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Abstract

Carathéodory’s Convexity Theorem states that each element in the

convex hull of a subset A of Rm can be written as the convex combi-

nation of m+ 1 elements of A. We prove an approximate constructive

version of Carathéodory’s Convexity Theorem for totally bounded sets.

For each n ∈ N, define

In := {1, . . . , n} .

For any λ ∈ Rn, we denote by λi the ith coordinate of λ, that is λ =

(λ1, . . . , λn). Let

Sn :=

{
λ ∈ Rn | ∀i ∈ In (0 ≤ λi) ∧

∑
i∈In

λi = 1

}
.

The linear space generated by x1, . . . , xn ∈ Rm is denoted by

span({x1, . . . , xn}) :=

{∑
i∈In

λix
i | λ ∈ Rn

}
.

The convex hull of an inhabited subset A of Rm—that is there exists x ∈ A—

is

co(A) =

{∑
i∈In

λix
i | λ ∈ Sn, xi ∈ A(i ∈ In), n ∈ N

}
.

A set U ⊆ Rn is located if it is inhabited and if for all x ∈ Rn the distance

d(x, U) = inf{‖x− y‖ | y ∈ U}
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exists, where throughout this paper ‖ · ‖ denotes the Euclidean norm on Rn.

U is said to be totally bounded if U is inhabited and if for every ε > 0 there

exists a finite subset F ⊆ U such that

∀x ∈ U ∃y ∈ F ‖x− y‖ < ε.

Note that any totally bounded set is located [2, Proposition 2.2.9]. Let

x1, . . . , xn ∈ Rm and recall that

i) (xi)i∈In are linearly independent if

∀λ ∈ Rn (‖λ‖ > 0 ⇒ ‖
∑
i∈In

λix
i‖ > 0),

ii) (xi)i∈In are linearly dependent if

∃λ ∈ Rn (‖λ‖ > 0 ∧
∑
i∈In

λix
i = 0).

The following lemma seems to be folklore, but we could not find a proof

in the constructive mathematics literature. As we will need it later on, we

provide a proof for the sake of completeness.

Lemma 1. Let x1, . . . , xn ∈ Rm. If n > m, then (xi)i∈In are not linearly

independent.

Proof. It suffices to prove the assertion for n = m + 1. Assume that

(xi)i∈Im+1 are linearly independent.

Case m = 1: By linear independence we have |x1| > 0 and |x2| > 0. Set

λ1 := x2 and λ2 := −x1. Then λ = (λ1, λ2) ∈ R2 satisifes ‖λ‖ > 0 and

λ1x
1 + λ2x

2 = x2x1 − x1x2 = 0

which is a contradiction.

Case m ≥ 2: As ‖xm+1‖ > 0 we have that |xm+1
j | > 0 for some j ∈ Im.

Without loss of generality we assume that j = m. Consider the vectors

vi := xm+1
m xi − ximxm+1, i ∈ Im.

We have vim = 0 for all i ∈ Im, so we may identify the vectors vi with

elements of Rm−1. Moreover, the (vi)i∈Im are linearly independent. Indeed,

consider λ ∈ Rm with ‖λ‖ > 0, then∑
i∈Im

λiv
i =

∑
i∈Im

(λix
m+1
m )xi + (−

∑
i∈Im

λix
i
m)xm+1.
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Since |λk| > 0 for some k ∈ Im and as |xm+1
m | > 0 we have ‖λ̃‖ > 0 where

λ̃ ∈ Rm+1 is given by λ̃i := λix
m+1
m , i ∈ Im, and λ̃m+1 = −

∑
i∈Im λix

i
m.

Linear independence of (xi)i∈Im+1 now implies that

‖
∑
i∈Im

λiv
i‖ = ‖

∑
i∈Im+1

λ̃ix
i‖ > 0.

Thus, by erasing the last coordinate of the vi, we have constructed m linear

independent vectors in Rm−1. Continuing this reduction procedure, if nec-

essary, will eventually produce two linearly independent vectors in R which

is a contradiction according to the case m = 1 above.

Corollary 1. Suppose that x1, . . . , xn ∈ Rm are linearly independent. Then

(i) n ≤ m;

(ii) if n = m, then x1, . . . , xn is a basis of Rm, that is

Rm = span({x1, . . . , xn}).

