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Abstract

Uncertainty requires suitable techniques for risk assessment. Combining stochastic ap-
proximation and stochastic average approximation, we propose an efficient algorithm to
compute the worst case average value at risk in the face of tail uncertainty. Dependence
is modelled by the distorted mix method that flexibly assigns different copulas to different
regions of multivariate distributions. We illustrate the application of our approach in the
context of financial markets and cyber risk.
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1 Introduction
Capital requirements are an instrument to limit the downside risk of financial companies. They
constitute an important part of banking and insurance regulation, for example, in the context
of Basel III, Solvency II, and the Swiss Solvency test. Their purpose is to provide a buffer to
protect policy holders, customers, and creditors. Within complex financial networks, capital
requirements also mitigate systemic risks.

The quantitative assessment of the downside risk of financial portfolios is a fundamental,
but arduous task. The difficulty of estimating downside risk stems from the fact that extreme
events are rare; in addition, portfolio downside risk is largely governed by the tail dependence of
positions which can hardly be estimated from data and is typically unknown. Tail dependence
is a major source of model uncertainty when assessing the downside risk.

In practice, when extracting information from data, various statistical tools are applied for
fitting both the marginals and the copulas – either (semi-)parametrically or empirically. The
selection of a copula is frequently made upon mathematical convenience; typical examples in-
clude Archimedean copulas, meta-elliptical copulas, extreme value copulas, or the empirical
copula, see e.g. McNeil, Frey & Embrechts (2015). The statistical analysis and verification is
based on the available data and is center-focused due to limited observations from tail events.
This approach is necessarily associated with substantial uncertainty. The induced model risk
thus affects the computation of monetary risk measures, the mathematical basis of capital re-
quirements. These functionals are highly sensitive to tail events by their nature – leading to
substantial misspecification errors of unknown size.
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In this paper, we suggest a novel approach to deal with this problem. We focus on the
downside risk of portfolios. Realistically, we assume that the marginal distributions of individual
positions and their copula in the central area can be estimated sufficiently well. We suppose,
however, that a satisfactory estimation of the dependence structure in the tail area is infeasible.
Instead, we assume that practitioners who deal with the estimation problem share viewpoints
on a collection of copulas that potentially capture extremal dependence. However, practitioners
are uncertain about the appropriate choice among the available candidates.

The family of copulas that describes tail dependence translates into a family of joint distribu-
tions of all positions and thus a collection of portfolio distributions. To combine the ingredients
to joint distributions, we take a particularly elegant approach: The Distorted Mix (DM) method
developed by Li, Yuen & Yang (2014) constructs a family of joint distributions from the marginal
distributions, the copula in the central area and several candidate tail copulas. A DM copula
is capable of handling the dependence in the center and in the tail separately. We use the DM
method as the starting point for a construction of a convex family of copulas and a corresponding
set of joint distributions.1

Once a family of joint distributions of the positions is given, downside risk in the face of
uncertainty can be computed employing a classical worst case approach. To quantify downside
risk, we focus on robust average value at risk (AV@R). The risk measure AV@R is the basis for
the computation of capital requirements in both the Swiss solvency test and Basel III. As revealed
by the axiomatic theory of risk measures, AV@R has many desirable properties such as coherence
and sensitivity to tail events, see Föllmer & Schied (2004). In addition, AV@R is m-concave
on the level of distributions, see Bellini & Bignozzi (2015), and admits the application of well-
known optimization techniques as described in Rockafellar & Uryasev (2000) and Rockafellar &
Uryasev (2002).

To be more specific, we consider a d-dimensional random vector X = (X1, X2, . . . , Xd) with
given marginals and a copula C in a set of distorted mix copulas DMC̃. Considering aggregate
losses X = Ψ(X1, · · · , Xd) for some measurable function Ψ, we study the worst case risk

max
C∈DMC̃

ρ(X)

where ρ signifies AV@R at some fixed level. The exact problem will be described in Section 2.2.
Our model setup leads to a continuous stochastic optimization problem to which we apply

a combination of stochastic approximation and sample average approximation. We explain how
these techniques may be used to reduce the dimension of the mixture space of copulas. We
discuss the solution technique in detail and illustrate its applicability in several examples.

The main contributions of the paper are:

(a) For a given family of copulas modeling tail dependence, we describe a DM framework that
conveniently allows worst case risk assessment.

(b) We provide an efficient algorithm that numerically computes the worst case risk and iden-
tifies worst case copulas in a lower-dimensional mixture space.

(c) We successfully apply our framework in selected case studies. The considered examples
are financial markets and cyber risk.

The paper is structured as follows. Section 2 explains the DM approach to model uncer-
tainty and formulates the optimization problem associated to the computation of robust AV@R.
In Section 3, we develop an optimization solver combining stochastic approximation (i.e., the
projected stochastic gradient method) and sample average approximation: stochastic approxi-
mation identifies candidate copulas and a good approximation of the worst-case risk; in many

1Simple mixture approaches were previously considered in the literature, but are less flexible than the DM
approach. An early contribution with an application to financial markets is Hu (2006).
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cases, risk is insensitive to certain directions in the mixture space of copulas, enabling us to use
sample average approximation to identify worst-case solutions in lower dimensions. Section 4
discusses two applications of our framework, namely to financial markets and cyber risk. Section
5 concludes with a discussion of potential future research directions.

Literature

The concept of model uncertainty or robustness is a challenging topic in practice that has
also been intensively discussed in the academic literature. Risk refers to situations in which
possible scenarios and their associated probabilities are known; uncertainty in contrast describes
circumstances in which the probabilities of events are not known, but are characterized by a
nontrivial set of probability measures. This paper considers model uncertainty of this type.

The underlying key assumption concerns the structure of the considered probability mea-
sures. We assume that marginal distributions and the dependence structure of typical events is
known; uncertainty arises from tail dependence. Risk is measured on the basis of a worst-case
approach, a suitable algorithm is suggested and implemented in case studies. These structural
assumptions on the class of probability measures are motivated by typical considerations in
practice and distinguish our analysis from previous approaches in the literature.

Our methodology parallels the one chosen by Glasserman & Xu (2014) in the sense that
both papers study the worst-case in a given class of models. However, Glasserman & Xu (2014)
consider probability measures that are in some neighborhood of a given benchmark model in
terms of relative entropy or another divergence measure. Similarly, Hu & Hong (2013) and
Breuer & Csiszár (2016) study ambiguity sets defined by relative entropy. While divergence
measures are not proper metrics, optimal transport costs such as Wasserstein distances are
metrics under regularity conditions on the cost function; Blanchet & Murthy (2019) investigate
model uncertainty in such a framework. Bartl, Drapeau & Tangpi (2020) use a similar approach
and study robust optimized certainty equivalent risk measures in the context of optimal transport
costs.

Another, complementary perspective on robustness comes from statistics, as suggested by
Hampel (1971). By Hampel’s famous theorem, the classical notion of robustness can be charac-
terized by continuity properties of functionals with respect to the weak topology. Distribution-
based convex risk measures such as average value of risk are not continuous in this sense and
thus not Hampel-robust, see Cont, Deguest & Scandolo (2010) and Kou, Peng & Heyde (2013).
A refined notion of Hampel robustness that corresponds to finer topologies on sets of probability
measures is suggested in the seminal paper Krätschmer, Schied & Zähle (2014) and applied to
risk measures; the proposal in Krätschmer et al. (2014) lifts the corresponding issues of robust
statistics to a higher level that permits a comprehensive analysis.

In the current paper, we focus on worst-case AV@R in a multi-factor model. We are inter-
ested in the worst-case risk if the dependence structure is uncertain. This is closely related to
papers that derive bounds in the face of partial information about dependence, cf. Embrechts,
Puccetti & Rüschendorf (2013), Bernard, Jiang & Wang (2014), Bernard & Vanduffel (2015),
Rüschendorf (2017), Puccetti, Rüschendorf, Small & Vanduffel (2017), Li, Shao, Wang & Yang
(2018), Embrechts, Liu & Wang (2018), Weber (2018), and Hamm, Knispel & Weber (2020).
In contrast to these contribution, we propose an algorithmic DM approach that is based on
candidate copulas; this setting is very flexible in terms of the marginal distributions and copulas
that are considered. Our framework is suitable for capturing uncertainty about the dependence
in specific regions of a joint distribution. A simpler setting of mixture distributions is studied
in Zhu & Fukushima (2009) and Kakouris & Rustem (2014).

Our algorithm builds on sampling-based stochastic optimization techniques. Applications
of stochastic approximation and stochastic average approximation to the evaluation of risk
measures were investigated by Rockafellar & Uryasev (2000), Rockafellar & Uryasev (2002),
Dunkel & Weber (2007), Bardou, Frikha & Pagès (2009), Dunkel & Weber (2010), Meng, Sun
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& Goh (2010), Sun, Xu & Wang (2014), and Bardou, Frikha & Pagès (2016). The contributions
discuss different risk measures including AV@R and utility-based shortfall risk, efficient estima-
tion including variance reduction, portfolio optimization and hedging but do not concentrate on
model uncertainty. Without a specific focus on risk measures, the relevant simulation techniques
are also discussed in Kushner & Yin (2003), Shapiro (2003), Fu (2006), Bhatnagar, Prasad &
Prashanth (2013), and Kim, Pasupathy & Henderson (2015). Ghosh & Lam (2019) study worst-
case approximations for performance measures in the face of uncertainty, based on stochastic
approximation; their analysis does, however, not specifically consider uncertainty about depen-
dence in different regions of multivariate distributions as captured by the DM approach in this
paper.

2 The Distorted Mix Approach to Model Uncertainty

2.1 Distorted Mix Copula

Letting (Ω,F , P ) be an atomless probability space, we consider the family of random variables
X = L1(Ω,F , P ). The task consists in computing the risk ρ(X) of an aggregate loss random
variable X ∈ X for a risk measure ρ. A finite distribution-based monetary risk measure ρ : X →
R is a functional with the following three properties:

• Monotonicity: X ≤ Y ⇒ ρ(X) ≤ ρ(Y ) ∀X,Y ∈ X

• Cash-invariance: ρ(X +m) = ρ(X) +m ∀X ∈ X ,m ∈ R

• Distribution-invariance: P ◦X−1 = P ◦ Y −1 ⇒ ρ(X) = ρ(Y ) ∀X,Y ∈ X

We consider a specific factor structure of aggregate losses. We assume that

X = Ψ(X1, · · · , Xd) ∈ X

where X = (X1, · · · , Xd) is a d-dimensional random vector and Ψ : Rd → R is some measurable
function. The individual components Xi may depict different business lines, risk factors, or sub-
portfolios, and the function Ψ : Rd → R summarizes the quantity of interests. Frequently used
aggregations are the total loss X =

∑d
i=1Xi and the excess of loss treaty X =

∑d
i=1(Xi − ki)

+

for thresholds ki ∈ R+.
Computing the risk measure ρ(X) requires a complete model of the random vector X =

(X1, · · · , Xd). Let F (x1, · · · , xd) be its unknown d-dimensional joint distribution which we
aim to understand. By Sklar’s theorem, any multivariate distribution F can be written as the
composition of a copula C and the marginal distributions Fi of its components:

F (x1, · · · , xd) = C(F1(x1), · · · , Fd(xd)).

The typical situation in practice is as follows:

• The marginals F1(x1), · · · , Fd(xd) and the dependence structure in the central area, de-
noted by the copula C0, can be estimated from available data. Typical examples of C0

may include the Gaussian copula, the t-copula, or the empirical copula.

• However, due to limited observations in the tail, the copula C0 might not capture the
characteristics of the extreme area very well. Instead, in the face of tail uncertainty,
extreme dependence should be captured by a collection of copulas instead of a single
copula. This will be explained in Section 2.2.

