
the input-output model and the properties of the acceptance
criterion (c.f. [18]), all grid points representing superior en-
dowments are acceptable as well and belong to R(Y ). Analo-
gously, all endowments that are worse than the first identified
point are rejected, thus belonging to R(Y )c, the complement
of the systemic risk measurement. It is precisely this mono-
tonicity property that makes the algorithm efficient.

Each pair of diagonally adjacent points, one meeting the
requirements and the other not, defines a sub-box. The al-
gorithm checks the remaining corners of this sub-box and
can quickly assign an acceptance status to dominating resp.
dominated endowments. Subsequently, new pairs of points
can be determined, one in R(Y ) and one outside. The succes-
sively resulting sub-boxes are checked in the same way as
before. The algorithm terminates when all points on the grid
are assigned to an acceptance status. It finally determines a
discrete grid-approximation of R(Y ).

For a more detailed description of the grid search algo-
rithm we refer to [18, Ch. 4].

3 Resilience Decision-Making
The decision-making process for resilience-enhancing

endowments in complex systems, developed in this work, in-
tegrates resilience metrics and systemic risk measures. As
discussed in Zuev et al. [37], complex systems are often de-
scribed as networks: nodes and edges represent systems as
well as the connections between their components. System
components may be represented as both network edges or
nodes – whatever representation is more appropriate.

In order to illustrate our method, we consider a specific
flow network as shown in Fig. 3. This network consists of
seven nodes and eight edges, as well as a source node de-
noted by s characterized by an initial flow w and a target
node denoted by t with a destination flow v, respectively. The
network edges represent the essential components of the net-
work. Each component is assigned to one of two types, i.e.
b = 2. We set n = 2, i.e. two endowment properties are as-
sociated with each component: a capacity c and a recovery
improvement r∗. Each component i ∈ {1, ...,8} is character-
ized by (ai; ji) = (ci,r∗i ; ji) ∈ R(1×2)×{1,2}.

System performance and resilience are analyzed for a
time window [0,T ]. The interval is partitioned into u parts
by the time points 0 = t0 < · · ·< tu−1 < tu = T . System per-
formance Q(t) is defined as a piecewise constant stochastic
process that evaluates the ratio of the destination flow and the
initial flow at each time point, i.e.

Q(t) =
v(th)

w
with t ∈ [th, th+1). (10)

We assume that partition is equidistant, i.e. ∆t = th+1− th =

T
u ∀h. The specification of a notion of system performance
is, of course, not uniquely determined by the system; in-
stead, alternative choices may be analyzed simultaneously
and should thereby be carefully selected to enable suitable
resilience analysis for the intended decision-making process.

The flow for a given endowment (A;z) is simulated as
follows: at each time point th, the flow of the entire network
is computed as follows. The flow starts at the source node
and runs iteratively by means of a node-by-node breadth-first
search through the entire network up to the destination node.
Each node receives the partial flows from all edges leading
into it and returns them to all subsequent edges, obeying the
following allocation rules: (i) the incoming flow is allocated
to all subsequent edges such that 30% runs into edges of type
1 and 70% runs into edges of type 2. Among subsequent
edges of the same type, the relevant flow is uniformly allo-
cated; (ii) if the capacity of a subsequent edge is exceeded,
this edge is destroyed immediately and the flow is instead
reallocated to the remaining edges according to (i); (iii) if a
node has no subsequent edge, the flow emanating from this
node is lost, i.e. the node becomes a sink.

After the flow has been computed at the time point th, the
simulation proceeds to time step th+1 = th +∆t: Edges that
have been destroyed at time th are removed from the network
in consecutive time steps unless they are recovered; the pro-
cess of recovery will be described below. In addition, each
edge can fail at random after the flow has been computed at
time th and before time th+1. At time th+1, the algorithm (i)
– (iii) described above is then applied to the remaining net-
work.