Proof. (i) is obvious by Lemma 1. As for (ii), let x ∈ Rm. Note that V :=

span({x1, . . . , xm}) is a closed located linear subspace of Rm ([2, Lemma

4.1.2 and Corollary 4.1.5]). We show that Rm ⊆ V . To this end, let x ∈ Rm.

We have to show that d(x, V ) = 0, that is ¬d(x, V ) > 0. Assume d(x, V ) >

0. Then x1, . . . , xm, x are linearly independent, see [2, Lemma 4.1.10]. This

is a contradiction to Lemma 1.

Lemma 2. Let x1, . . . , xn ∈ Rm. Then co({x1, . . . , xn}) is located. More-

over, if n ≥ 2 and x1 − xn, x2 − xn, . . . , xn−1 − xn are linearly independent,

then co({x1, . . . , xn}) is closed.

Proof. Locatedness follows from [2, Propositions 2.2.6 and 2.2.9]. As for

closedness, let (yk)k∈N ⊆ co({x1, . . . , xn}) be a sequence converging to y ∈
Rm. Further, let λk ∈ Sn such that

yk =
n∑
i=1

λki x
i = xn +

n−1∑
i=1

λki (x
i − xn).

Then

yk − yl =

n−1∑
i=1

(λki − λli)(xi − xn).
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By linear independence of x1 − xn, . . . , xn−1 − xn the mapping

Rn−1 3 µ 7→
n−1∑
i=1

µi(x
i − xn)

and its inverse are bounded linear injections, see [2, Corollary 4.1.5]. Hence,

the sequence (λk1, . . . , λ
k
n−1)k∈N ⊆ Rn−1 is Cauchy and thus converges to

(λ1, . . . , λn−1) ∈ Rn−1, and one verifies that

λ := (λ1, . . . , λn−1, 1−
n−1∑
i=1

λi) ∈ Sn

satisfies y =
∑n

i=1 λix
i ∈ co({x1, . . . , xn}).

Lemma 3. For n ≥ 2 fix x1, . . . , xn ∈ Rm such that x1 − xn, . . . , xn−1 − xn

are linearly dependent. Moreover, let x ∈ co({x1, . . . , xn}). Then for each

ε > 0 there exists j ∈ In and y ∈ co({xi | i ∈ In\{j}}) such that ‖x−y‖ < ε.

Proof. Let λ ∈ Sn such that x =
∑

i∈In λix
i, and let M > 0 such that

M > ‖xi‖ for all i ∈ In. For all i ∈ In either λi > 0 or λi <
ε

2M . Suppose

that there is j ∈ In such that λj <
ε

2M . Let µi := λi+
λj
n−1 , i ∈ In \{j}, and

note that µi ≥ 0 for all i ∈ In \ {j} and∑
i∈In\{j}

µi =
∑
i∈In

λi = 1.

Set

y :=
∑
In\{j}

µix
i ∈ co({xi | i ∈ In \ {j}}).

Then

‖x− y‖ ≤ λj‖xj‖+
λj

n− 1

∑
i∈In\{j}

‖xi‖ ≤ 2Mλj < ε.

Hence, the assertion of the lemma is proved in this case. Thus we may from

now on assume that λi > 0 for all i ∈ In. In that case, as x1−xn, . . . , xn−1−
xn are linearly dependent, there is ν̃ ∈ Rn−1 with ‖ν̃‖ > 0 such that∑

i∈In−1

ν̃i(x
i − xn) = 0.

Let νi := ν̃i for i ∈ In−1 and νn := −
∑

i∈In−1
ν̃i so that ν = (ν1, . . . , νn) ∈

Rn satisfies

‖ν‖ > 0,
∑
i∈In

νi = 0, and
∑
i∈In

νix
i = 0.
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In particular there exists k ∈ In such that νk > 0. Let

β := max

{
νi
λi
| i ∈ In

}
.

Then β > 0 and for all i ∈ In we have that µ̃i := λi − 1
βνi ≥ 0 and∑

i∈In

µ̃i =
∑
i∈In

λi = 1 and x =
∑
i∈In

µ̃ix
i.