Before we describe our approach to model uncertainty in the next section, we introduce an
important tool for combining different copulas in order to to handle the central and tail parts
separately, the Distorted Mix (DM) method, see Li et al. (2014). A DM copula C is constructed
from m+ 1 component copulas: C0 for the typical area, and C1, · · · , Cm for the extreme area.
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Definition 1 (Distorted mix copula)
Let Dij : [0, 1] → [0, 1] be continuous distortion functions, i.e., continuous, increasing functions
with Dij(0) = 0, Dij(1) = 1, and αi ≥ 0, i = 0, · · · ,m, j = 1, · · · , d, such that

m∑
i=0

αi = 1,

m∑
i=0

αiDij(v) = v ∀ v ∈ [0, 1], j = 1, · · · , d. (1)

For any collection of copulas C0, · · · , Cm, the corresponding distorted mix copula C : [0, 1]d →
[0, 1] is defined by

C(u1, · · · , ud) =
m∑
i=0

αiCi(Di1(u1), · · · , Did(ud)). (2)

Remark 1
A copula captures the dependence structure of a multivariate random vector with marginal dis-
tribution functions F1, F2, . . . , Fd as a function of u1 = F1(x1), u2 = F2(x2) . . . , ud = Fd(xd)
with x1, x2, . . . , xd ∈ R. The argument xj is a quantile of Fj at level uj, j = 1, 2, . . . , d: Levels
close to 0 correspond to the lower tail of (X1, X2, . . . , Xd), levels close to 1 to the upper tail, and
other levels to the center of the distribution.

In equation (2), for i = 0, . . . ,m, the parameter αi defines the probability fraction of the
total dependence that is governed by copula Ci which is distorted by the distortion functions
Di1, Di2, . . . , Did. These distortion functions describe how the arguments (or levels) of copula C
are mapped to the arguments (or levels) of the ingredient copulas Ci. We illustrate these features
in the following example.

Example 1
Let d = m = 2 and α0 = α1 = α2 = 1/3. We suppose that C1 and C2 are the comonotonic
copulas, i.e., C1(u1, u2) = C2(u1, u2) = min(u1, u2), and that C0 is the countermonotonic copula,
i.e., C0(u1, u2) = max(u1+u2−1, 0). We set Dij(uj) = max{3·(uj−ai), 0}∧1, a1 = 0, a2 = 2/3,
a0 = 1/3, j = 1, 2. Obviously, the lower and upper tails are governed by the comonotonic
copulas C1 and C2, respectively, and the central part is countermonotonic according to C0. In
this particular example, the dependence structure in each part is exclusively controlled by one of
the copulas C0, C1, and C2.2

2.2 Worst-Case Risk Assessment

In this section, we explain our approach to risk assessment in the face of tail uncertainty. As
described in the previous section, we assume that the marginals of the random vector X =
(X1, X2, . . . , Xd) are given. Its copula is unknown, but possesses the following DM structure:

• Let D = {Dik : i = 0, · · · ,m, k = 1, · · · , d} be a collection of distortion functions and
α = (α0, · · · , αm) ∈ [0, 1]m+1 satisfying assumption (1).

• In addition, we fix a copula C0 and a set C̃ of copulas.

We assume that the copula of X = (X1, X2, . . . , Xd) belongs to the following family:

DMC̃ =

{
α0C0(D01(u1), · · · , D0d(ud)) +

m∑
i=1

αiC̃i(Di1(u1), · · · , Did(ud)), C̃i ∈ C̃ ∀i = 1, · · · ,m

}
The worst-case risk assessment over all feasible distributions of X = (X1, X2, . . . , Xd) is equal
to

max
C∈DMC̃

ρ(X) (3)

2The example focuses on piecewise linear distortion functions with disjoint support. This is a special case of
the distorted mix model in equation 2 in which different parts of the dependence structure are each controlled by
a single copula C1, . . . , Cm. Other choices of distortion functions capture more general dependence structures.
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where X = Ψ(X1, · · · , Xd) and X = (X1, · · · , Xd) has a copula C ∈ DMC̃ with the given
marginals.

Remark 2
Our approach assumes that the marginals of X and the copula C0 are known; if the distortion
functions are suitably chosen, C0 could, for example, govern the central area. However, de-
pendence in other regions, e.g. tail dependence, is uncertain and captured by some family C̃ of
copulas. The key structural assumption is that X possesses a DM copula and that the distortions
and associated probability fractions are fixed. These determine the composition of the copula of
X. The distortions and probability fraction associated to the copula C0 cannot be varied; for all
other distortions and associated probability fractions the corresponding copulas may flexibly be
chosen from the collection C̃.

Remark 3
One possible approach would be to choose C̃ as a finite collection of K ≥ m candidate copulas.
In this case, the number of the DM copulas is either

(
K
m

)
× m! or Km if we allow duplicate

components. This approach has two disadvantages: First, from a technical point of view the
corresponding discrete optimization problem involves a very high number of permutations. Com-
puting the value function for each of them is expensive, and the Ranking and Selection (R&S)
method would not be efficient in this case. Second, with finitely many candidate copulas also
their mixtures seem to be plausible ingredients to the DM method and should not be excluded a
priori.

For a given collection C = {C1, C2, . . . , CK} of K candidate copulas, we consider the family
C̃ of their mixtures. That is, any element of C̃ can be expressed as a convex combination of
elements of C:

C̃γ =

K∑
j=1

γjCj , γ ∈ 4K−1 =

γ =


γ1
γ2
...
γK

 ∈ RK

∣∣∣∣∣∣
K∑
j=1

γj = 1 and γj ≥ 0 for all j

 ,

where 4K−1 is the standard K − 1 simplex. The K vertices of the simplex are the points
ei ∈ RK , where e1 = (1, 0, · · · , 0)⊤, e2 = (0, 1, · · · , 0)⊤, . . . , eK = (0, 0, · · · , 1)⊤. With this
notation, our K candidate copulas Cj ∈ C can be written as Cj = C̃ej .

Any element in DMC̃ can now be represented by some γ̄ = (γ1, · · · ,γm) ∈ RK×m with
γ1, · · · ,γm ∈ 4K−1 according to the following formula:

Ĉγ1,··· ,γm
(u1, · · · , ud) = α0C0(D01(u1), · · · , D0d(ud)) +

m∑
i=1

αiC̃
γi
(Di1(u1), · · · , Did(ud)). (4)

With this notation, the optimization problem (3) can be rewritten as

max
γ̄=(γ1,··· ,γm)∈(△K−1)m

ρ
(
X γ̄

)
(5)

where X γ̄ represents the aggregate loss Ψ(X1, · · · , Xd) with (X1, · · · , Xd) having copula Ĉγ1,··· ,γm

and the given marginals. We call Ĉγ1,··· ,γm in (4) a robust DM copula if it attains the optimal
solution of (5). Optimization problem (5) enables us to search the solution inside of the multiple
simplexes and paves a way to utilize the gradient approach.

We will now construct and explore a sampling-based optimization solver. For this purpose,
we focus on one particular risk measure, the average value at risk (AV@R), also called conditional
value at risk or expected shortfall. This risk measure forms the basis of Basel III and the Swiss
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Solvency test. If p ∈ (0, 1) is the level of the AV@R, a number close to 1, the corresponding
AV@R of the losses X γ̄ is defined as

cp(γ̄) =
1

1− p

∫ 1

p
q−t (FXγ̄ ) dt

where q−t (F ) = inf{x ∈ R | F (x) ≥ t} for a distribution F and FXγ̄ stands for the distribution
of X γ̄ . Accordingly, we denote VaR by vp(γ̄) = q−p (FXγ̄ ). With this notation, our optimization
problem is

max
γ1,··· ,γm∈△K−1

cp
(
γ1, · · · ,γm

)
= max

γ̄∈(△K−1)m
cp (γ̄) . (6)

2.3 Sampling Algorithm

2.3.1 Portfolio Vector

The factor structure of DM copulas provides the basis for adequate simulation methods (see
Proposition 1, Li et al. (2014)). Samples of the copula

Ĉγ1,··· ,γm

defined in eq. (4) can be generated according to the following Algorithm 1.

Algorithm 1 Sampling algorithm of the DM copula (4) generated by γ̄

1: procedure RobustDMC(α, γ̄,C,D)
2: sample a random variable Z1 distributing discretely as P(Z1 = i) = αi for i = 0, · · · ,m
3: if Z1 6= 0 then
4: sample a random variable Z2 distributing discretely as P(Z2 = j|Z1) = γZ

1

j for
j = 1, · · · ,K

5: else set Z2 = Z1 = 0
6: sample a random vector V = (V1, · · · , Vd) from the joint distribution CZ2

7: for k = 1 to d do
8: Uk = D−1

Z1k
(Vk)

9: return U = (U1, · · · , Ud)

Samples of
(X1, · · · , Xd)

with copula Ĉγ1,··· ,γm and arbitrary marginal distributions F1, F2, . . . , Fd can be generated
according to the quantile transformation

(X1, · · · , Xd) =d
(
F−1
1 (U1), · · · , F−1

d (Ud)
)
.

2.3.2 Aggregate Loss

The simulation of the aggregate losses X γ̄ is now based on a simple transformation. Setting

A(s) =
{
(u1, · · · , ud) : Ψ

(
F−1
1 (u1), · · · , F−1

d (ud)
)
≤ s

}
,

we define distribution functions

G0(s) =

∫
1A(s)dC0(D01(u1), · · · , D0d(ud)),

Gij(s) =

∫
1A(s)dCj(Di1(u1), · · · , Did(ud)), i = 1, · · · ,m, j = 1, · · · ,K,
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and note that

FXγ̄ (s) := P[X γ̄ ≤ s] = α0G0(s) +

m∑
i=1

αi

K∑
j=1

γijGij(s). (7)

If Ψ0 and Ψij are distributed according to G0 and Gij , i = 1, · · · ,m, j = 1, · · · ,K, and
independent of Z1 and Z2 defined in Algorithm 1, then

X γ̄ =d 1[Z1=0]Ψ
0 +

m∑
i=1

K∑
j=1

1[Z1=i,Z2=j]Ψ
ij .

This representation will be instrumental for our simulation algorithms. For later use, we denote
the density functions of G0(s), Gij(s), and FXγ̄ (s) by g0(s), gij(s), and fXγ̄ (s), i = 1, · · · ,m, j =
1, · · · ,K, respectively, provided that they exist.

3 Optimization Solver
In this section, we develop an algorithm solving problem (6) that builds on two classical ap-
proaches: Stochastic Approximation (SA) and Sample Average Approximation (SAA). While SA
is an iterative optimization algorithm that is based on noisy observations, SAA first estimates
the whole objective function and transforms the optimization into a deterministic problem. We
combine both approaches.

The standard stochastic gradient algorithm of SA quickly approximates the worst-case risk,
but the convergence to a worst-case copula is slow. It turns out that in many cases the risk is
insensitive to certain directions in the mixture space of copulas. We exploit this observation in
order to reduce the dimension of the problem and identify a suitable subset of C that excludes
copulas whose contribution to the worst-case risk is small. We then determine a solution in the
corresponding simplex, relying on SAA, which is computationally efficient in lower dimensions
only, but provides a good global solution to optimization problems, even if stochastic gradient
algorithms are noisy and slow.

Our method thus first applies SA to estimate worst-case risk together with a candidate
mixture from which a lower-dimensional problem is constructed. Second, SAA is used, but only
in the lower-dimensional mixture space – utilizing a large sample set that reduces noise.

Step 1 – Sampling. We generate N independent copies of the m×K + 1 random variables
Ψ0 and Ψij according to the distribution functions G0 and Gij , i = 1, · · · ,m, j = 1, · · · ,K,
respectively.

Step 2 – SA Algorithm. The PSG-RobustAV@R Algorithm 2 discussed in Section 3.1 seeks
a candidate solution and terminates after a small number of iterations. We design a stopping
rule that determines when to move to the next step.

Step 3 – SAA Algorithm. From the solution obtained in Step 2 we construct a lower-
dimensional simplex in which we search for a solution. We apply SAA on a suitable grid. The
SAA-RobustAV@R Algorithm 4 is discussed in Section 3.2.