The failure probability of the edges in the time interval
(th, th+1),

P{Component i fails during (th, th+1)}= ∆t ·λi(th), (11)

depends on the utilization of the maximum edge capacity
caused by the flow; letting vi(th) be the current flow of the
edge i, ci its capacity and β > 0 a mitigation factor, we set

λi(th) = β · vi(th)
ci

. (12)

As discussed by Ayyub [13], multiple causes and processes
can lead to failures. In this illustrative example and in appli-
cations in later sections, we consider only immediate failures
due to overload or random impacts; failure might also occur
due to a loss of performance in time, e.g., by aging, etc.

After failure, each destroyed edge is assumed to be im-
mediately recovered to the original performance level after a
certain number of time steps

r = rmax− r∗ with r∗ < rmax, (13)

where rmax is an upper bound for number of time steps for re-
covery and r∗ is a reduction specific to the component. Since
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Fig. 3. Example of a flow network with b = 2 component types.
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Fig. 4. Monte Carlo sample average of the system performance
Q(t) for the flow network shown in Fig. 3, considering the follow-
ing model and simulation parameter values: rmax = 21, r∗i = 11 for
all edges, ci = 12 for all edges of type ji = 1, ci = 8 for all edges
of type ji = 2, β = 0.025, u = 100, ∆t = 0.01 .

each time step has a length of ∆t = T
u , the duration of the re-

covery process is r · T
u . This recovery model corresponds to a

one step recovery profile; as discussed before in the context
of failure profiles, various characteristic profiles of recovery
in time are possible as well, cf. [3, 13].

In the context of our model, the simulation procedure is
executed consecutively for all time points, resulting in a sin-
gle path of the performance process t 7→ Q(t) over the time
interval [0,T ]. A sample average of the system performance
as a function of time T obtained from a Monte Carlo Simu-
lation is exemplarily illustrated in Fig. 4. The probabilistic
resilience metric given in Eqn. (2) can, of course, also be
computed as a suitable average of Monte Carlo samples.

When analyzing the resilience of the system, an impor-
tant task consists in determining the set of all endowment
configurations (A;z) that lead to a prescribed acceptable level
of system resilience. The numerical procedure is computa-
tionally expensive, but tractable due to the grid search algo-
rithm by Feinstein et al. [18]. In addition, the problem is also
simplified if restrictions are imposed on the matrix A via a
suitable function gz where z denotes the vector of types; this
was discussed in the Section 2.3.

To illustrate this procedure in the context of a flow
network model, we fix the vector of types z ∈ {1,2}8 for
the eight edges. Figure 3 provides, for example, z =
(2,1,2,1,2,2,1,2)>. We assume that the constraint function
gz captures the following restrictions: (a) Recovery improve-
ments r∗i are fixed and equal for all components i. (b) Capac-
ities ci are a function of the type ji of the components i, i.e. if
two components are of the same type, they possess the same
capacity. We explore a range of capacities in order to sepa-
rate acceptable and inacceptable pairs. Figure 5 provides an
example how the results of the grid search algorithm could
look like. The blue dots signify the acceptable pairs of ca-
pacities of the two types of components, whereas red dots are
inacceptable pairs. Acceptable pairs satisfy the desired re-
silience criterion while inacceptable pairs do not. Obviously,
the computation of the systemic risk measure significantly
facilitates decision-making.

Additionally, the procedure allows the integration of
monetary aspects into any decision process that is focussing
on the resilience of the system. An important question con-
cerns the identification of a least expensive configuration that
is acceptable with respect to the chosen resilience criterion.
If increasing the endowment values is costly, a least expen-
sive solution will always be at the boundary between the red
and the blue area. If the price of the endowments is linearly
increasing, prices define a normal vector to this boundary
that characterizes the least expensive acceptable configura-
tions on the boundary, as illustrated by the green points in
Fig. 5. Finding the least expensive configurations corre-
sponds to efficient allocation rules (EAR) as introduced by
Feinstein et al. [18].

4 Multi-Stage High-Speed Axial Compressor
Gas turbines are a highly important technology em-

ployed in industrial application, e.g., for electricity produc-
tion, as well as in the military and transportation sector, e.g.,
as component of aircraft propulsion systems. In particular,
axial compressors are one of the key components of gas tur-
bines. For economic and safety reasons, it is of the utmost
importance that they are as resilient as possible. In order to
illustrate how the decision-making method developed in this
paper allows for an analysis of the financial burden of in-
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are highlighted in green.

creasing resilience and for an optimal choice between differ-
ent instruments to enhance resilience, our method is applied
to a functional model of an axial compressor.