Pick j ∈ In such that νj > 0 and

β − νj
λj

<
εβ

2M
.

Then µ̃j <
ε

2M , so we are in the situation we covered in the first part of

this proof and may thus construct y ∈ co({xi | i ∈ In \ {j}}) such that

‖x− y‖ < ε.

For the following lemma we recall that a subset M of a set N is said to be

detachable from N if

∀x ∈ N (x ∈M ∨ x 6∈M).

Lemma 4. Let n ≥ 2 and x1, . . . , xn ∈ Rm. Suppose that the set

L := {J ⊆ In | |J | ≥ 2 ∧ ∃i ∈ J (xj − xi)j∈J\{i} are linearly independent}

is detachable from P(In). Then for all inhabited J ⊆ In with |J | ≥ 2 we

have either

i) there exists i ∈ J such that (xj −xi)j∈J\{i} are linearly independent, or

ii) there exists i ∈ J such that (xj − xi)j∈J\{i} are linearly dependent.

Proof. Let J ⊆ In be inhabited with |J | ≥ 2. Note that

{i, j} ∈ L ⇔ ‖xi − xj‖ > 0 and ¬({i, j} ∈ L)⇔ ‖xi − xj‖ = 0. (1)

Hence, as L is detachable from P(In), for arbitrary i, j ∈ J we have either

‖xj − xi‖ > 0 or ‖xj − xi‖ = 0, and thus we know whether there is i, j ∈ J
such that ‖xj −xi‖ = 0 or whether ‖xj −xi‖ > 0 for all i, j ∈ J . In the first

case ii) holds. In the second, the set

L(J) := {J ′ | (J ′ ∈ L) ∧ (J ′ ⊆ J)},
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which is detachable from P(In), is inhabited. Pick a set J̃ ∈ L(J) of maximal

cardinality. If J̃ = J , then i) holds. If J̃ ( J , let i ∈ J̃ such that (xj −
xi)j∈J̃\{i} are linearly independent. Note that span({xj − xi | j ∈ J̃ \ {i}})
is located and closed ([2, Lemma 4.1.2 and Corollary 4.1.5]). For k ∈ J \ J̃
suppose that

d(xk − xi, span({xj − xi | j ∈ J̃ \ {i}})) > 0.

Then xk − xi, (xj − xi)j∈J̃\{i} are linearly independent ([2, Lemma 4.1.10]).

Thus J̃ ∪ {k} ∈ L(J) which contradicts maximality of J̃ . Hence,

d(xk − xi, span({xj − xi | j ∈ J̃ \ {i}})) = 0,

that is ii) holds.

Definition. A formula ϕ is conditionally constructive if there exists a k ∈ N
and a subset M of Ik such that the detachability of M from Ik implies ϕ.

One verifies that conditionally constructive formulas are closed under con-

junction and implication and may be used unconditionally in the proof of

falsum:

Lemma 5. Let the formulas ϕ and ψ be conditionally constructive. Then

i) if ϕ⇒ ν, then ν is conditionally constructive,

ii) ϕ ∧ ψ is conditionally constructive,

iii) (ϕ⇒ ¬ψ)⇒ ¬ψ.

Proof. See [1].

The following proposition shows that Carathéordory’s Convexity Theorem

is conditionally constructive.

Proposition 1. Fix an inhabited set A ⊆ Rm and x ∈ co(A). Then the

following statement is conditionally constructive:

CCT(A) There are vectors z1, . . . , zk ∈ A with k ≤ m+ 1 such that

x ∈ co({z1, . . . , zk}).
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Proof. Let x1, . . . , xn ∈ A and λ ∈ Sn such that x =
∑

i∈In λix
i, and define

L as in Lemma 4. Furthermore, define subsets Ωi ⊆ P(In)× I3, i ∈ I3, by

(J, 1) ∈ Ω1 ⇔ J ∈ L,

(J, 2) ∈ Ω2 ⇔ |J | ≥ 1 ∧ d(x, co({xj | j ∈ J})) = 0,

(J, 3) ∈ Ω3 ⇔ |J | ≥ 1 ∧ d(x, co({xj | j ∈ J})) > 0.