3.1 Stochastic approximation: gradient approach

SA is a recursive procedure evaluating noisy observations of the objective function and its
subgradient. The algorithm moves in the gradient direction approaching a local optimum by a
first-order approach (minimization and maximization require, of course, opposite signs).
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Algorithm 2 The projected stochastic gradient algorithm for the robust AV@R
1: procedure PSG-RobustAV@R
2: Input the level p of AV@R, the step sizes {δt = t−a}t≥1, the sample size sequences

{Nt}t≥1, the number of iterations M , the PDF of X γ̄t at iteration t denoted by fXγ̄t (s), and
the PDFs g0(s) and gij(s) for i = 1, · · · ,m and j = 1, · · · ,K

3: Initialization:
4: Set a starting state γ̄1 =

(
γ1
1 , · · · ,γm

1

)
with γi

1 ∈ 4K−1, i = 1, · · · ,m
5: while terminal conditions are not met do
6: for t = 1 to M do
7: Simulation: ▷ generate (L1, · · · , LN ) N = Nt i.i.d. observations of X γ̄t

8: for l = 1 to Nt do
9: Sample (U l

1, · · · , U l
d) from Algorithm 1 with γ̄t =

(
γ1
t , · · · ,γm

t

)
10: Set Ll = Ψ

(
F−1
1 (U l

1), · · · , F
−1
d (U l

d)
)

11: VaR and AV@R Estimation:
12: Set v̂Nt

p = L⌈Ntp⌉:Nt

13: Set ĉNt
p = v̂Nt

p + 1
Nt(1−p)

∑Nt
i=1(Li − v̂Nt

p )+

14: AV@R Gradient Estimation:
15: Set fXγ̄t (s) = α0g0(s) +

∑m
i=1 αi

∑K
j=1 γ

i
j,tgij(s) ▷ γij,t is the j-th component of γi

t

16: for i = 1 to m, and j = 1 to K do
17: Set ∆i,j(ĉ

Nt
p ) = 1

Nt(1−p)

∑Nt
l=1

αi gij(Ll)
f
Xγ̄t (Ll)

(
Ll − v̂Nt

p

)
1[

Ll≥v̂
Nt
p

]
18: Parameter Update - Multiple Simplexes Projection
19: for i = 1 to m do
20: Set ∆i

t = (∆i,1, · · · ,∆i,K)
21: Update γi

t+1 = Π△K−1

(
γi
t + δt∆

i
t

)
by Algorithm 3

22: Output ĉNp and γ1
t , · · · ,γm

t

Algorithm 3 Euclidean projection of a vector y onto simplex
1: procedure ProjS(y) ▷ y ∈ RK

2: sort y into u: u1 ≥ u2 ≥ · · ·uK
3: find τ = max{1 ≤ j ≤ K : uj +

1
j (1−

∑j
k=1 uk) > 0}

4: define λ = 1
τ (1−

∑τ
k=1 uk)

5: return x s.t. xi = max(yi + λ, 0), i = 1, · · · ,K ▷ x = Π△K−1(y) ∈ RK

9



3.1.1 Projected stochastic gradient method

Algorithm 2 seeks to solve the optimization problem (6). At each iteration t the SA algorithm
first generates N = Nt loss samples L1, · · · , LNt of X γ̄t according to Algorithm 1. SA then
estimates the V@R and AV@R as follows:

v̂Nt
p = L⌈Ntp⌉:Nt

, ĉNt
p = v̂Nt

p +
1

Nt(1− p)

Nt∑
i=1

(Li − v̂Nt
p )+.

Here, dae denotes the smallest integer larger than or equal to a, and Ls:N is the s-th order
statistic from the N observations, L1:N ≤ L2:N ≤ · · · ≤ LN :N .

Second, SA computes the gradients ∆i
t = (∆i,1, · · · ,∆i,K) of cp at γi

t from

∆i,j(ĉ
N
p ) =

1

N(1− p)

N∑
l=1

∂ log fXγ̄ (Ll)

∂γij

(
Ll − v̂Np

)
1[Ll≥v̂Np ]

=
1

N(1− p)

N∑
l=1

αi gij(Ll)

fXγ̄ (Ll)

(
Ll − v̂Np

)
1[Ll≥v̂Np ]

(8)

for every i = 1, · · · ,m.
Third, parameter updates are computed for each i:

γi
t+1 = Π△K−1

(
γi
t + δt∆

i
t

)
, (9)

where Π△K−1(x) = argminy{||x − y|| | y ∈ 4K−1} is the Euclidean projection of x onto the
simplex, and {δt}t≥1 is the step size multiplier. This type of algorithm is called the projected
gradient descent algorithm.

Algorithm 2, a projection onto multiple high dimensional simplexes, applies methods de-
scribed in Condat (2016). In contrast to these, the simple, classical projection Algorithm 3 that
we included for illustration possesses the larger complexity O(K2).

3.1.2 Convergence of SA

The convergence of Algorithm 2 is guaranteed if Assumptions 1 & 2 below are satisfied, see
Theorem 5.2.1 in Kushner & Yin (2003).

Assumption 1 (1) The random variables X γ̄ have a continuous distribution with finite sup-
port for all γ̄.

(2) For all γ̄, i, j, the gradients ∂
∂γi

j
vp(γ̄) and ∂

∂γi
j
cp(γ̄) are well defined and bounded.

(3) X γ̄ has a positive and continuously differentiable density fXγ̄ , and ∂
∂γi

j
log fXγ̄ (s) exists

and is bounded for all s, γ̄, i, j.

Assumption 2 (1) The step size sequence {δt}t≥1 satisfies
∞∑
t=1

δt = ∞, δt ≥ 0,

∞∑
t=1

δ2t < ∞.

(2) ∂
∂γi

j
cp(γ̄) is continuous, and

∞∑
t=1

δt

∣∣∣∣∣E [
∆i,j

(
ĉNt
p

)]
− ∂

∂γij
cp (γ̄t)

∣∣∣∣∣ < ∞

with probability 1 for each i and j.
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In specific applications, these sufficient conditions for convergence are not always satisfied.
However, the SA algorithm might still produce estimates that approach a solution of the problem.
We will impose a switching condition that determines when we move from SA to SAA. SAA is
explained in the next section.

Remark 4 (Concavity of AV@R)
Algorithm 2 converges to a local maximum. But any local maximum of the problem (6) is even
the global maximum, since cp is a concave function of γ̄, see Acciaio & Svindland (2013). This
property is closely related to the m-concavity of AV@R, a concavity property on the level of
distributions, see Weber (2006) and Bellini & Bignozzi (2015).

Remark 5 (Differentiability of AV@R)
The gradient estimate (8) of AV@R in Algorithm 2 belongs to the Likelihood Ratio (LR) methods
due to Tamar, Glassner & Mannor (2015). A LR approach is appropriate, since the distribution
of the argument X γ̄ of the AV@R depends on γ̄.

(a) The computation (8) needs gij as inputs. If their computation is not analytically tractable,
an empirical estimator can be chosen. Other options are AEP (Arbenz, Embrechts &
Puccetti (2011)) and GAEP (Arbenz, Embrechts & Puccetti (2012)).

(b) An alternative to LR gradient estimation are finite differences, as applied in algorithms
of KieferWolfowitz type (Kiefer & Wolfowitz (1952)). Properties of such algorithms are
discussed in Broadie, Cicek & Zeevi (2011). Finite differences require less regularity in
order to be applicable, but typically exhibit a worse performance.

3.2 Sample average approximation

AV@R belongs to the class of divergence risk measures that coincide, up to a sign change,
with optimized certainty equivalents. These admit a representation as the solution of a one-
dimensional optimization problem, see Ben-Tal & Teboulle (2007). The minimizer can be char-
acterized by a first order condition. For the specific case of AV@R this representation was
previously described in Pflug (2000), Rockafellar & Uryasev (2000), and Rockafellar & Uryasev
(2002), and implies the following identity:

cp(γ̄) = min
u∈R

{
u+

1

1− p

∫
(L− u)+ dFXγ̄ (L)

}
.

The mixture representation (7) of the distribution function of X γ̄ provides a reformulation of
the original problem (6):

max
γ̄∈(△K−1)m

min
u∈R

u+
α0

1− p
E[Ψ0 − u]+ +

m∑
i=1

K∑
j=1

αiγ
i
j

1− p
E[Ψij − u]+

 (10)

where Ψ0 and Ψij are random variables with distributions G0 and Gij , respectively.
SAA algorithmically solves the stochastic optimization problem (6) by first approximating

the objective function by its sample average estimate and then solving the auxiliary deterministic
problem. Eq. (10) suggests the following SAA for (6):

max
γ̄∈(△K−1)m

min
u∈R

u+
α0

1− p

1

N

N∑
k=1

[Ψ0
k − u]+ +

m∑
i=1

K∑
j=1

αiγ
i
j

1− p

1

N

N∑
k=1

[Ψij
k − u]+

 (11)

The SAA procedure is described in Algorithm 4.
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Algorithm 4 SAA for the robust AV@R
1: procedure SAA-RobustAV@R
2: Input the probability level p for AV@R, {Ψ0

k,Ψ
ij
k }k=1,··· ,N N realizations Ψ0 and Ψij for

i = 1, · · · ,m and j = 1, · · · ,K, α, a grid of γ̄ = (γ1
1 , · · · ,γm

1 )
3: for every γ̄ = (γ1

1 , · · · ,γm
1 ) on the grid do

4: Initialization: Initialize the lower bound ul with p̄N (ul) < p, and the upper bound
uu with p̄N (uu) > p

5: Set pu = p̄N (uu) and pl = p̄N (ul)
6: Bisection method:
7: while |pu − p| > ϵ and |pl − p| > ϵ do
8: um = (uu + ul)/2 and evaluate pm = p̄N (um)
9: if pm > p then set uu = um and pu = pm

10: else set ul = um, and pl = pm

11: if |pu − p| ≤ ϵ then return ǔN (γ̄) = uu
12: else return ǔN (γ̄) = ul

13: AV@R computation:
14: Compute čNp (γ̄) = ǔN + α0

1−p
1
N

∑N
k=1[Ψ

0
k− ǔN ]++

∑m
i=1

∑K
j=1

αiγ
i
j

1−p
1
N

∑N
k=1[Ψ

ij
k − ǔN ]+

15: Output max čNp (γ̄) on the grid

3.2.1 Inner minimization

The inner minimization in (10) can numerically be solved on the basis of first order conditions
that are specified in the following lemma.

Lemma 1
Let ζ(u, γ̄) = u+ α0

1−pE[Ψ
0 − u]+ +

∑m
i=1

∑K
j=1

αiγ
i
j

1−p E[Ψ
ij − u]+. Then

∂+ζ

∂u
(u, γ̄) =

−p

1− p
+

α0

1− p
P(Ψ0 ≤ u) +

∑
i,j

αiγ
i
j

1− p
P(Ψij ≤ u),

∂−ζ

∂u
(u, γ̄) =

−p

1− p
+

α0

1− p
P(Ψ0 < u) +

∑
i,j

αiγ
i
j

1− p
P(Ψij < u).

The minima of the function u 7→ ζ(u, γ̄) are attained and any minimizer z satisfies

∂−ζ

∂u
(u, γ̄) ≤ 0 ≤ ∂+ζ

∂u
(u, γ̄). (12)

If the distribution functions of Ψ0 and Ψij are continuous, the first order condition (12) becomes

p = α0P(Ψ
0 ≤ u) +

∑
i,j

αiγ
i
jP(Ψ

ij ≤ u). (13)

Proof. See Appendix A2.

Replacing P(Ψ0 ≤ u) and P(Ψij ≤ u) in (12) and (13) by the empirical probabilities, we
obtain a SAA approach to solve the root finding problems posed by the first order conditions.
The sample version of (13) is

p̄N (u) = α0
1

N

N∑
k=1

1[Ψ0
k≤u] +

m∑
i=1

K∑
j=1

αiγ
i
j

N
1
[Ψij

k ≤u]
.

Utilizing a simple bisection method, one can determine the root ǔN (γ̄) that solves p̄N (u) = p.

12



3.2.2 Outer maximization

The sample version of the outer maximization in (10) is

max
γ̄


ǔN (γ̄) +

α0

1− p

1

N

N∑
k=1

[Ψ0
k − ǔN (γ̄)]+ +

m∑
i=1

K∑
j=1

αiγ
i
j

1− p

1

N

N∑
k=1

[Ψij
k − ǔN (γ̄)]+︸ ︷︷ ︸

=: čNp (γ̄)


Algorithm 4 evaluates čNp (γ̄) for all γ̄ on a grid, compares the values of the function and thereby
determines an approximate solution.

