A constructive version of Carathéodory's Convexity Theorem

Josef Berger Gregor Svindland

May 5, 2021

Abstract

Carathéodory's Convexity Theorem states that each element in the convex hull of a subset A of \mathbb{R}^{m} can be written as the convex combination of $m+1$ elements of A. We prove an approximate constructive version of Carathéodory's Convexity Theorem for totally bounded sets.

For each $n \in \mathbb{N}$, define

$$
I_{n}:=\{1, \ldots, n\}
$$

For any $\lambda \in \mathbb{R}^{n}$, we denote by λ_{i} the i th coordinate of λ, that is $\lambda=$ $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Let

$$
S_{n}:=\left\{\lambda \in \mathbb{R}^{n} \mid \forall i \in I_{n}\left(0 \leq \lambda_{i}\right) \wedge \sum_{i \in I_{n}} \lambda_{i}=1\right\}
$$

The linear space generated by $x^{1}, \ldots, x^{n} \in \mathbb{R}^{m}$ is denoted by

$$
\operatorname{span}\left(\left\{x^{1}, \ldots, x^{n}\right\}\right):=\left\{\sum_{i \in I_{n}} \lambda_{i} x^{i} \mid \lambda \in \mathbb{R}^{n}\right\}
$$

The convex hull of an inhabited subset A of \mathbb{R}^{m} - that is there exists $x \in A-$ is

$$
\operatorname{co}(A)=\left\{\sum_{i \in I_{n}} \lambda_{i} x^{i} \mid \lambda \in S_{n}, x_{i} \in A\left(i \in I_{n}\right), n \in \mathbb{N}\right\}
$$

A set $U \subseteq \mathbb{R}^{n}$ is located if it is inhabited and if for all $x \in \mathbb{R}^{n}$ the distance

$$
d(x, U)=\inf \{\|x-y\| \mid y \in U\}
$$

exists, where throughout this paper $\|\cdot\|$ denotes the Euclidean norm on \mathbb{R}^{n}. U is said to be totally bounded if U is inhabited and if for every $\varepsilon>0$ there exists a finite subset $F \subseteq U$ such that

$$
\forall x \in U \exists y \in F\|x-y\|<\varepsilon .
$$

Note that any totally bounded set is located [2, Proposition 2.2.9]. Let $x^{1}, \ldots, x^{n} \in \mathbb{R}^{m}$ and recall that
i) $\left(x^{i}\right)_{i \in I_{n}}$ are linearly independent if

$$
\forall \lambda \in \mathbb{R}^{n}\left(\|\lambda\|>0 \Rightarrow\left\|\sum_{i \in I_{n}} \lambda_{i} x^{i}\right\|>0\right),
$$

ii) $\left(x^{i}\right)_{i \in I_{n}}$ are linearly dependent if

$$
\exists \lambda \in \mathbb{R}^{n}\left(\|\lambda\|>0 \wedge \sum_{i \in I_{n}} \lambda_{i} x^{i}=0\right) .
$$

The following lemma seems to be folklore, but we could not find a proof in the constructive mathematics literature. As we will need it later on, we provide a proof for the sake of completeness.

Lemma 1. Let $x^{1}, \ldots, x^{n} \in \mathbb{R}^{m}$. If $n>m$, then $\left(x^{i}\right)_{i \in I_{n}}$ are not linearly independent.