Suppose that
⋃
i∈I3 Ωi is detachable from P(In) × I3 which in particular

implies that L is detachable from P(In). We prove, under this assumption,

that there is J̃ ∈ P(In) with |J̃ | ≤ m+ 1 such that

x ∈ co({xj | j ∈ J̃}).

Suppose that Ω3 = ∅. Then, as ({j}, 2) ∈ Ω2 for arbitrary j ∈ In, we have

in fact that x = x1 = . . . = xn, and the assertion holds. Thus we may from

now on assume that Ω3 is inhabited. Let ε > 0 satisfy

ε < min{d(x, co({xj | j ∈ J})) | (J, 3) ∈ Ω3}.

Note that Ω2 is inhabited, because (In, 2) ∈ Ω2. Let J̃ ∈ P(In) be of minimal

cardinality amongst all J ∈ P(In) such that (J, 2) ∈ Ω2. If J̃ = {j}, then

x = xj , and the assertion is proved. Hence, we may assume that |J̃ | ≥ 2.

By Lemma 4 either J̃ ∈ L or there is i ∈ J̃ such that (xj − xi)j∈J̃\{i} are

linearly dependent. Suppose that latter, and let y ∈ co({xj | j ∈ J̃}) such

that ‖x− y‖ < ε/2. By Lemma 3 there is k ∈ J̃ such that

d(y, co({xj | j ∈ J̃ \ {k}})) < ε/2

which implies

d(x, co({xj | j ∈ J̃ \ {k}})) ≤ ‖x− y‖+ d(y, co({xj | j ∈ J̃ \ {k}}))

< ε.

Thus ¬(J̃ \ {k}, 3) ∈ Ω3, that is (J̃ \ {k}, 2) ∈ Ω2 which contradicts mini-

mality of J̃ . Hence, J̃ ∈ L. But then co({xj | j ∈ J̃}) is closed by Lemma 2,

so x ∈ co({xj | j ∈ J̃}) follows, and also |J̃ | ≤ m+ 1 by Corollary 1.

As a consequence of Proposition 1 we obtain the already advertised approx-

imate version of Carathéordory’s Convexity Theorem for totally bounded
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sets, namely that the convex hull co(A) of a totally bounded set A ⊆ Rm

is approximated up to arbitrary small error by the subset consisting of a all

convex combinations of degree m+ 1:

com+1(A) :=

 ∑
i∈Im+1

λiz
i | zi ∈ A(i = 1, . . . ,m+ 1), λ ∈ Sm+1

 .

So if we could prove that com+1(A) and co(A) are closed, which we in general

cannot, then co(A) = com+1(A) as is classically always the case. Indeed

classically co(A) = com+1(A) is compact whenever A is compact.

Theorem 1. Suppose that A ⊆ Rm is totally bounded. Then for every x ∈
co(A) and every ε > 0 there is y ∈ com+1(A) ⊆ co(A) such that ‖x−y‖ < ε.

In particular, co(A) = com+1(A) where co(A) denotes the closure of co(A)

and com+1(A) the closure of com+1(A), and co(A) is compact.

Proof. Let

κ : Sm+1 ×Am+1 → Rm

(λ1, . . . , λm+1, z
1, . . . , zm+1) 7→

∑
i∈Im+1

λiz
i.

As κ is uniformly continuous and its domain is totally bounded, its range

com+1(A) is totally bounded as well, see [2, Proposition 2.2.6], and hence

com+1(A) is compact. We show that co(A) ⊆ com+1(A). Fix x ∈ co(A). We

have to show that

d(x, com+1(A)) = 0,

that is

¬(d(x, com+1(A)) > 0).

According to Lemma 5 it suffices to prove this under the assumption that

CCT(A) holds. But obviously

d(x, com+1(A)) > 0

contradicts CCT(A).

Note that the fact that the convex hull of a totally bounded set A is totally

bounded, and thus its closure compact, is also easily directly verified. The

important message of Theorem 1 is that the convex hull of A is best approxi-

mated by com+1(A). An inspection of the proof shows that we could replace

the requirement of A being totally bounded in Theorem 1 by com+1(A) being

located which, however, does not seem a very useful generalisation.
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