3.2.3 Switching condition and dimension reduction

The outer maximization requires the computation at many grid points and is expensive in high
dimensions. We propose to identify a suitable lower-dimensional subsimplex in the space of
copulas on the basis of SA, before we switch to SAA. This is justified by the fact that the
worst-case risk is typically insensitive to contributions of some of the copulas in C. Before we
summarize the full procedure, we address the switching condition from SA to SAA.

SA produces a random sequence (γ̄t)t=1,2,.... We choose a certain burn-in period tmin and a
maximal number of SA-iterations tmax to construct a stopping time t∗ ∈ {tmin, tmin+1, . . . , tmax}.
We stop at t when two consecutive matrices γ̄t−1 and γ̄t are close to each other according to some
metrics. In the examples below, we implement the 1-norm ‖A‖ =

∑
i

∑
j |Aij | and a threshold

level of 0.01. Moreover, we choose tmin = 10 and tmax = 50.
When switching to SAA, the dimension of the problem is reduced as follows. To simplify

the notation, we write

γ̄ =


γ11 γ21 · · · γm1
γ12 γ22 · · · γm2
...

... . . . ...
γ1K γ2K · · · γmK


instead of γ̄t∗ where t∗ is the stopping time described above. Recall that the index j = 1, 2, . . . ,K
enumerates the copulas in C, while i = 1, 2, . . . ,m labels the weights αi and corresponding
distortions Di1, Di2, . . . , Did in eq. (2) or eq. (4), respectively. We assume that the weights are
equal, i.e., αi = α ∀i = 1, 2, . . . ,m; this assumption ensures that the probability fraction of the
total dependence that is governed by each column of γ̄ is equal for all columns.

We first select the number of copulas K∗ < K we wish to select from C for the application
of SAA. We distinguish the cases K∗ ≤ m and K∗ > m. In the first case, we identify the largest
entry3 from γ̄ and select the copula corresponding to it. We remove the corresponding row and
the corresponding column from γ̄, identify the largest entry from the remaining matrix, and
remove again the corresponding row and column. We proceed iteratively until K∗ copulas are
selected. In the second case, i.e., K∗ > m, all rows and columns are removed from γ̄, after
m copulas were selected. In this case, we proceed with selecting copulas m + 1,m + 2, . . . as
follows. We remove all rows corresponding to the m copulas that were already selected, and
then proceed in the same manner as described above to select the remaining copulas.

Remark 6
For each i = 1, 2, . . . ,m, the mixture copula corresponding to γi governs a probability fraction α
of the overall dependence structure in a region determined by the distortions Di1, Di2, . . . , Did.
The algorithm consecutively selected for different i the most important element from the copulas
in C that were not previously selected. This guarantees that the contributions of the vectors of

3If there is a tie, we select the one with the larger gradient.
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distortion functions corresponding to different values of i are taken into consideration when the
K∗ copulas are chosen.

3.3 Full procedure

We finally present a brief summary of our proposed algorithm.

Step 1 – Sampling.

1. Generate N = Nt independent copies of the random variables Ψ0, Ψij as described in
Section 2.3.

2. Use the samples to estimate the densities g0(s), gij(s), and fXγ̄ (s). The values are stored
for the inter- and extrapolation.

3. If necessary, generate new samples according to an importance sampling density h.

Step 2 – SA Algorithm.

4. Apply PSG-RobustAV@R Algorithm 2. Importance sampling techniques can be adopted as
illustrated in Section 3.4 below – if applicable.

5. If the switching condition described in Section 3.2.3 is met, terminate the algorithm and
determine a selection of the most important copulas in order to reduce the dimensionality
of the problem.

Step 3 – SAA Algorithm.

6. Construct a suitable grid on the lower-dimensional simplex. Adaptively refine the grid in
a smaller domain on the basis of the results of the application of the algorithm specified
in the next step, and apply the algorithm again on the new grid.

7. Apply SAA-RobustAV@R Algorithm 4 to find the worst case over grid points. The worst
case is the estimated solution to the original problem (6) on the lower-dimensional mixture
space of copulas chosen in Task 5.

3.4 A motivating example

Before we discuss applications to finance markets and cyber risk, we illustrate our procedure in
the context of a simple example motivated by Li et al. (2014).

Example 2 (m = 2,K = 5, d = 2)
Consider aggregate losses X = X1 +X2 with individual losses X1, X2 ∈ L1. The distributions
of the individual positions are inverse Gaussian with density

x 7→
√

λ

2πx3
exp

(
− λ

2µ2x
(x− µ)2

)
.

The dependence of the positions is uncertain, and we would like to evaluate the worst-case
AV@R at level p ∈ (0, 1). Letting α0 = 1 − 2α and α1 = α2 = α with α = 0.1, we assume that
Di = Di1 = · · · = Did for all i = 0, 1, 2 and choose the distortion functions

D1(x) =
x− αx2

α+ (1− 2α)x
, D2(x) =

αx2

α+ (1− 2α)(1− x)
, D0(x) =

x− αD1(x)− αD2(x)

1− 2α
. (14)
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The copula capturing dependence in the typical area is modeled by a d-dimensional Gaussian
copula

C0 = CGa
Σ = Φ0,Σ(Φ

−1(u1), · · · ,Φ−1(ud));

here, Φ and Φ0,Σ signify the standard univariate normal distribution function and the multivari-
ate Gaussian distribution function with covariance matrix Σ, respectively.

The family of copulas C = {C1, C2, C3, C4, C5} is specified as follows:

C1: a t-copula Ct
ν,P

(
u1, · · · , ud) = tν,P (t

−1
ν (u1), · · · , t−1

ν (ud)
)

where tν is a standard univariate
t distribution with ν degree of freedom and tν,P is the joint distribution with a correlation
matrix P ;

C2: a Clayton copula CCl(u1, · · · , ud) =
(∑d

i=1 u
−θ
i − d+ 1

)−1/θ
, 0 < θ < ∞;

C3: a Gumbel copula CGu(u1, · · · , ud) = exp

{
−
[∑d

i=1(− log ui)
θ
]1/θ}

, 1 ≤ θ < ∞;

C4: a Frank’s copula CFr(u1, · · · , ud) = logθ

{
1 +

∏d
i=1(θ

ui−1)

(θ−1)d−2

}
, θ ≥ 0;

C5: the independence copula Π(u1, · · · , ud) =
∏d

i=1 ui.

SA Algorithm

Step 2 in the full procedure summarized in Section 3.3 is the SA Algorithm 2. Its step size is
given by t−a for 0.5 < a ≤ 1. Figure 1 illustrates the dynamics of the corresponding weights in
the random sequence (γ̄t)t for the five copulas in C and the distortions D1 and D2 for a specific
numerical example. We vary the step size and compare a = 0.6, 0.7, 0.8, 0.9 for the first 200
iterations. The approximation becomes faster for smaller a.

The downside risk measures by AV@R is mainly governed by the upper tail of the losses
whose dependence structure is encoded by the distortion function D2. This is captured by the
second column in Figure 1 which shows that the weights of copulas C2 (Clayton copula), C4

(Frank’s copula), and C5 (independence copula) decrease quickly to zero. The maximal AV@R is
mainly determined by γ21 (the weight of t-copula C1 for the upper tail, D2) and γ23 (the weight of
Gumbel copula C3 for the upper tail, D2). These observations suggest that dimension reduction
as described in Section 3.2.3 can successfully be implemented for this example.

The initial AV@R at p = 0.99 for uniform4 γ̄1 is reported as 13.8657 for a = 0.6, while
AV@R is increased to 14.6832 just after five iterations. In fact, this number is hardly distin-
guishable from the estimated optimal value found in SAA later on. We observe that AV@R
values become insensitive to changes in γ̄t after just a few iterations. This observation pro-
vides further motivation for the suggested approach to reduce the dimension of the problem (see
Section 3.2.3).

Importance sampling

We explore the potential to reduce the variance of the estimators by an application of importance
sampling. Recall the notation introduced in Section 2.3.2. If h is a density that dominates fXγ̄ ,
we may sample from h and modify Algorithm 2 to obtain importance sampling estimators
replacing (i) VaR v̂Np , (ii) AV@R ĉNp , and (iii) the AV@R gradient ∆i,j(ĉ

N
p ).

Letting L =
fXγ̄

h be the likelihood ratio, we estimate the corresponding IS empirical distri-
bution F̃ IS

Xγ̄ (s) by

F̃ IS
Xγ̄ (s) =

1

N

N∑
l=1

L(yl)1[yl≤s], s ∈ R,

4All entries of the matrix are equal.

15



20 40 60 80 100 120 140 160 180 200

0.2

0.205

0.21

11

20 40 60 80 100 120 140 160 180 200

0

0.5

1

12

20 40 60 80 100 120 140 160 180 200

0.2

0.205

0.21

21

20 40 60 80 100 120 140 160 180 200

0

0.5

1

22

20 40 60 80 100 120 140 160 180 200

0.2

0.205

0.21

31

20 40 60 80 100 120 140 160 180 200

0

0.5

1

32

20 40 60 80 100 120 140 160 180 200

0.2

0.205

0.21

41

20 40 60 80 100 120 140 160 180 200

0

0.5

1

42

20 40 60 80 100 120 140 160 180 200

iteration

0.2

0.205

0.21

51

a = 0.6 a = 0.7 a = 0.8 a = 0.9

20 40 60 80 100 120 140 160 180 200

iteration

0

0.5

1

52

Figure 1: SA-results for varying a ∈ (0.5, 1] with step sizes {δt} = {t−a}t≥1 in Exam-
ple 2. The off-diagonal elements of Σ equal 0.7, the diagonal elements 1. We set ν = 1,
θ = 0.7565, 1.7095, 1.2 for C2, C3, C4, respectively. The IG parameters are µ1 = µ2 = 1, λ1 =
0.5, λ2 = 1.2. The sample size is fixed as Nt = 106 for every iteration t and a kernel density at
1000 equally spaced points is used based on 5× 107 sample data.

with yl drawn iid from h. The corresponding IS estimators are

ṽNp = inf{s : F̃ IS
Xγ̄ (s) ≥ p}; c̃Np = ṽNp +

1

N(1− p)

N∑
l=1

(yl − ṽNp )+L(yl);

∆i,j(c̃
N
p ) =

1

N(1− p)

N∑
l=1

αi gij(yl)

fXγ̄ (yl)

(
yl − v̂Np

)
L(yl)1[yl≥ṽNp ]

.

Motivated by eq. (7), we propose to define the IS density h as a mixture that relies on
measure changes of the distribution functions G0, Gij with densities g0, gij , i = 1, 2, . . . ,m,
j = 1, 2, . . . ,K:

h(x) = α0h0(x) +
m∑
i=1

αi

K∑
j=1

γijhij(x).

For simplicity, we modify only two ingredients:
We replace the central copula C0 by an importance sampling copula C̃0 and the marginal

distributions Fi by importance sampling distributions F̃i; all other ingredients of the family
of joint distributions of X1, X2, . . . , Xd in Example 2, in particular the collection C, are not
changed. We thus obtain the following identities:

h0(x) =
∂

∂x

∫
1Ã(x) dC̃0(D01(u1), · · · , D0d(ud));

hij(x) =
∂

∂x

∫
1Ã(x) dCj(Di1(u1), · · · , Did(ud)) ∀i, j;

Ã(x) =
{
(u1, · · · , ud) : Ψ

(
F̃−1
1 (u1), · · · , F̃−1

d (ud)
)
≤ x

}
.

Many other strategies to design IS distributions are, of course, possible. However, good IS
methodologies for copulas are challenging. At the same time, the total computational effort
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must be estimated in order to evaluate the overall efficiency of competing algorithms. These
issues constitute an interesting topic for future research.

To illustrate the potential of IS, we consider Example 2. As suggested by Huang, Subrama-
nian & Xu (2010), we shift the mean vector of the Gaussian copula C0 to obtain C̃0. On the
marginal distributions, we utilize for each i = 1, 2, . . . ,m an Esscher measure change with param-
eter wi that transforms an inverse Gaussian distribution IG(µi, λi) to a shifted IG distribution

F̃i ∼ IG

(
µi

√
λi√

λi−2µ2
iwi

, λi

)
with wi ≤ λi

2µ2
i

.