Proof. It suffices to prove the assertion for $n=m+1$. Assume that $\left(x^{i}\right)_{i \in I_{m+1}}$ are linearly independent.
Case $m=1$: By linear independence we have $\left|x^{1}\right|>0$ and $\left|x^{2}\right|>0$. Set $\lambda_{1}:=x^{2}$ and $\lambda_{2}:=-x^{1}$. Then $\lambda=\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}^{2}$ satisifes $\|\lambda\|>0$ and

$$
\lambda_{1} x^{1}+\lambda_{2} x^{2}=x^{2} x^{1}-x^{1} x^{2}=0
$$

which is a contradiction.
Case $m \geq 2$: As $\left\|x^{m+1}\right\|>0$ we have that $\left|x_{j}^{m+1}\right|>0$ for some $j \in I_{m}$. Without loss of generality we assume that $j=m$. Consider the vectors

$$
v^{i}:=x_{m}^{m+1} x^{i}-x_{m}^{i} x^{m+1}, \quad i \in I_{m} .
$$

We have $v_{m}^{i}=0$ for all $i \in I_{m}$, so we may identify the vectors v^{i} with elements of \mathbb{R}^{m-1}. Moreover, the $\left(v^{i}\right)_{i \in I_{m}}$ are linearly independent. Indeed, consider $\lambda \in \mathbb{R}^{m}$ with $\|\lambda\|>0$, then

$$
\sum_{i \in I_{m}} \lambda_{i} v^{i}=\sum_{i \in I_{m}}\left(\lambda_{i} x_{m}^{m+1}\right) x^{i}+\left(-\sum_{i \in I_{m}} \lambda_{i} x_{m}^{i}\right) x^{m+1}
$$

Since $\left|\lambda_{k}\right|>0$ for some $k \in I_{m}$ and as $\left|x_{m}^{m+1}\right|>0$ we have $\|\tilde{\lambda}\|>0$ where $\tilde{\lambda} \in \mathbb{R}^{m+1}$ is given by $\tilde{\lambda}_{i}:=\lambda_{i} x_{m}^{m+1}, i \in I_{m}$, and $\tilde{\lambda}_{m+1}=-\sum_{i \in I_{m}} \lambda_{i} x_{m}^{i}$. Linear independence of $\left(x^{i}\right)_{i \in I_{m+1}}$ now implies that

$$
\left\|\sum_{i \in I_{m}} \lambda_{i} v^{i}\right\|=\left\|\sum_{i \in I_{m+1}} \tilde{\lambda}_{i} x^{i}\right\|>0
$$

Thus, by erasing the last coordinate of the v^{i}, we have constructed m linear independent vectors in \mathbb{R}^{m-1}. Continuing this reduction procedure, if necessary, will eventually produce two linearly independent vectors in \mathbb{R} which is a contradiction according to the case $m=1$ above.

Corollary 1. Suppose that $x^{1}, \ldots, x^{n} \in \mathbb{R}^{m}$ are linearly independent. Then
(i) $n \leq m$;
(ii) if $n=m$, then x^{1}, \ldots, x^{n} is a basis of \mathbb{R}^{m}, that is

$$
\mathbb{R}^{m}=\operatorname{span}\left(\left\{x^{1}, \ldots, x^{n}\right\}\right)
$$

Proof. (i) is obvious by Lemma 1. As for (ii), let $x \in \mathbb{R}^{m}$. Note that $V:=$ $\operatorname{span}\left(\left\{x^{1}, \ldots, x^{m}\right\}\right)$ is a closed located linear subspace of \mathbb{R}^{m} ([2, Lemma 4.1.2 and Corollary 4.1.5]). We show that $\mathbb{R}^{m} \subseteq V$. To this end, let $x \in \mathbb{R}^{m}$. We have to show that $d(x, V)=0$, that is $\neg d(x, V)>0$. Assume $d(x, V)>$ 0 . Then x^{1}, \ldots, x^{m}, x are linearly independent, see [2, Lemma 4.1.10]. This is a contradiction to Lemma 1 .

Lemma 2. Let $x^{1}, \ldots, x^{n} \in \mathbb{R}^{m}$. Then $\operatorname{co}\left(\left\{x^{1}, \ldots, x^{n}\right\}\right)$ is located. Moreover, if $n \geq 2$ and $x^{1}-x^{n}, x^{2}-x^{n}, \ldots, x^{n-1}-x^{n}$ are linearly independent, then $\operatorname{co}\left(\left\{x^{1}, \ldots, x^{n}\right\}\right)$ is closed.