4.1 Model
In a previous work by one of the authors of this paper,

developed within the Collaborative Research Centre 871,
founded by the German Research Foundation [38], a func-
tional model of an axial compressor was created as the foun-
dation for a reliability analysis. This model has been devel-
oped to represent the reliability characteristic and function-
ality of the four-stage high-speed axial compressor of the In-
stitute for Turbomachinery and Fluid Dynamics at Leibniz
Universität Hannover. Detailed information about this axial
compressor is provided in [39–41].

The model captures the influence of the roughness of the
blades in the individual stator and rotor rows, alternately con-
nected in series, on the performance of the axial compressor,
namely on the total-to-total pressure ratio and on the total-
to-total isentropic efficiency. This functional model of the
axial compressor has been assembled by applying a sensi-
tivity analysis and identifying the Relative Important Indices
from an aerodynamic model of the compressor. The network
representing the functional model is shown in Fig. 6. Each
component of the reliability-based model represents one of
the rotor blade rows (R1 - R4) or stator blade rows (S1 - S4).
The arrangement of the components was chosen according
to the effect of blade roughness on the two performance pa-
rameters of the axial compressor. More specifically, an inter-
ruption between start and end means a performance variation
of at least 25%, corresponding to a non-functional compres-
sor. This defines the system performance Q(t) of the func-
tional model for the subsequent application of the resilience
decision-making method. The system performance is deter-

R3

R1 R2

R4

S2

S1

S3

S4

Fig. 6. Functional model of the multi-stage high-speed axial com-
pressor

mined at each time point th and is 1 if there is a connection
from start to end and 0 if this connection is interrupted. More
detailed information on the functional model and its formu-
lation can be obtained from [38].

For the analysis, as components, we do not distinguish
between the stator blade rows and rotor blade rows and
enumerate them by i ∈ {1, . . . ,8}. Further, each of them
is assigned to the same component type, i.e. it is ji = 1
∀i ∈ {1, . . . ,8}, and we therefore simplify the notation by
(ai; ji) = (ai;1) = ai ∀i ∈ {1, . . . ,8}. Each row, i.e. each
component of the functional model, is assumed to be charac-
terized by two endowment properties, a roughness resistance
re and a recovery improvement r∗, so that a component is
fully described by ai = (rei,r∗i ). Both, the roughness resis-
tance rei and the recovery improvement r∗i of each row i are
assumed to be functions of the type ji, i.e. rei = rei′ , r∗i = r∗i′
if ji = ji′ and are therefore in this case study equal for all
components. This restriction can be captured by a suitable
constraint function gz, cf. Section 2.3.

It should be noted that, in order to improve the rough-
ness resistance of a blade, techniques that counteract the
roughening of the surface are required. However, such tech-
niques are not clearly identifiable and readily available at the
moment. Within the scope of this example, the application of
methodologies leading to an improvement of the resistance,
e.g., by applying coating techniques, can nevertheless still be
envisioned for the scope of the analysis. As an example, in
areas not inherent with the mechanical resistance, the prin-
ciple of blade coatings is already extensively employed, e.g.
in the reduction of heat transfer from the gas flow into the
blades by means of thermal coatings [42].

Each component of the functional model can fail at ran-
dom after the system performance has been computed at time
th. A failed component is treated as no longer present in the
model and does not contribute to the overall system perfor-
mance at time th+1 and all subsequent time points anymore
until it is fully recovered. The failure probability of a compo-
nent i in the time interval (th, th+1) is assumed to be constant
in time, cf. [38], and is given by

P{Component i fails during (th, th+1)}= ∆t ·λi (14)

7



with

λi = 0.8−0.03 · rei, (15)

where λi is the time-independent failure rate. An increase of
the roughness resistance of a row of blades will reduce the
degradation of the surface and thus the corresponding failure
rate λi. In contrast to the flow model in Section 3, in the
functional model of the axial compressor a component can
fail exclusively at random.