Numerical results display significant variance reduction. For example, in a typical case study
with 106 samples the variance of the crude MC estimator of robust AV@R is 0.00247 while the
importance sampling variances are reported as 0.00044 and 0.00042 for the historical likelihood
estimator and the kernel estimator, respectively. We observe average variance reduction ratios
around 5 to 7 across samples with the following new parameters: for exponential tilting w1 = 0.1
(new µIG

1 = 1.2910), w2 = 0.3 (new µIG
2 = 1.4142) and for the shifted drift for Gaussian

distribution µG
1 = 0.5, and µG

2 = 1.

Switching to SAA

We apply the methodology described in Section 3.2.3. Setting tmin = 10 and tmax = 50, we run
SA with uniform initial values, i.e., all entries of γ̄1 are 1/5, and with a sample size Nt = 105 for
step size a = 0.6. Recall Algorithm 2 for a description of the parameters. The initial choice of
γ̄ corresponds to an AV@R at level 0.99 of 13.8046. This result differs slightly from the initial
value reported in Figure 1 due to sampling error.

The stopping time equals t∗ = 17 with corresponding

γ̄⊤ =

(
0.2008 0.1994 0.2007 0.1994 0.1994
0.3309 0 0.6690 0 0

)
and AV@R at level 0.99 of 14.8094 with an empirical standard deviation of 0.1326 computed
from the last ten iterations. The increments of the sequence (γ̄t)t=1,2,... are already small at the
stopping time t∗:

(γ̄17 − γ̄16)
⊤ =

(
0.00002 −0.00001 0.00001 −0.00001 −0.00001
−0.004 0 0.004 0 0

)
.

For comparison, at iteration 100 we obtain a corresponding

γ̄⊤ =

(
0.2017 0.1989 0.2015 0.1988 0.1988
0.1484 0 0.8515 0 0

)
and AV@R at level 0.99 of 14.7715 with an empirical standard deviation of 0.1553 computed from
the last ten iterations. These observations indicate that SA quickly approximates the worst-case
AV@R. However, the precision improves only very slowly afterwards. The convergence to the
optimal value of γ̄ is slow for some components.

In order to reduce the dimension of the problem according to Section 3.2.3, we set K∗ = 2
and select for the application of SAA the copulas C1 (t-copula) and C3 (Gumbel copula) on the
basis of the estimate γ̄17. Thus, SAA needs to be applied to a two-dimensional grid for

γ̄⊤ =

(
γ11 0 γ13 0 0
γ21 0 γ23 0 0

)
, γ11 + γ13 = 1, γ21 + γ23 = 1, γ11 , γ

1
3 , γ

2
1 , γ

2
3 ≥ 0.

On the basis of SAA with 5 · 107 samples one observes that the worst-case risk is insensitive
to dependence in the lower tail. The worst-case risk is attained for a γ23 = 1 (upper tail) with
an AV@R at level 0.99 of 14.71. This is illustrated in Figure 2. The worst-case risk in the
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considered model is lower than the sum of the marginal AV@Rs which is equal to 15.49; this
value corresponds to the comonotonicity of all components. This confirms that the underlying
assumption (i.e., that dependence in different regions can be modeled separately and that an
expert’s opinion limits the choices of copulas) reduces model uncertainty.
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Figure 2: Color map of AV@R for parameters γ11 and γ23 .

In summary, in this case study SA is capable of quickly computing a reasonable estimate of
the worst-case risk. Suitable worst-case copulas, encoded by the matrix γ̄, in a lower-dimensional
mixture space can be determined by a combination of SA, the copula selection method described
in Section 3.2.3, and SAA.

4 Applications
Our method is flexible and can be used in multiple application domains. For the purpose of
illustrating its applicability, we consider two case studies. The first example in Section 4.1 is
based on a substantial amount of financial market data and allows a good calibration of copulas.
Model risk can thereby be reduced.5 For cyber risk, the second example discussed in Section
4.2, only few observations are available which also increases the model risk.

4.1 Financial markets

We apply our methodology to a data set spanning the time interval 2005/01/01 to 2019/12/31
that contains the daily closing values of the following stock indices:

i Index
1 S&P 500
2 NASDAQ Composite
3 Dow Jones Industrial Average
4 DAX Performance Index
5 EURONEXT 100
6 KOSPI Composite Index
7 Nikkei 225

5In order to illustrate this claim, we include an additional case study in Appendix A.2.
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This data period also includes extreme events during the 2007 – 2008 global financial crisis. The
7-dimensional time series is labeled by trading days t = 1, 2, . . . , 3358 and quoted in US$:

Pricet =
(
Price1,t Price2,t Price3,t Price4,t Price5,t Price6,t Price7,t

)
with Pricei,t being the time t US$-price of index i, i = 1, 2, . . . , 7. We consider a 7-dimensional
random vector6 X = (X1, X2, . . . , X7) that models the negative returns of the terminal US$-
value of the indices over a 10-day horizon. The corresponding time series is given by

xt =

(
{− 1} · Pricei,t+10 − Pricei,t

Pricei,t

)
i=1,2,...,7

, t = 1, 2, . . . , 3348︸︷︷︸
=: D

We investigate the robust AV@R at level 0.95 over a 10-day horizon of a portfolio that invests
an equal dollar amount into each index. To be more specific, we consider the robust AV@R of
the losses X =

∑7
i=1Xi.

4.1.1 Marginal distributions

We apply a semi-parametric approach to the seven marginal distributions. For the central part
of the distributions we linearly interpolate the empirical distribution. Less data are available in
the tail, and we fit Generalized Pareto Distributions (GPD) to the data which allow a convenient
extrapolation of samples.

The CDF of a GPD with two parameters ξ and ϑ is given by

Gξ,ϑ(x) =

1−
(
1 + ξx

ϑ

)−1/ξ
, if ξ 6= 0

1− exp(−x/ϑ), if ξ = 0.

The GPD is supported on x ≥ 0, if ξ ≥ 0, and on 0 ≤ x ≤ −ϑ/ξ, if ξ < 0.
To be specific, for any i = 1, 2, . . . , 7, let (xi,(t))t=1,··· ,D be the ordered sample of the data

(xi,t)t=1,··· ,D with xi,(1) ≤ · · · ≤ xi,(D). As GPD approximates a tail distribution for the excesses
above some high threshold, we let xi,l and xi,u be suitably chosen thresholds of lower and
upper parts. We apply a graphical diagnostic for the threshold choice; it is based on a mean
excess plot that should be linear in the threshold for a GPD . For alternative, more sophisticated
methods we refer to Scarrott & MacDonald (2012). The two parameters (ξi,l, ϑi,l) and (ξi,u, ϑi,u)
are then determined by maximum likelihood estimation based on the lower and upper excess
data (xi,l − xi,(1), · · · , xi,l − xi,(ti,l−1)) and (xi,(ti,u+1) − xi,u, · · · , xi,(D) − xi,u), respectively. The
estimated thresholds (i.e., the upper and lower boundaries: xi,u = xi,(ti,u), xi,l = xi,(ti,l)) and
the corresponding parameters are reported in Table 1.

The linearly interpolated empirical distribution function truncated in [xi,l, xi,u] for index i is

Hi(x) =


0 x < xi,l

k−1
ti,u−ti,l

+
x−xi,(k)

(ti,u−ti,l)(xi,(k+1)−xi,(k))
xi,(k) ≤ x < xi,(k+1)

1 x ≥ xi,u,

where ti,l, ti,u are the indices in the ordered data corresponding to the lower and upper thresholds.
The distribution of Xi is finally modeled by

Fi(x) =


pl(1−Gξi,l,ϑi,l

(xi,l − x)) x ≤ xi,l

pl + (1− pl − pu)Hi(x) xi,l < x ≤ xi,u

(1− pu) + puGξi,u,ϑi,u
(x− xi,u) x > xi,u,

(15)

6For simplicity, we do not considered any dependence of the returns on time or on underlying factors. In
practice, conditional distributions are typically important to reflect the market conditions.
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Index i
Lower tail Upper tail

boundary xi,l shape ξi,l scale ϑi,l boundary xi,u shape ξi,u scale ϑi,u

1 -0.0466 0.3172 0.0131 0.0445 0.2749 0.0219
2 -0.0594 0.1826 0.0173 0.0562 0.2801 0.0212
3 -0.0355 0.1791 0.0124 0.0446 0.2355 0.0209
4 -0.0578 -0.1227 0.0269 0.0495 0.1042 0.0263
5 -0.0640 0.0453 0.0176 0.0656 -0.0307 0.0266
6 -0.0658 0.4326 0.0211 0.0600 0.2211 0.0335
7 -0.0568 0.3802 0.0139 0.0413 0.1226 0.0236

Table 1: The thresholds (boundaries) and the estimated shape and scale parameters of GPDs
in the lower and upper tail parts.

Lower Tail index 1 2 3 4 5 6 7
statistic 0.3069 0.3889 0.4054 0.2127 0.4712 0.2882 0.6304Anderson-Darling p value 0.6675 0.4972 0.4642 0.9255 0.3742 0.7022 0.1497
statistic 0.0386 0.0369 0.0580 0.0227 0.0562 0.0256 0.0564Cramér-von-Mises p value 0.6984 0.7462 0.4371 0.9628 0.4876 0.9024 0.4177

Upper tail index 1 2 3 4 5 6 7
statistic 0.5173 0.4178 0.4654 0.5473 0.3104 0.4984 0.2146Anderson-Darling p value 0.2706 0.4240 0.3491 0.2637 0.7126 0.3030 0.9053
statistic 0.0634 0.0432 0.0747 0.0463 0.0362 0.0694 0.0186Cramér-von-Mises p value 0.3582 0.6264 0.2660 0.6104 0.7917 0.3106 0.9827

Table 2: The results of Anderson-Darling and Cramér-von-Mises tests for the lower and upper
GPD approximations.

where pl = P (x ≤ xi,u) and pu = P (x ≤ xi,u).
The results of Anderson-Darling and Cramér-von-Mises tests for the GPD lower and upper

tails are reported in Table 2. For the goodness of test of GPD, we follow the approach in
Choulakian & Stephens (2001). The results do not provide evidence against the estimated
marginal distributions.

4.1.2 Dependence

Since AV@R focuses on the upper tails, we consider the following distortion functions with
parameter α1 = α2 = 0.04 and α0 = 1− α1 − α2:

D0(x) =

{ x
α0

if x ≤ α0

1 x > if α0
D1(x) =


0 if x ≤ α0
x−α0
α1

if α0 < x ≤ α0 + α1

1 if x > α0 + α1

D2(x) =

{
0 if x ≤ α0 + α1
x−α0−α1

α2
if α0 + α1 < x ≤ 1.

(16)

We split the data on the basis of the aggregate loss function {
∑7

i=1 xi,t}t=1,··· ,D into three
parts: extreme upper tail (-4%), upper tail (4%-8%), and the remaining center and lower tail
(8%-100%). A scatter plot of (X1, X2), · · · , (X1, X7) in Figure 3 illustrates the procedure of
partitioning the data.

The dependence in the central part is modeled by a Gaussian copula corresponding to the
estimated linear correlations. The estimates are based on the 92% data (8%-100%) and can be
found in Section A.3. For the tail parts, K = 16 candidate copulas7 are considered:

7The method is very flexible and could equally be applied to a larger set of copulas. The specific copulas are
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Figure 3: Scatter plot of Xi against X1 for i = 2, · · · , 7. The green triangles depict the data
points in the extreme upper tail (-4%), the red x the data points in the upper tail (4%-8%), and
the blue circles the remaining data points (8%-100%).

a potential choice due to an expert’s opinion. This corresponds to model uncertainty that a priori is limited in
this way.
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• Copulas C1, C2 are Gaussian, matching the linear correlation or Kendall’s tau estimated
from the upper (4%-8%) data, respectively.

• The copulas C3, C4,. . . , C8 are t-copulas whose parameters are calibrated on the basis of
the upper (4%-8%) data:

– the multivariate meta t-copulas (C3, C4, C5) = (Ct
ν1,P 1 , C

t
ν2,P 2 , C

t
ν3,P 3) with parame-

ters (νl, P l), l = 1, 2, 3; the superscript l indicates the estimation method explained
below;

– the grouped t-copula (C6, C7, C8) = (CGt
ν1,P 1 , C

Gt
ν2,P 2 , C

Gt
ν3,P 3) that allow different sub-

sets of the random variates to have different degrees of freedom parameters; we divide
the indices into the three subgroups US, Europe, and Asia; for each l = 1, 2, 3, the
vector νl = (νl1, ν

l
2, ν

l
3) specifies the degrees of freedom for these three subgroups, and

the superscript l refers to the estimation method.