Proof. Locatedness follows from [2, Propositions 2.2.6 and 2.2.9]. As for closedness, let $\left(y^{k}\right)_{k \in \mathbb{N}} \subseteq \operatorname{co}\left(\left\{x^{1}, \ldots, x^{n}\right\}\right)$ be a sequence converging to $y \in$ \mathbb{R}^{m}. Further, let $\lambda^{k} \in S_{n}$ such that

$$
y^{k}=\sum_{i=1}^{n} \lambda_{i}^{k} x^{i}=x^{n}+\sum_{i=1}^{n-1} \lambda_{i}^{k}\left(x^{i}-x^{n}\right)
$$

Then

$$
y^{k}-y^{l}=\sum_{i=1}^{n-1}\left(\lambda_{i}^{k}-\lambda_{i}^{l}\right)\left(x^{i}-x^{n}\right)
$$

By linear independence of $x^{1}-x^{n}, \ldots, x^{n-1}-x^{n}$ the mapping

$$
\mathbb{R}^{n-1} \ni \mu \mapsto \sum_{i=1}^{n-1} \mu_{i}\left(x^{i}-x^{n}\right)
$$

and its inverse are bounded linear injections, see [2, Corollary 4.1.5]. Hence, the sequence $\left(\lambda_{1}^{k}, \ldots, \lambda_{n-1}^{k}\right)_{k \in \mathbb{N}} \subseteq \mathbb{R}^{n-1}$ is Cauchy and thus converges to $\left(\lambda_{1}, \ldots, \lambda_{n-1}\right) \in \mathbb{R}^{n-1}$, and one verifies that

$$
\lambda:=\left(\lambda_{1}, \ldots, \lambda_{n-1}, 1-\sum_{i=1}^{n-1} \lambda_{i}\right) \in S_{n}
$$

satisfies $y=\sum_{i=1}^{n} \lambda_{i} x^{i} \in \operatorname{co}\left(\left\{x^{1}, \ldots, x^{n}\right\}\right)$.
Lemma 3. For $n \geq 2$ fix $x^{1}, \ldots, x^{n} \in \mathbb{R}^{m}$ such that $x^{1}-x^{n}, \ldots, x^{n-1}-x^{n}$ are linearly dependent. Moreover, let $x \in \operatorname{co}\left(\left\{x^{1}, \ldots, x^{n}\right\}\right)$. Then for each $\varepsilon>0$ there exists $j \in I_{n}$ and $y \in \operatorname{co}\left(\left\{x^{i} \mid i \in I_{n} \backslash\{j\}\right\}\right)$ such that $\|x-y\|<\varepsilon$. Proof. Let $\lambda \in S_{n}$ such that $x=\sum_{i \in I_{n}} \lambda_{i} x^{i}$, and let $M>0$ such that $M>\left\|x^{i}\right\|$ for all $i \in I_{n}$. For all $i \in I_{n}$ either $\lambda_{i}>0$ or $\lambda_{i}<\frac{\varepsilon}{2 M}$. Suppose that there is $j \in I_{n}$ such that $\lambda_{j}<\frac{\varepsilon}{2 M}$. Let $\mu_{i}:=\lambda_{i}+\frac{\lambda_{j}}{n-1}, i \in I_{n} \backslash\{j\}$, and note that $\mu_{i} \geq 0$ for all $i \in I_{n} \backslash\{j\}$ and

$$
\sum_{i \in I_{n} \backslash\{j\}} \mu_{i}=\sum_{i \in I_{n}} \lambda_{i}=1
$$

Set

$$
y:=\sum_{I_{n} \backslash\{j\}} \mu_{i} x^{i} \in \operatorname{co}\left(\left\{x^{i} \mid i \in I_{n} \backslash\{j\}\right\}\right)
$$