If a component i failed, its functionality is assumed to
be fully recovered after a number of time steps according
to Eqn. (13). Single-step failure and recovery profiles are
assumed in this application (cf. Section 3).

4.2 Costs of Endowment Properties
The optimal endowment properties are related to the

quality of the components, and an increase in their produc-
tion quality is associated with large costs. This should be
taken in to account in the decision-making process. As dis-
cussed in [43], an increase of the reliability of components
in complex networks might be associated to an exponential
increase in their costs and in our analysis we will make such
an assumption.

The endowment property “roughness resistance” affects
the failure rate of the blades of a row, cf. Eqn. (14) and
(15). Better “roughness resistance” improves reliability, and
we assume that its total costs equals

costre =
8

∑
i=1

pricere ·1.3(rei−1), (16)

where rei is the “roughness resistance” value of component i
and pricere a common basic price that does not depend on i in
this case study. In a similar way an exponential relationship
is assumed for the cost associated to recovery improvement:

cost∗ =
8

∑
i=1

price∗ ·1.3(r∗i −1). (17)

The total cost cost of an endowment is the sum of these costs:

cost = costre + cost∗. (18)

4.3 Scenario
In order to apply the decision-making method for

resilience-enhancing endowments to the multi-stage high-
speed axial compressor, the model parameter and simulation
parameter values, shown in Tab. 1, are considered. An
resilience acceptance threshold of α = 0.8, an arbitrarily se-
lected number of u = 200 time steps as well as an arbitrarily
selected time step length of ∆t = 0.05 are assumed. We first
determine the set of all acceptable endowments correspond-

Table 1. Parameter values for the resilience decision-making
method for the functional model of the multi-stage high-speed axial
compressor

Parameter Scenario

Number of Rotor/Stator blade
rows l

8

Acceptance threshold α 0.8

Number of time steps u 200

Length of a time step ∆t 0.05

Maximum recovery time rmax 21

Recovery improvement r∗ r∗i ∈ {1, ...,20}

Roughness resistance re rei ∈ {1, ...,20}

Recovery improvement price
price∗

600e

Roughness resistance price
pricere

500e

ing to a resilience value of at least Res = 0.8 over the con-
sidered time period. Second, in practice any improvement
of the axial compressor blades is associated with costs; thus,
the least expensive acceptable endowment is characterized as
well, denoted by Â. The roughness resistance re and the re-
covery improvement r∗ are explored over rei ∈ {1, ...,20},
r∗i ∈ {1, ...,20}∀i ∈ {1, . . . , l}. These values can be inter-
preted as increasing quality levels. In terms of recovery, this
leads to a recovery time for the components of maximum 20
time steps to a minimum of one time step, depending on the
recovery improvement value r∗i of each component.

The scenario was simulated on the basis of the func-
tional model, following the procedure described in Sections
2.3 and 2.4. Figure 7 shows the results of the grid search
algorithm. The blue, filled dots are the acceptable pairs of
roughness resistance and recovery improvement. In terms
of system resilience, the impact of the quality of recovery
improvement and the quality of the blade coatings can be
compared. For example, for recovery improvement values of
r∗i ≥ 15 time steps, only the minimum roughness resistance
value of rei = 1 is necessary in order to achieve the desired
level of system resilience.

By applying the grid search algorithm [18], only about
10% of the possible pairs of roughness resistance and recov-
ery improvement values had to be tested to determine R(Y ).
As described in Section 3, the least expensive endowment is
an element of the boundary of R(Y ). Taking into account
the base prices in Tab. 1, the least expensive endowment i
characterized by a roughness resistance of rei = 8 and a re-
covery improvement of r∗i = 13 for each component. In Fig.
7 the corresponding pair is highlighted in green. According
to Eqn. (17) its cost is 136930e.
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Fig. 7. Numerical results of the grid search algorithm for the func-
tional model of the axial compressor with explored roughness resis-
tance/recovery improvement values

5 Berlin’s U-Bahn and S-Bahn system
Berlin’s subway U-Bahn, suburban train S-Bahn, trams

and buses carry more than 1.5 billion passengers each year.
Approximately two thirds of these passengers are transported
via the S-Bahn and U-Bahn rails ( [44], [45]). These are
the most used public transport systems in Berlin and of ut-
most importance for Germany’s capital. Obviously, key in-
frastructures of high social and economic relevance require
a large degree of resilience. The method developed in this
paper will be applied to a model of the Berlin subway and
suburban train system, with the aim of examining suitable
resilience-enhancing modifications. Our methodology could
also be applied to assess the resilience of new systems that
are still in their design phase. This provides an opportunity to
characterize ex ante adequate system requirements in terms
of reliability, robustness and regenerative capacity.