The first method (l = 1) is ML estimation. The second method (l = 2) exploits the
approximated log-likelihood for the degrees of freedom parameter which increases the
speed of the estimation. The third method (l = 3) estimates the correlation matrix P 3 by
Kendalls tau for each pair and then estimates the scalar degree of freedom by ML given
the fixed P 3. This method is useful when the dimension of the data is large, because the
numerical optimization quickly becomes infeasible. The estimated correlation matrices as
well as the degrees of freedom are not identical and sometimes even very different.

• The copulas C9, C10, . . . , C16 are constructed analogously to C1, C2, . . . , C8, but based on
the extreme upper (-4%) data.

The calibration results can be found in Section A.3.

4.1.3 Case studies

As a benchmark, we compute the AV@R at level 0.95 when dependence is modeled by a sin-
gle Gaussian copula estimated from the entire data set. The correlation matrix is given in
Section A.3, and the AV@R equals 0.514928 when the number of samples is 107.

We compare the benchmark to the algorithm based on DM copulas described in Section 3.
With an equal initial weight of 1/16, a constant sample size Nt = 106 and step size a = 0.7, the
initial AV@R at level 0.95 corresponds to 0.652009 and is substantially higher than the bench-
mark. The DM method with copulas fitted to tail data provides a much better methodology in
assessing downside risk than single Gaussian copulas. In fact, even if a DM method combines
only Gaussian copulas for central and tail areas, the estimation results are often reasonable.8
For the considered data, results are quite insensitive to the considered copulas, as long as they
are fitted to different parts of the distribution and a DM copula is used.

When running SA, the stopping time t∗ = tmin equals 10 with an AV@R at level 0.95 of
0.655033 and an empirical standard deviation of 0.0019 computed from the last ten iterations.
The corresponding weights γ̄⊤

10 are

(
0.0497 0.0494 0.0676 0.0693 0.0503 0.0675 0.0693 0.0503 0.0630 0.0624 0.0696 0.0699 0.0616 0.0696 0.0694 0.0613
0.0595 0.0598 0.0643 0.0657 0.0618 0.0650 0.0624 0.0611 0.0624 0.0616 0.0649 0.0652 0.0628 0.0638 0.0573 0.0623

)

with an increment γ̄10− γ̄9 with components of very small modulus (roughly less than 1/1000).
Now we switch to SAA. Setting K∗ = 3, our procedure selects on the basis of the estimated

γ̄10 for the application of SAA the copulas C4 (t-copula estimated from the upper (4%-8%)
data using approximate ML), C12 (t-copula estimated from the extreme upper (-4%) data using
approximate ML), and C14 (grouped t-copula estimated from the extreme upper (-4%) data

8See Section A.2 for further evidence.
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using ML). SAA with sample size 107 and grid size 0.1 applied to the corresponding three-
dimensional grid picks only one copula, C12 (t-copula estimated from the extreme upper (-4%)
data using approximate ML), associated with an AV@R of 0.655452. The numerical analysis
confirms that the AV@R values are insensitive to γ̄ near the solution. In the current example,
the worst case AV@R is very close to the sum of the marginal AV@Rs, i.e., to comonotonic
dependence of all components, that equals 0.656120.

In summary, when computing AV@R at level 0.95, in the current example a reasonable
amount of tail data is available to estimate the dependence of the factors in different parts of
the distribution. In contrast to a single Gaussian copula, the DM method provides solutions
in the considered family that are not very sensitive to the choice of the estimated component
copulas. But instead of making ad hoc assumptions that select a specific components copula
a priori, our algorithm demonstrates explicitly the strength of the DM method, identifies and
substantiates the insensitivity to components a posteriori and finally reduces the dimensionality
of the problem in the worst-case analysis.

4.1.4 Robustness

Another question one may ask is how the initial choice of α0, α1, α2 influences the final result
of the algorithm. In fact, since the distortion functions in eq. (16) and thus the regions of
different copulas depend on these parameters, we cannot expect that the copulas are invariant
if α0, α1, α2 change.

We follow the same methodology as described above but vary α1. Recall that α0 = 1−α1−α2

and that α2 is equal to α1. For a given α1, we split the data into three parts depending on
the value of α0, α1 and α2; the data are segmented into the extreme upper −α1 · 100% part,
the upper α1 · 100% − 2 · α2 · 100%, and the remaining part. We apply this procedure for α1:
0.03, 0.04, 0.05, 0.06.

Table 3 displays the worst case DM AV@R values together with the copulas chosen by our
algorithm for the application of SAA when the dimension of the simplex is reduced. Both the
worst case DM AV@R and the corresponding copulas for both D1 and D2, in both cases C12,
are robust with respect to the choice of α1. However, as indicated in the third row of Table 3,
when we reduced the dimension before applying SAA and select K∗ candidate copulas from the
SA results, different candidates are picked.

α1 0.03 0.04 0.05 0.06
Worst case DM AV@R 0.655472 0.655452 0.655967 0.655872

Dimension reduction: selected copulas C8, C12, C14 C4, C12, C14 C4, C8, C12 C4, C8, C12

Table 3: The AV@R values of the worst case DM copula (corresponding to C12 for both D1 and
D2) and the selected candidate copulas for the SAA procedure with K∗ = 3.

4.2 Cyber risk

In an application to cyber risk, we study cyber incidents in USA from Privacy Rights Clear-
inghouse (https://privacyrights.org/) collected from January 2005 until October 2019. For
a time window ending in 2016 the data set was also analyzed by Eling & Jung (2018). We
consider loss records in periods of two months and rearrange the data accordingly. This reduces
the number of zero entries and admits a tractable analysis that does not separate zero entries
from strictly positive losses.9

9In contrast to our simplified approach, Eling & Jung (2018) build their analysis on a methodology described
in Erhardt & Czado (2012) that expresses the joint probability function by copulas with discrete and continuous
margins. Our algorithmic approach can also be applied to their methodology. The statistical estimation is,
however, more difficult in this case.
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The data records contain information on the period, the number of events in each period
and the corresponding losses. We consider five types of breaches:10

i Data Breaches Type (Number of zero data): description
1 DISC (0): Unintended Disclosure Not Involving Hacking, Intentional Breach or Physical Loss
2 HACK (0): Hacked by an Outside Party or Infected by Malware
3 INSD (17): Insider - employee, contractor or customer
4 PHYS (5): Physical - paper documents that are lost, discarded or stolen
5 PORT (16): Portable Device - lost, discarded or stolen laptop, smartphone, memory stick, etc.

The data set contains 89 two months periods. The number of dates with observations of zero
losses or no incidents is provided in parenthesis. In order to simplify the analysis, we replace all
zero entries by a uniform (0, 1) random variable; since the severity for non-zero losses is typically
on the order of 103 or more, this approach does not substantially modify the data, but admits
a simplified model with strictly positive marginal densities.

4.2.1 Losses due to data breaches

We assume that the two months breach records can be modeled by a 5-dimensional random vector
L = (L1, L2, . . . , L5). We employ a loss distribution approach to the marginal distributions, i.e.,

Li =
N i∑
j=1

Ri
j

where Ri
j , j = 1, · · · , N i are iid random variables representing the severity of individual loss

records and N i signifies the random number of losses. The dependence among L is captured
by a copula which will be modelled as a DM copula. The details of selection and calibration
will be given below. In general, one is interest in measuring the risk of some functional of L.
As an illustrative example, we focus on the AV@R at level 0.95 of the sum of its components,
X =

∑5
i=1 Li.

4.2.2 Marginal distributions

Motivated by Eling & Jung (2018), we model the frequency and the severity of loss records
separately, choosing a lognormal distribution for the severity and a negative binomial distribution
for the number of losses in each period. We estimate the parameters of the distributions and
summarize the results in Table 4; for the negative binomial we applied MLE, for the lognormal
unbiased estimates of mean and variance of the log-data.

Negative binomial Lognormal
Type r p µ σ

1 2.8684 0.1209 9.8543 2.4364
2 1.6333 0.0543 11.7851 2.5086
3 0.9250 0.1196 6.9622 4.4965
4 1.3117 0.0632 7.9432 2.9350
5 0.9685 0.0685 7.9445 4.7539

Table 4: Estimation results for the loss frequency and severity of L.

For the implementation of our algorithm, we finally generate and store 107 samples of each
distribution.

10The description was obtained from the website https://privacyrights.org/.
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4.2.3 Dependence

Since the AV@R focuses on the upper tails, we continue to use the distortion functions in (16),
again choosing α1 = α2 = 0.04 and α0 = 1 − α1 − α2. If AV@R at level 0.95 is computed by
a corresponding DM copula, the dependence on the central and lower part (captured by D0) is
very low; this is confirmed in numerical experiments. For this reason, we focus on a particularly
simple approach and use a Gaussian copula for this part with linear correlation estimated from
the data. The correlation matrix Σ1 is given in Section A.4 in the appendix.

For the upper tails (captured by D1 and D2), we consider K = 8 candidate copulas, namely
two Gaussian copulas, two t- copulas, two Gumbel copulas, and two vine copulas; for the latter
we refer to Dißmann, Brechmann, Czado & Kurowicka (2013) for further information. More
specifically, the copulas are estimated as follows; the corresponding parameters for Gaussian, t
and vine copulas are given in Section A.4:

• C1: Gaussian copula with the estimated linear correlation Σ1;

• C2: Gaussian copula that matches the estimated Kendall’s tau with corresponding corre-
lation matrix Σ2;

• C3: t-copula with parameters ν1 and P1 estimated by MLE;

• C4: t-copula with parameters ν2 and P2 with P2 matching Kendall’s tau and ν2 estimated
by MLE;

• C5: Gumbel copula estimated by MLE with parameter θ = 1.875123;

• C6: Gumbel copula estimated on the basis of a minimal Cramér-von Mises distance ac-
cording to Hofert, Mächler & McNeil (2013) with parameter θ = 1.000061;

• C7: Regular vine copula estimated according to AIC;

• C8: Regular vine copula estimated according to BIC.

4.2.4 Case studies

As a benchmark, we compute the AV@R at level 0.95 when dependence is modeled by the single
Gaussian copula C1 estimated from the entire data set. The unit for the reported AV@R values
is always one million. The estimated AV@R at level 0.95 equals 45.6533 in this case on the basis
of 107 samples. If we use copulas C2, C3, ... , C8 points estimates range from about 45.2 to 53.1
with significant sampling error. As in Section 4.1, we compare this benchmark to the result of
the algorithm with DM copulas that was described in Section 3. The DM approach provides a
more sophisticated analysis of the worst case.

With an equal initial weight of 1/8, a constant sample size Nt = 106 and step size a = 0.7, the
initial AV@R at level 0.95 corresponds to 49.4159. Stopping SA according to the our stopping
rule at t∗ = 10, we obtain an estimated AV@R at level 0.95 of 53.4793 with an empirical standard
deviation of 3.8764 computed from the last ten iterations. The corresponding γ̄⊤ equals(

0.1187 0.1191 0.1232 0.1193 0.1307 0.1307 0.1291 0.1292
0 0 0 0 0.5751 0.4249 0 0

)
with increments (γ̄10 − γ̄9)

⊤ of an order of 1/500 or less.
Setting K∗ = 3 and switching to SAA, our algorithm selects the copulas C5 (Gumbel copula

with θ = 1.875123), C6 (Gumbel copula with θ = 1.000061), and C8 (Regular vine copula
according to BIC, Table 8) on the basis of the estimate γ̄10. Thus, SAA needs to be applied to
a three-dimensional grid on

γi5 + γi6 + γi8 = 1, i = 1, 2, γij ≥ 0, i = 1, 2, j = 5, 6, 8.
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With a sample size of 107 sample size and 0.1 grid size, SAA selects the Gumbel copula C5 for
D1 and the Gumbel copula C6 for D2 with a worst-case AV@R at level 95% of 53.6990. For
the distortion D1, the copula C6 leads to almost the same result, i.e., for D1 the sensitivity of
the AV@R with respect to C5 and C6 is almost zero. This worst case AV@R may be compared
to the comonotonic case, i.e., the sum of the marginal AV@Rs, which equals 55.133051. This
shows that within our setting (that limits the admissible dependence structure on the basis of
an expert’s opinion) model uncertainty is already reduced.