Then

$$
\|x-y\| \leq \lambda_{j}\left\|x^{j}\right\|+\frac{\lambda_{j}}{n-1} \sum_{i \in I_{n} \backslash\{j\}}\left\|x^{i}\right\| \leq 2 M \lambda_{j}<\varepsilon
$$

Hence, the assertion of the lemma is proved in this case. Thus we may from now on assume that $\lambda_{i}>0$ for all $i \in I_{n}$. In that case, as $x^{1}-x^{n}, \ldots, x^{n-1}-$ x^{n} are linearly dependent, there is $\tilde{\nu} \in \mathbb{R}^{n-1}$ with $\|\tilde{\nu}\|>0$ such that

$$
\sum_{i \in I_{n-1}} \tilde{\nu}_{i}\left(x^{i}-x^{n}\right)=0
$$

Let $\nu_{i}:=\tilde{\nu}_{i}$ for $i \in I_{n-1}$ and $\nu_{n}:=-\sum_{i \in I_{n-1}} \tilde{\nu}_{i}$ so that $\nu=\left(\nu_{1}, \ldots, \nu_{n}\right) \in$ \mathbb{R}^{n} satisfies

$$
\|\nu\|>0, \quad \sum_{i \in I_{n}} \nu_{i}=0, \quad \text { and } \quad \sum_{i \in I_{n}} \nu_{i} x^{i}=0
$$

In particular there exists $k \in I_{n}$ such that $\nu_{k}>0$. Let

$$
\beta:=\max \left\{\left.\frac{\nu_{i}}{\lambda_{i}} \right\rvert\, i \in I_{n}\right\} .
$$

Then $\beta>0$ and for all $i \in I_{n}$ we have that $\tilde{\mu}_{i}:=\lambda_{i}-\frac{1}{\beta} \nu_{i} \geq 0$ and

$$
\sum_{i \in I_{n}} \tilde{\mu}_{i}=\sum_{i \in I_{n}} \lambda_{i}=1 \quad \text { and } \quad x=\sum_{i \in I_{n}} \tilde{\mu}_{i} x^{i}
$$

Pick $j \in I_{n}$ such that $\nu_{j}>0$ and

$$
\beta-\frac{\nu_{j}}{\lambda_{j}}<\frac{\varepsilon \beta}{2 M}
$$

Then $\tilde{\mu}_{j}<\frac{\varepsilon}{2 M}$, so we are in the situation we covered in the first part of this proof and may thus construct $y \in \operatorname{co}\left(\left\{x^{i} \mid i \in I_{n} \backslash\{j\}\right\}\right)$ such that $\|x-y\|<\varepsilon$.

For the following lemma we recall that a subset M of a set N is said to be detachable from N if

$$
\forall x \in N(x \in M \vee x \notin M)
$$

Lemma 4. Let $n \geq 2$ and $x^{1}, \ldots, x^{n} \in \mathbb{R}^{m}$. Suppose that the set

$$
\mathcal{L}:=\left\{J \subseteq I_{n}| | J \mid \geq 2 \wedge \exists i \in J\left(x^{j}-x^{i}\right)_{j \in J \backslash\{i\}} \text { are linearly independent }\right\}
$$

is detachable from $\mathcal{P}\left(I_{n}\right)$. Then for all inhabited $J \subseteq I_{n}$ with $|J| \geq 2$ we have either
i) there exists $i \in J$ such that $\left(x^{j}-x^{i}\right)_{j \in J \backslash\{i\}}$ are linearly independent, or
ii) there exists $i \in J$ such that $\left(x^{j}-x^{i}\right)_{j \in J \backslash\{i\}}$ are linearly dependent.