5.1 Model
The U-Bahn and S-Bahn public transportation systems

in Berlin are interconnected via multiple train stations. As
described in [37], they may thus be considered as one single
public transport network, in the following called “metro net-
work”. Zhang et al. [46] explain how a metro network can be
mapped into a topological graph: train stations correspond
to the nodes, the connecting railway lines to the edges of
the graph. For simplicity, we map parallel railway lines be-
tween two stations to one single undirected edge. In this way,
the complexity of the metro network can be significantly re-
duced. In the case of the Berlin metro network, this pro-
cedure leads to a topological graph with 306 nodes and 350
edges. This representation of the U-Bahn and S-Bahn system
is shown in Fig. 8.

We begin our analysis with the definition of a suitable

metric of the system performance of the network, as ex-
plained in Section 2.3. Zhang et al. [47] present resilience
assessments for large-scale metro networks and apply their
approach to the Shanghai metro network. They suggest that
the connectivity between the individual stations is an essen-
tial criterion for assessing metro operations. Their approach
employs the characteristics of topographic networks in order
to capture resilience, e.g., the characteristic path length, the
network-clustering coefficient, the average node degree and
the network efficiency.

Network efficiency, as described by Latora & Marchiori
[48], is a quantitative indicator of the network connectivity:

E f =
1

N(N−1) ∑
i 6= j

1
di j

, (19)

with N being the number of nodes in the network and di j
being the path length between node i and node j, i.e. the
shortest distance between these nodes. We use the network
efficiency E f as system performance of the Berlin metro net-
work in each time point th, previously denoted by Q(th).
Zhan & Noon [49] and Dreyfus [50] provide a good overview
of tools for efficiently determining the path length di j be-
tween nodes, e.g. the algorithms of Floyd, Dijkstra’s or
Bellman-Ford.

The node degree represents the number of nodes in the
graph that have a direct connection to the i-th node. In many
useful random graphs, the distribution of node degrees fol-
lows a power distribution, see e.g. Barabási & Albert [51].
Figure 9 shows the relative frequencies of the node degrees
in case of the Berlin metro network which could be approxi-
mated by a power distribution.

Metro stations are modeled as nodes of the network. We
assume that each metro station i is characterized by two en-
dowment properties, a) robustness roi and b) recovery im-
provement r∗i ; a component i of type ji is described by a tu-
ple (ai; ji) = (roi;r∗i ; ji). Again both endowment properties
are assumed to be functions of their component type ji only,
such that roi = roi′ and r∗i = r∗i′ if ji = ji′ . These restrictions
can again formally be captured by the constraint function gz
that explicitly describes the reduction of the dimension of the
problem, cf. Section 2.3.

Metro stations fail at random. The failure probability for
each component i is

P{Component i fails during (th, th+1)}= ∆t ·λi(th) (20)

with

λi(th) = (1+ ki(th) ·0.2)−
roi

romax
, (21)

where λi(th) is the failure rate at time th, ki(th) is the time-
dependent number of direct neighbors of the i-th metro sta-
tion that are in a failed state at time th, roi is the robustness of
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Fig. 8. Topological network for the Berlin metro system
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Fig. 9. Relative frequency of node degrees for the metro network of
Berlin

the i-th metro station and romax is the maximum value of the
robustness. As the robustness of a metro station i increases,
its failure rate λi(th) decreases. In the event of failure of a
directly adjacent metro station, its probability of failure in-
creases; a rational for this assumption is that the load on the
considered station becomes larger which increases the likeli-
hood of failure. This phenomenon might potentially lead to
cascading failures, cf. [52–54].