In summary, when computing AV@R at level 0.95, DM methods provide an excellent method
for identifying the relevant low-dimensional dependence structures, when many data are available
as illustrated in Section 4.1. In the current example on cyber risk, data are scarce and tail copulas
are chosen ad hoc on the basis of an expert’s opinion. In this case, our algorithm easily identified
the worst-case dependence and reduces the dimensionality at the same time. If only few data
are available in the tail, the choice of tail copulas is restricted by only few constraints and the
sensitivities of the AV@R within this class are more significant. In all cases, the worst-case
AV@R on the basis of the DM copula provides a substantially better understanding of downside
risk than single copulas fitted to the whole data.

5 Conclusion
Uncertainty requires suitable techniques for risk assessment. In this paper, we combined stochas-
tic approximation and stochastic average approximation to develop an efficient algorithm to
compute the worst case average value at risk in the face of tail uncertainty. Dependence was
modelled by the distorted mix method that flexibly assigns different copulas to different regions
of multivariate distributions. The method is computationally efficient and allows at the same
time to identify copulas in a lower-dimensional mixture space that capture the worst case with
high precision. We illustrated the application of our approach in the context of financial markets
and cyber risk. Distorted mix copulas can flexibly adjust the dependence structure in different
regions of a multivariate distribution. Our research indicated that they provide a powerful and
flexible tool for capturing dependence in both the central area and tails of distributions.
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A Appendix

A.1 Proof of Lemma 1

Define ζ(u, γ̄) = u+ α0
1−pE[Ψ

0−u]++
∑m

i=1

∑K
j=1

αiγ
i
j

1−p E[Ψ
ij −u]+, where Ψ0 and Ψij are random

variables having the distribution G0 and Gij in (7), respectively. The finiteness of the function
ζ is guaranteed by the existence of the AV@R, or equivalently by E|Ψ0| < ∞ and E|Ψij | < ∞
for each i and j. Moreover, a convex function ζ(·, γ̄) has finite right and left derivatives for any
γ̄. Observe that

ζ(u′, γ̄)− ζ(u, γ̄)

u′ − u
= 1 +

α0

1− p

E[Ψ0 − u′]+ − E[Ψ0 − u]+

u′ − u
+

m∑
i=1

K∑
j=1

αiγ
i
j

1− p

E[Ψij − u′]+ − E[Ψij − u]+

u′ − u
.

When u′ > u,

E[Ψ0 − u′]+ − E[Ψ0 − u]+

u′ − u
=


−1 if Ψ0 ≥ u′

0 if Ψ0 ≤ u

E
[
−Ψ0+u
u′−u

]
∈ (−1, 0) if u < Ψ0 < u′.

Then there exist ρ(u, u′) ∈ [0, 1] for which

E[Ψ0 − u′]+ − E[Ψ0 − u]+

u′ − u
= −(1− P(Ψ0 ≤ u′))− ρ(u, u′)(P(Ψ0 ≤ u′)− P(Ψ0 ≤ u)).

By letting u′ ↓ u, we have P(Ψ0 ≤ u′) converges to P(Ψ0 ≤ u) which makes

lim
u′↓u

E[Ψ0 − u′]+ − E[Ψ0 − u]+

u′ − u
= P(Ψ0 ≤ u)− 1.

Similarly, we can compute

lim
u′↓u

ζ(u′, γ̄)− ζ(u, γ̄)

u′ − u
= 1 +

α0

1− p
(P(Ψ0 ≤ u)− 1) +

m∑
i=1

K∑
j=1

αiγ
i
j

1− p
(P(Ψij ≤ u)− 1)

= 1− 1

1− p
+

α0

1− p
P(Ψ0 ≤ u) +

m∑
i=1

K∑
j=1

αiγ
i
j

1− p
P(Ψij ≤ u)

which is ∂+ζ
∂u (u, γ̄). Analogously, we can compute ∂−ζ

∂u (u, γ̄). The remaining results are now
straightforward.

A.2 Calibrations with large amounts of data

We provide an illustrative example supporting the claim that the DM method provides a good
statistical framework for estimating the risk measure AV@R if a large amount of data is available.
This claim refers, of course, to the DM method of Li et al. (2014) itself. Computing a worst-case
is thus not an issue in this case study.

We consider a setting that modifies Example 2 (d = 2) as follows. Data are generated by a
collection of models with X = X1 +X2 where the dependence between X1 and X2 is correctly
described by one of the following copulas

• a Gaussian copula with ρ = 0.7;

• a t-copula with ρ = 0.7, ν = 1;
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• a Gumbel copula with θ = 1.7095;

• a Cuadras-Augé copula with θ = 0.8.

The Cuadras-Augé copula

CCA(u1, u2) = min(u1, u2)
θ(u1u2)

1−θ, θ ∈ (0, 1],

is upper tail dependent and an extreme value copula. The marginal distributions of X1 and X2

are inverse Gaussian with parameters (µ, λ) equal to (1, 0.5) and (1, 1.2), respectively. For each
model we compute the AV@R from SAA using the 5·107 number of samples as an approximation
of the true AV@R; the results are displayed on the second row of Table 6 and denoted by ‘True
AV@R’.

The numerical experiment is then conducted as follows. We generate data with sample size
103 and 104 from the given model (the given true copula). These are then used to estimate
parameters of the following copulas and to finally compute AV@R measurements from them
using a sample size 106:

(a) a Gaussian DM copula with α1 = 0.1, whose component copulas for the three parts,
D0, D1, D2 are all Gaussian copulas;

(b) a Gaussian DM copula for the optimal α1 (as explained below);

(c) a Gaussian copula;

(d) a t-copula;

(e) a Gumbel copula.

Letting α0 = 1− α1, and α1 = α2, the distortion functions are:

D0(x) =

{ x
α0

if x ≤ α0

1 x > if α0
D1(x) =


0 if x ≤ α0
x−α0
α1

if α0 < x ≤ α0 + α1

1 if x > α0 + α1

D2(x) =

{
0 if x ≤ α0 + α1
x−α0−α1

α2
if α0 + α1 < x ≤ 1.

The results of the parameter estimation are displayed in Table 5.
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Data size Copulas Parameters Gaussian t Gumbel Cuadras-Augé

103

Gaussian DM α1 0.1 0.1 0.1 0.1
ρ̂ for D0 0.5407 0.5833 0.3273 0.6718
ρ̂ for D1 -0.6668 -0.5114 -0.7146 -0.5774
ρ̂ for D2 0.016 0.1752 0.2868 0.0187

Gaussian DM α1 0.2 0.12 0.15 0.1
ρ̂ for D0 0.4514 0.5849 0.2602 0.6718
ρ̂ for D1 -0.6254 -0.5371 -0.6672 -0.5774
ρ̂ for D2 0.1467 0.1889 0.2683 0.0187

Gaussian ρ̂ 0.7032 0.7002 0.5973 0.761
t ν̂ 3338586 1.0062 5.3304 1

ρ̂ 0.6991 0.7102 0.577 1
Gumbel θ̂ 1.8341 2.1882 1.6542 3.1677

104

Gaussian DM α1 0.1 0.1 0.1 0.1
ρ̂ for D0 0.5652 0.5936 0.3456 0.1191
ρ̂ for D1 -0.7711 -0.5744 -0.6837 -0.562
ρ̂ for D2 -0.1119 -0.1026 0.1121 0.1368

Gaussian DM α1 0.15 0.12 0.13 0.1
ρ̂ for D0 0.5185 0.6076 0.3006 0.1191
ρ̂ for D1 -0.6983 -0.605 -0.6758 -0.562
ρ̂ for D2 -0.0157 -0.1003 0.1191 0.1368

Gaussian ρ̂ 0.7028 0.6281 0.5906 0.742
t ν̂ 4669186 1.0107 7.7096 1

ρ̂ 0.7064 0.6973 0.5938 1
Gumbel θ̂ 1.8476 2.0485 1.6837 2.9518

Table 5: Estimated parameters.
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True copulas Gaussian t Gumbel Cuadras-Augé
Data size True AV@R 8.8405 9.0755 9.0728 9.2205

Gaussian DM AV@R
(α1 = 0.1) 9.2404 9.2879 9.3345 9.2093

increment to true AV@R -0.3999 -0.2125 -0.2617 0.0112
Gaussian DM AV@R

(optimal α1)
8.7948
(0.2)

9.1645
(0.12)

9.0836
(0.15)

9.2093
(0.1)

increment to true AV@R 0.0457 -0.0890 -0.0107 0.0112
Gaussian AV@R 8.8089 8.5252 8.5674 8.9012

increment to true AV@R 0.0316 0.5503 0.5054 0.3193
t AV@R 8.8132 9.0212 8.6768 9.6490

increment to true AV@R 0.0273 0.0543 0.3960 -0.4285
Gumbel AV@R 9.1872 9.3263 9.0231 9.5304

103

increment to true AV@R -0.3467 -0.2508 0.0498 -0.3098
Gaussian DM AV@R

(α1 = 0.1) 9.1480 9.1498 9.2478 9.2560

increment to true AV@R -0.3075 -0.0744 -0.1750 -0.0467
Gaussian DM AV@R

(optimal α1)
8.8558
(0.15)

9.0162
(0.12)

9.0541
(0.13)

9.2560
(0.1)

increment to true AV@R -0.0153 0.0593 0.0187 -0.0467
Gaussian AV@R 8.8574 8.6748 8.5548 8.9677

increment to true AV@R -0.0169 0.4007 0.5181 0.2529
t AV@R 8.8647 9.0564 8.6662 9.6537

increment to true AV@R -0.0242 0.0190 0.4067 -0.4331
Gumbel AV@R 9.2021 9.2689 9.0558 9.5103

104

increment to true AV@R -0.3616 -0.1935 0.0171 -0.2897

Table 6: AV@R values in estimated models and increments to true AV@R.

The AV@Rs calculated in various estimated models and the resulting increments to the true
AV@R are displayed in Table 6. The Gaussian model with optimal α1 is estimated using the
empirical maximal likelihood. The main observation is that, despite being based on Gaussian
copulas only, the DM method performs quite well in estimating the true AV@R. In particular,
the Gaussian DM AV@R with optimal α1 outperforms all other models. This is particularly
striking in the case of the Cuadras-Augé copula, an extreme value copula. All copulas including
the Gumbel copula perform worse in this case.

A.3 Data in Section 4.1

Dependence in the central part

Dependence in the central part is modeled as the Gaussian copula whose correlation matrix
consists of the estimated linear correlations. The estimated correlation matrix based on the
92% data is

Σ =



1 0.9170 0.9494 0.4656 0.4706 0.5211 0.5012
0.9170 1 0.8185 0.4599 0.4495 0.5072 0.4724
0.9494 0.8185 1 0.4440 0.4389 0.4799 0.4698
0.4656 0.4599 0.4440 1 0.9152 0.2288 0.3191
0.4706 0.4495 0.4389 0.9152 1 0.2295 0.3060
0.5211 0.5072 0.4799 0.2288 0.2295 1 0.5717
0.5012 0.4724 0.4698 0.3191 0.3060 0.5717 1


.
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Dependence in the upper tail part

We consider K = 16 candidate copulas in the tail parts. The calibration results are summarized
in the following.

• C1: Gaussian copula matching the estimated linear correlation in the upper (4%-8%) data

Σ1 =



1 0.8316 0.8727 −0.2373 −0.1814 −0.1005 −0.1121
0.8316 1 0.6434 −0.1834 −0.1717 −0.0088 −0.0635
0.8727 0.6434 1 −0.2906 −0.2663 −0.2072 −0.1561
−0.2373 −0.1834 −0.2906 1 0.7351 −0.2962 −0.2112
−0.1814 −0.1717 −0.2663 0.7351 1 −0.2406 −0.2076
−0.1005 −0.0088 −0.2072 −0.2962 −0.2406 1 0.0762
−0.1121 −0.0635 −0.1561 −0.2112 −0.2076 0.0762 1


.