Proof. Let $J \subseteq I_{n}$ be inhabited with $|J| \geq 2$. Note that

$$
\begin{equation*}
\{i, j\} \in \mathcal{L} \Leftrightarrow\left\|x^{i}-x^{j}\right\|>0 \text { and } \neg(\{i, j\} \in \mathcal{L}) \Leftrightarrow\left\|x^{i}-x^{j}\right\|=0 \tag{1}
\end{equation*}
$$

Hence, as \mathcal{L} is detachable from $\mathcal{P}\left(I_{n}\right)$, for arbitrary $i, j \in J$ we have either $\left\|x^{j}-x^{i}\right\|>0$ or $\left\|x^{j}-x^{i}\right\|=0$, and thus we know whether there is $i, j \in J$ such that $\left\|x^{j}-x^{i}\right\|=0$ or whether $\left\|x^{j}-x^{i}\right\|>0$ for all $i, j \in J$. In the first case ii) holds. In the second, the set

$$
\mathcal{L}(J):=\left\{J^{\prime} \mid\left(J^{\prime} \in \mathcal{L}\right) \wedge\left(J^{\prime} \subseteq J\right)\right\}
$$

which is detachable from $\mathcal{P}\left(I_{n}\right)$, is inhabited. Pick a set $\tilde{J} \in \mathcal{L}(J)$ of maximal cardinality. If $\tilde{J}=J$, then i) holds. If $\tilde{J} \subsetneq J$, let $i \in \tilde{J}$ such that $\left(x^{j}-\right.$ $\left.x^{i}\right)_{j \in \tilde{J} \backslash\{i\}}$ are linearly independent. Note that $\operatorname{span}\left(\left\{x^{j}-x^{i} \mid j \in \tilde{J} \backslash\{i\}\right\}\right)$ is located and closed ([2, Lemma 4.1.2 and Corollary 4.1.5]). For $k \in J \backslash \tilde{J}$ suppose that

$$
d\left(x^{k}-x^{i}, \operatorname{span}\left(\left\{x^{j}-x^{i} \mid j \in \tilde{J} \backslash\{i\}\right\}\right)\right)>0 .
$$

Then $x^{k}-x^{i},\left(x^{j}-x^{i}\right)_{j \in \tilde{J} \backslash\{i\}}$ are linearly independent ([2, Lemma 4.1.10]). Thus $\tilde{J} \cup\{k\} \in \mathcal{L}(J)$ which contradicts maximality of \tilde{J}. Hence,

$$
d\left(x^{k}-x^{i}, \operatorname{span}\left(\left\{x^{j}-x^{i} \mid j \in \tilde{J} \backslash\{i\}\right\}\right)\right)=0,
$$

that is ii) holds.
Definition. A formula φ is conditionally constructive if there exists a $k \in \mathbb{N}$ and a subset M of I_{k} such that the detachability of M from I_{k} implies φ.

One verifies that conditionally constructive formulas are closed under conjunction and implication and may be used unconditionally in the proof of falsum:

Lemma 5. Let the formulas φ and ψ be conditionally constructive. Then
i) if $\varphi \Rightarrow \nu$, then ν is conditionally constructive,
ii) $\varphi \wedge \psi$ is conditionally constructive,
iii) $(\varphi \Rightarrow \neg \psi) \Rightarrow \neg \psi$.

Proof. See [1].
The following proposition shows that Carathéordory's Convexity Theorem is conditionally constructive.

Proposition 1. Fix an inhabited set $A \subseteq \mathbb{R}^{m}$ and $x \in \operatorname{co}(A)$. Then the following statement is conditionally constructive:
$\operatorname{CCT}(A)$ There are vectors $z^{1}, \ldots, z^{k} \in A$ with $k \leq m+1$ such that

$$
x \in \operatorname{co}\left(\left\{z^{1}, \ldots, z^{k}\right\}\right) .
$$

Proof. Let $x^{1}, \ldots, x^{n} \in A$ and $\lambda \in S_{n}$ such that $x=\sum_{i \in I_{n}} \lambda_{i} x^{i}$, and define \mathcal{L} as in Lemma 4. Furthermore, define subsets $\Omega_{i} \subseteq \mathcal{P}\left(I_{n}\right) \times I_{3}, i \in I_{3}$, by