The second endowment property, the recovery improve-

ment r∗i , determines the time to recovery after failure accord-
ing to Eqn. (13). Failed metro stations are not removed,
but remain in the set of metro stations; however, their node
degree becomes 0 in the evolving network structure. This
assumption is important, since the computation and inter-
pretation of network efficiency E f depends on the number
of nodes; our case study relies on the fact that the number
of nodes is preserved. After recovery, all previous connec-
tions to other metro stations are restored, unless these are in
a state of failure. Our analysis focuses on determining the op-
timal endowments in terms of resilience. This is in contrast
to Zhang et al. [47] whose focus is – among other things –
the optimal order in which connections should be recovered.

5.2 Endowment Property Costs

Improving the endowment properties is costly. We again
assume an exponential relationship. The total cost of “ro-
bustness” for all stations is

costro = ∑
i

pricero
(roi; ji) ·1.2

roi−1, (22)

where ji is the type of station i, its robustness is roi and
its basic price of the endowment property “robustness” is
pricero

(roi; ji)
. The total cost of “recovery improvement” is
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given by

cost∗ = ∑
i

price∗(r∗i ; ji) ·1.2
r∗i −1, (23)

where ji is the type of station i, its recovery improvement is
r∗i and its basic price of the endowment property “recovery
improvement” is price∗(r∗i ; ji)

. The total cost cost(A;z) of an
endowment (A;z) is obtained as

cost(A;z) = costro + cost∗. (24)

5.3 Scenarios
We consider two different scenarios characterized by the

simulation and model parameters in Tab. 2. In both scenar-
ios we assume a resilience threshold of α = 0.8, a number of
u = 100 time steps and a time step length of ∆t = 0.01. The
objective of the analysis is to characterize suitable endow-
ment allocations such that the metro network’s resilience is
at least Res = 0.8. We will also identify the least expensive
acceptable endowments, denoted by (Â;z) in both cases.

5.3.1 Scenario 1
In the first scenario, each metro station is assigned to

one of two station types, namely “small” and “large”. The
“small” metro stations i (type ji = 1) have only one or two
direct neighboring stations, i.e. a node degree of 1,2, while
the “large” metro stations i (type ji = 2) have more than two
direct neighboring stations, i.e. a node degree > 2, and are
highlighted in red in Fig. 8. Out of all stations, a total of 245
are of type 1 and 61 of type 2.

The endowment properties of all components depend on
their type only. We vary robustness with roi ∈ {1, ...,20} for
all i. The recovery improvements of both component types
are fixed and equal r∗i = 15 for all components i indepen-
dently of their types.

Figure 10 shows the results of the grid search algorithm
for scenario 1. The blue, filled dots signify the pairs of ro-
bustness values that lead to acceptable endowments. In terms
of system resilience the robustness of the “small” metro sta-
tions is more important than the one of the “large” stations
in this case study. For example with large robustness values
for the “small” stations, i.e. roi ≥ 18 for ji = 1, acceptabil-
ity may be achieved even with a minimal robustness value
of roi = 1 of “large” stations, i.e. ji = 2. The slope of the
almost linear boundary indicates that in order to compensate
for the reduction of one robustness unit of the endowments
of the “small” stations, an increase of approximately 1.7 ro-
bustness units of the endowments of the “large” stations is
necessary.

This observation can be explained as follows: Firstly,
the number of “small” stations (245) is significantly larger
than the number of “large” stations (61) and thus their over-
all influence is large. Secondly, “small” stations are often
arranged in chains. If a station within such a chain fails, all
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Fig. 10. Numerical results of scenario 1 of the Berlin metro network,
varying robustness.

stations further out of town are automatically cut off from
the main network, which has a major impact on network ef-
ficiency.

Thanks to the grid search algorithm only about 10% of
all pairs of robustness values had to be tested to determine the
set of all accepted endowments. As described in Section 3,
the least expensive endowment is an element of the boundary
of the acceptable endowment allocations. For the parameters
in Tab. 2, the least expensive endowment corresponds to a
robustness of roi = 10 for all “small” stations i of type ji = 1
and a robustness of roi = 13 for all “large” stations of type
ji = 2. The corresponding pair of parameters is highlighted
in green in Fig. 10. The total endowment cost, computed
according to Eqn. (24), equals 6673579e.