• C2: Gaussian copula matching the estimated Kendall’s tau in the upper (4%-8%) data

Σ2 =



1 0.8011 0.8571 −0.2492 −0.2328 −0.1505 −0.0449
0.8011 1 0.5947 −0.1970 −0.2012 −0.0481 −0.0090
0.8571 0.5947 1 −0.3024 −0.3445 −0.1766 −0.0952
−0.2492 −0.1970 −0.3024 1 0.7583 −0.3262 −0.2632
−0.2328 −0.2012 −0.3445 0.7583 1 −0.2438 −0.2332
−0.1505 −0.0481 −0.1766 −0.3262 −0.2438 1 0.0580
−0.0449 −0.0090 −0.0952 −0.2632 −0.2332 0.0580 1


.

• C3: t-copula estimated from the upper (4%-8%) data using ML

ν1 = 10.8802, P 1 =



1 0.9763 0.9808 0.7991 0.8093 0.7712 0.7786
0.9763 1 0.9461 0.7950 0.7996 0.7855 0.7806
0.9808 0.9461 1 0.7725 0.7811 0.7382 0.7615
0.7991 0.7950 0.7725 1 0.9529 0.6949 0.7192
0.8093 0.7996 0.7811 0.9529 1 0.7050 0.7172
0.7712 0.7855 0.7382 0.6949 0.7050 1 0.7332
0.7786 0.7806 0.7615 0.7192 0.7172 0.7332 1


.

• C4: t-copula estimated from the upper (4%-8%) data using approximate ML

ν2 = 4.8409, P 2 =



1 0.9884 0.9910 0.8914 0.8922 0.8662 0.8741
0.9884 1 0.9745 0.8876 0.8870 0.8765 0.8761
0.9910 0.9745 1 0.8813 0.8800 0.8507 0.8679
0.8914 0.8876 0.8813 1 0.9762 0.8283 0.8439
0.8922 0.8870 0.8800 0.9762 1 0.8318 0.8405
0.8662 0.8765 0.8507 0.8283 0.8318 1 0.8459
0.8741 0.8761 0.8679 0.8439 0.8405 0.8459 1


.

• C5: t-copula estimated from the upper (4%-8%) data using Kendall’s tau and ML

ν3 = 1.1237, P 3 =



1 0.8011 0.8571 −0.2492 −0.2328 −0.1505 −0.0449
0.8011 1 0.5947 −0.1970 −0.2012 −0.0481 −0.0090
0.8571 0.5947 1 −0.3024 −0.3445 −0.1766 −0.0952
−0.2492 −0.1970 −0.3024 1 0.7583 −0.3262 −0.2632
−0.2328 −0.2012 −0.3445 0.7583 1 −0.2438 −0.2332
−0.1505 −0.0481 −0.1766 −0.3262 −0.2438 1 0.0580
−0.0449 −0.0090 −0.0952 −0.2632 −0.2332 0.0580 1


.
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• C6: Grouped t-copula estimated from the upper (4%-8%) data using ML

ν1 = (4.8284, 4.4677, 12.8199),

P 1 =

 1 0.9734 0.9780
0.9734 1 0.9388
0.9780 0.9388 1

 ,

[
1 0.9472

0.9472 1

]
,

[
1 0.7655

0.7655 1

]
.

• C7: Grouped t-copula estimated from the upper (4%-8%) data using approximate ML

ν2 = (1.2569, 1.7534, 13040952.7492),

P 2 =

 1 0.9713 0.9793
0.9713 1 0.9375
0.9793 0.9375 1

 ,

[
1 0.9682

0.9682 1

]
,

[
1 0.8517

0.8517 1

]
.

• C8: Grouped t-copula estimated from the upper (4%-8%) data using Kendall’s tau and
ML

ν3 = (0.7287, 0.9180, 1.9547),

P 3 =

 1 0.8011 0.8571
0.8011 1 0.5947
0.8571 0.5947 1

 ,

[
1 0.7583

0.7583 1

]
,

[
1 0.0580

0.0580 1

]
.

• C9: Gaussian copula matching the estimated linear correlation in the extreme upper (-4%)
data

Σ3 =



1 0.9197 0.9592 0.5265 0.5336 0.5598 0.5913
0.9197 1 0.8860 0.4640 0.5141 0.5420 0.5060
0.9592 0.8860 1 0.4624 0.4786 0.4820 0.5998
0.5265 0.4640 0.4624 1 0.8503 0.5107 0.4501
0.5336 0.5141 0.4786 0.8503 1 0.4144 0.3761
0.5598 0.5420 0.4820 0.5107 0.4144 1 0.5388
0.5913 0.5060 0.5998 0.4501 0.3761 0.5388 1


.

• C10: Gaussian copula matching the estimated the Kendall’s tau in the extreme upper
(-4%) data

Σ4 =



1 0.9088 0.9498 0.5068 0.4949 0.5044 0.5333
0.9088 1 0.8722 0.4565 0.4878 0.5028 0.4495
0.9498 0.8722 1 0.4615 0.4213 0.3868 0.5318
0.5068 0.4565 0.4615 1 0.8604 0.5050 0.4718
0.4949 0.4878 0.4213 0.8604 1 0.4223 0.3349
0.5044 0.5028 0.3868 0.5050 0.4223 1 0.4835
0.5333 0.4495 0.5318 0.4718 0.3349 0.4835 1


.

• C11: t-copula estimated from the extreme upper (-4%) data using ML

ν1e = 25.9712, P 1
e =



1 0.9824 0.9909 0.8853 0.8961 0.8843 0.8906
0.9824 1 0.9738 0.8691 0.8926 0.8790 0.8685
0.9909 0.9738 1 0.8688 0.8825 0.8620 0.8919
0.8853 0.8691 0.8688 1 0.9553 0.8532 0.8378
0.8961 0.8926 0.8825 0.9553 1 0.8324 0.8264
0.8843 0.8790 0.8620 0.8532 0.8324 1 0.8620
0.8906 0.8685 0.8919 0.8378 0.8264 0.8620 1


.
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• C12: t-copula estimated from the extreme upper (-4%) data using approximate ML

ν2e = 2.8781, P 2
e =



1 0.9864 0.9950 0.9062 0.9175 0.9321 0.9239
0.9864 1 0.9804 0.8876 0.9103 0.9243 0.9044
0.9950 0.9804 1 0.8965 0.9092 0.9202 0.9280
0.9062 0.8876 0.8965 1 0.9692 0.8957 0.8760
0.9175 0.9103 0.9092 0.9692 1 0.8838 0.8749
0.9321 0.9243 0.9202 0.8957 0.8838 1 0.9134
0.9239 0.9044 0.9280 0.8760 0.8749 0.9134 1


.

• C13: t-copula estimated from the extreme upper (-4%) data using Kendall’s tau and ML

ν3e = 2.2042, P 3
e =



1 0.9088 0.9498 0.5068 0.4949 0.5044 0.5333
0.9088 1 0.8722 0.4565 0.4878 0.5028 0.4495
0.9498 0.8722 1 0.4615 0.4213 0.3868 0.5318
0.5068 0.4565 0.4615 1 0.8604 0.5050 0.4718
0.4949 0.4878 0.4213 0.8604 1 0.4223 0.3349
0.5044 0.5028 0.3868 0.5050 0.4223 1 0.4835
0.5333 0.4495 0.5318 0.4718 0.3349 0.4835 1


.

• C14: Grouped t-copula estimated from the extreme upper (-4%) data using ML

ν1
e = (6.7057, 109.1713, 709778.4720),

P 1
e =

 1 0.9781 0.9890
0.9781 1 0.9668
0.9890 0.9668 1

 ,

[
1 0.9580

0.9580 1

]
,

[
1 0.8848

0.8848 1

]
.

• C15: : Grouped t-copula estimated from the extreme upper (-4%) data using approximate
ML

ν2
e = (1.0001, 1.1370, 1.7893),

P 2
e =

 1 0.9510 0.9792
0.9510 1 0.9234
0.9792 0.9234 1

 ,

[
1 0.9301

0.9301 1

]
,

[
1 0.9092

0.9092 1

]
.

• C16: : Grouped t-copula estimated from the extreme upper (-4%) data using Kendall’s
tau and ML

ν3
e = (1.2977, 1.2977, 1.5911),

P 3
e =

 1 0.9088 0.9498
0.9088 1 0.8722
0.9498 0.8722 1

 ,

[
1 0.8604

0.8604 1

]
,

[
1 0.4835

0.4835 1

]
.

Single Gaussian copula estimated from the entire data set – correlation matrix

1 0.9388 0.9625 0.5961 0.6031 0.6302 0.6172
0.9388 1 0.8662 0.5906 0.5865 0.6197 0.5946
0.9625 0.8662 1 0.5775 0.5771 0.5965 0.5922
0.5961 0.5906 0.5775 1.0000 0.9333 0.4003 0.4699
0.6031 0.5865 0.5771 0.9333 1 0.4035 0.4623
0.6302 0.6197 0.5965 0.4003 0.4035 1.0000 0.6579
0.6172 0.5946 0.5922 0.4699 0.4623 0.6579 1


.
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A.4 Data in Section 4.2

Dependence in the central part

Dependence in the central part is modeled as the Gaussian copula whose correlation matrix
consists of the estimated linear correlations as

Σ1 =


1 −0.0086 −0.0224 0.0260 −0.3324

−0.0086 1 0.1179 −0.0210 −0.2222
−0.0224 0.1179 1 −0.1795 0.2620
0.0260 −0.0210 −0.1795 1 −0.1342
−0.3324 −0.2222 0.2620 −0.1342 1

 .

Dependence in the tail parts

• Σ2 =


1 0.0605 0.1459 0.0437 −0.1554

0.0605 1 −0.0233 0.0313 −0.2593
0.1459 −0.0233 1 −0.1787 0.3949
0.0260 0.0313 −0.1787 1 −0.1677
−0.1554 −0.2593 0.3949 −0.1677 1



• ν1 = 27.5747, P1 =


1 0.6895 0.2085 0.5510 0.3492

0.6895 1 0.2257 0.6665 0.4838
0.2085 0.2257 1 −0.3175 −0.4300
0.5510 0.6665 −0.3175 1 0.8533
0.3492 0.4838 −0.4300 0.8533 1


• ν2 = 3.6372, P2 = Σ2

• C7: The regular vine copula is estimated according to AIC. For more information, we
refer to Dißmann et al. (2013). The estimation was conducted by the vine copula package
in R. https://cran.r-project.org/web/packages/VineCopula/VineCopula.pdf. The
selected trees, pair copulas and the estimated parameters are given in Table 7.

• C8: The regular vine copula is estimated according to BIC. For more information, we
refer to Dißmann et al. (2013). The estimation was conducted by the vine copula package
in R. https://cran.r-project.org/web/packages/VineCopula/VineCopula.pdf. The
selected trees, pair copulas and the estimated parameters are provided in Table 8.
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Tree pair copula parameters
1 3,4 Frank 3.63

5,2 Frank 6.12 2
5,1 Frank 4.39 0.06
5,3 Tawn type 2 180 degrees 3.57 0.46

2 5,4 ; 3 Tawn type 2 4.12 0.37
1,2 ; 5 Tawn type 2 180 degrees 1.78 0.41
3,1 ; 5 Survival BB8 6 0.17

3 1,4 ; 5,3 Tawn type 1 3.61 0.39
3,2 ; 1,5 Joe 1.11

4 2,4 ; 1,5,3 Tawn type 2 180 degrees 1.6 0.31

Table 7: The structure, pair copulas, and parameters of the regular vine copula C7 estimated
according to AIC

.

Tree pair copula parameters
1 3,4 Frank 3.63

5,2 Frank 6.12 2
5,1 Frank 4.39 0.06
5,3 Tawn type 2 180 degrees 3.57 0.46

2 5,4 ; 3 Tawn type 2 4.12 0.37
1,2 ; 5 Survival Joe 1.55
3,1 ; 5 Independence

3 1,4 ; 5,3 Tawn type 1 3.49 0.39
3,2 ; 1,5 Independence

4 2,4 ; 1,5,3 Clayton 0.52

Table 8: The structure, pair copulas, and parameters for the regular vine copula C8 according
to BIC

.
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