$$
\begin{aligned}
& (J, 1) \in \Omega_{1} \Leftrightarrow J \in \mathcal{L}, \\
& (J, 2) \in \Omega_{2} \Leftrightarrow|J| \geq 1 \wedge d\left(x, \operatorname{co}\left(\left\{x^{j} \mid j \in J\right\}\right)\right)=0, \\
& (J, 3) \in \Omega_{3} \Leftrightarrow|J| \geq 1 \wedge d\left(x, \operatorname{co}\left(\left\{x^{j} \mid j \in J\right\}\right)\right)>0 .
\end{aligned}
$$

Suppose that $\bigcup_{i \in I_{3}} \Omega_{i}$ is detachable from $\mathcal{P}\left(I_{n}\right) \times I_{3}$ which in particular implies that \mathcal{L} is detachable from $\mathcal{P}\left(I_{n}\right)$. We prove, under this assumption, that there is $\tilde{J} \in \mathcal{P}\left(I_{n}\right)$ with $|\tilde{J}| \leq m+1$ such that

$$
x \in \operatorname{co}\left(\left\{x^{j} \mid j \in \tilde{J}\right\}\right)
$$

Suppose that $\Omega_{3}=\emptyset$. Then, as $(\{j\}, 2) \in \Omega_{2}$ for arbitrary $j \in I_{n}$, we have in fact that $x=x^{1}=\ldots=x^{n}$, and the assertion holds. Thus we may from now on assume that Ω_{3} is inhabited. Let $\varepsilon>0$ satisfy

$$
\varepsilon<\min \left\{d\left(x, \operatorname{co}\left(\left\{x^{j} \mid j \in J\right\}\right)\right) \mid(J, 3) \in \Omega_{3}\right\} .
$$

Note that Ω_{2} is inhabited, because $\left(I_{n}, 2\right) \in \Omega_{2}$. Let $\tilde{J} \in \mathcal{P}\left(I_{n}\right)$ be of minimal cardinality amongst all $J \in \mathcal{P}\left(I_{n}\right)$ such that $(J, 2) \in \Omega_{2}$. If $\tilde{J}=\{j\}$, then $x=x^{j}$, and the assertion is proved. Hence, we may assume that $|\tilde{J}| \geq 2$. By Lemma 4 either $\tilde{J} \in \mathcal{L}$ or there is $i \in \tilde{J}$ such that $\left(x^{j}-x^{i}\right)_{j \in \tilde{J} \backslash\{i\}}$ are linearly dependent. Suppose that latter, and let $y \in \operatorname{co}\left(\left\{x^{j} \mid j \in \tilde{J}\right\}\right)$ such that $\|x-y\|<\varepsilon / 2$. By Lemma 3 there is $k \in \tilde{J}$ such that

$$
d\left(y, \operatorname{co}\left(\left\{x^{j} \mid j \in \tilde{J} \backslash\{k\}\right\}\right)\right)<\varepsilon / 2
$$

which implies

$$
\begin{aligned}
d\left(x, \operatorname{co}\left(\left\{x^{j} \mid j \in \tilde{J} \backslash\{k\}\right\}\right)\right) & \leq\|x-y\|+d\left(y, \operatorname{co}\left(\left\{x^{j} \mid j \in \tilde{J} \backslash\{k\}\right\}\right)\right) \\
& <\varepsilon .
\end{aligned}
$$

Thus $\neg(\tilde{J} \backslash\{k\}, 3) \in \Omega_{3}$, that is $(\tilde{J} \backslash\{k\}, 2) \in \Omega_{2}$ which contradicts minimality of \tilde{J}. Hence, $\tilde{J} \in \mathcal{L}$. But then $\operatorname{co}\left(\left\{x^{j} \mid j \in \tilde{J}\right\}\right)$ is closed by Lemma 2, so $x \in \operatorname{co}\left(\left\{x^{j} \mid j \in \tilde{J}\right\}\right)$ follows, and also $|\tilde{J}| \leq m+1$ by Corollary 1 .