5.3.2 Scenario 2

In the second scenario, all metro stations are assigned to
the same station type, and (ai; ji) can simply be written as
ai. We vary both recovery improvement and robustness, i.e.
r∗i ,roi ∈ {1, ...,20} ∀i.

Figure 11 shows the results of the grid search algorithm
for scenario 2. The blue, filled dots signify the pairs of ro-
bustness and recovery improvement values that lead to ac-
ceptable endowments. The application of the grid search al-
gorithm leads to a similarly reduction of the computing effort
as in scenario 1. For the parameters in Tab. 2 the least ex-
pensive endowment corresponds to robustness roi = 14 and
recovery improvement r∗i = 11 for all stations i; this is high-
lighted in green in Fig. 11. Its cost is computed according to
Eqn. (24) and equals 6995127e.
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Table 2. Parameter values for two scenarios of the decision-making method of the Berlin metro network

Parameter Scenario 1 Scenario 2

Number of nodes l 306 306

Number of edges 350 350

Acceptance threshold α 0.8 0.8

Number of time steps u 100 100

Length of a time step ∆t 0.01 0.01

Maximum recovery time rmax 25 25

Maximum robustness romax 20 20

Number of metro station types 2 1

Recovery improvement r∗ r∗i = 15 for ji ∈ {1,2} r∗i ∈ {1, ...,20}

Robustness ro roi ∈ {1, ...,20} for ji ∈ {1,2} roi ∈ {1, ...,20}

Robustness price pricero
(roi; ji)

pricero
(roi;1)

= 1000e pricero
roi

= 1500e

pricero
(roi;2)

= 2000e

Recovery improvement price price∗(r∗i ; ji)
price∗(r∗i ; ji)

= 1100e for ji ∈{1,2} price∗r∗i = 1100e
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Fig. 11. Numerical results of scenario 2 of the Berlin metro network,
varying robustness/recovery-improvement.

6 CONCLUSION
This paper introduces a procedure for decision-making

in complex systems that enables the optimal allocation of
scarce resources to resilience-enhancing endowments. The
methodology integrates systemic risk measures with time-
dependent and probabilistic resilience metrics. Our approach
is not limited to controls of the same type, but allows for a
direct comparison of the impact of heterogenous controls on
the resilience of the system, e.g. failure prevention and re-
covery improvement arrangements, over any period of time.

The system behavior itself may depend on a wide variety
of stochastic variables that influence its performance. Our
method characterizes, in a first step, all acceptable endow-
ments of system components that lead to a desired level of re-
silience. In a second step, it is capable of incorporating mon-
etary aspects into the decision-making process and admits
the identification of the least expensive controls. In addition,
we explain a grid search algorithm for systemic risk mea-
sures that significantly reduces the required computational
effort.

The suggested methodology is not limited to a certain
type of networks. This paper illustrates that the approach is
easily adaptable and universally applicable. Examples in this
paper include technical systems such as axial compressors
as well as infrastructure networks such as the Berlin metro
system. Many other applications are possible, thereby sup-
porting decision-makers in improving the complex systems
of our modern society and increasing their resilience.

Future research may apply the suggested methodology
to highly complex systems. In this paper many simplifying
assumptions were made in order to be able to focus on the
basic concepts and to demonstrate the versatility of the ap-
proach in concrete examples. More challenging problems,
e.g., higher dimensions of the parameter space, are left to fu-
ture developments. From a conceptional point of view, real-
world problems involve multiple objectives and are not lim-
ited to a finite time horizon. Future work should not only
focus on system resilience and the costs of the controls but
also on long-term effects, such as different expected prof-
its under a modified system resilience. Comprehensive deci-
sions require a deep understanding of the trade-off between
the costs and the gains of resilience. Further work will also
have to address the balancing between monetary and safety-
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related criteria for decision-making. The proposed method
provides powerful instruments for one important aspect: the
characterization of acceptable resilience-enhancing endow-
ments and the identification of the most cost-efficient alloca-
tion. This tool-box will be a prerequisite for future answers
to many challenging questions.
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