As a consequence of Proposition 1 we obtain the already advertised approximate version of Carathéordory's Convexity Theorem for totally bounded
sets, namely that the convex hull $\operatorname{co}(A)$ of a totally bounded set $A \subseteq \mathbb{R}^{m}$ is approximated up to arbitrary small error by the subset consisting of a all convex combinations of degree $m+1$:

$$
\operatorname{co}^{m+1}(A):=\left\{\sum_{i \in I_{m+1}} \lambda_{i} z^{i} \mid z^{i} \in A(i=1, \ldots, m+1), \lambda \in S_{m+1}\right\}
$$

So if we could prove that $\operatorname{co}^{m+1}(A)$ and $\operatorname{co}(A)$ are closed, which we in general cannot, then $\operatorname{co}(A)=\mathrm{co}^{m+1}(A)$ as is classically always the case. Indeed classically $\operatorname{co}(A)=\operatorname{co}^{m+1}(A)$ is compact whenever A is compact.

Theorem 1. Suppose that $A \subseteq \mathbb{R}^{m}$ is totally bounded. Then for every $x \in$ $\operatorname{co}(A)$ and every $\varepsilon>0$ there is $y \in \operatorname{co}^{m+1}(A) \subseteq \operatorname{co}(A)$ such that $\|x-y\|<\varepsilon$. In particular, $\overline{\mathrm{Co}}(A)=\overline{\mathrm{co}^{m+1}}(A)$ where $\overline{\mathrm{Co}}(A)$ denotes the closure of $\mathrm{co}(A)$ and $\overline{\mathrm{co}^{m+1}}(A)$ the closure of $\mathrm{co}^{m+1}(A)$, and $\overline{\mathrm{CO}}(A)$ is compact.

Proof. Let

$$
\begin{array}{ccc}
S_{m+1} \times A^{m+1} & \rightarrow & \mathbb{R}^{m} \\
\left(\lambda_{1}, \ldots, \lambda_{m+1}, z^{1}, \ldots, z^{m+1}\right) & \mapsto & \sum_{i \in I_{m+1}} \lambda_{i} z^{i}
\end{array}
$$

As κ is uniformly continuous and its domain is totally bounded, its range $\operatorname{co}^{m+1}(A)$ is totally bounded as well, see [2, Proposition 2.2.6], and hence $\overline{\operatorname{co}^{m+1}}(A)$ is compact. We show that $\operatorname{co}(A) \subseteq \overline{\operatorname{co}^{m+1}}(A)$. Fix $x \in \operatorname{co}(A)$. We have to show that

$$
d\left(x, \mathrm{co}^{m+1}(A)\right)=0
$$

that is

$$
\neg\left(d\left(x, \operatorname{co}^{m+1}(A)\right)>0\right) .
$$

According to Lemma 5 it suffices to prove this under the assumption that $\operatorname{CCT}(A)$ holds. But obviously

$$
d\left(x, \mathrm{co}^{m+1}(A)\right)>0
$$

contradicts $\operatorname{CCT}(A)$.
Note that the fact that the convex hull of a totally bounded set A is totally bounded, and thus its closure compact, is also easily directly verified. The important message of Theorem 1 is that the convex hull of A is best approximated by $\operatorname{co}^{m+1}(A)$. An inspection of the proof shows that we could replace the requirement of A being totally bounded in Theorem 1 by co $^{m+1}(A)$ being located which, however, does not seem a very useful generalisation.

References

[1] Josef Berger and Gregor Svindland. On Farkas' lemma and related propositions in BISH. preprint, 2021. https://arxiv.org/abs/2101.03424.
[2] Douglas Bridges and Luminita Vîţă. Techniques of Constructive Analysis. Springer, 2006.

