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Abstract

We study mean-risk optimal portfolio problems where risk is measured by Recovery
Average Value at Risk, a prominent example in the class of recovery risk measures. We
establish existence results in the situation where the joint distribution of portfolio assets
is known as well as in the situation where it is uncertain and only assumed to belong to
a set of mixtures of benchmark distributions (mixture uncertainty) or to a cloud around
a benchmark distribution (box uncertainty). The comparison with the classical Average
Value at Risk shows that portfolio selection under its recovery version enables financial
institutions to exert better control on the recovery on liabilities while still allowing for
tractable computations.

Keywords: Robust portfolio management; risk measures; recovery average at risk; efficient
frontier; mean-risk optimal portfolios.

1 Introduction

Portfolio selection is one of the central topics in mathematical finance and has been extensively
studied in the literature. Since the pioneering publications by Markowitz (1952), Sharpe (1963),
Lintner (1965), much attention has been devoted to optimal portfolio problems in a mean-
risk framework, where the objective is to study portfolios of financial assets that maximize
expected returns subject to a given risk control. As in every optimization problem, the key
questions from a theoretical perspective are those about existence, uniqueness, stability, and
explicit identification of optimal portfolios. This, of course, highly depends on the chosen risk
measure as well as on the assumptions on the (joint) distribution of the various assets. At the
beginning, the literature has almost exclusively used the variance of the aggregated portfolio
as the underlying measure of risk. In more recent years, especially after the publication of
Artzner, Delbaen, Eber & Heath (1999), there has been growing interest in revisiting mean-risk
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portfolio problems replacing the variance with risk measures that were deemed to capture risk
in a more appropriate form, e.g., by focusing on the tail distribution of aggregated portfolios
only. The bulk of the literature has focused on Value at Risk (V@R) and Average Value at Risk
(AV@R) and on their comparison; see, e.g., Rockafellar & Uryasev (2000), Basak & Shapiro
(2001), Campbell, Huisman & Koedijk (2001), Frey & McNeil (2002), Rockafellar & Uryasev
(2002), Yiu (2004), Yamai & Yoshiba (2005), Leippold, Trojani & Vanini (2006), Ciliberti,
Kondor & Mézard (2007), Cuoco, He & Isaenko (2008), Pirvu & Zitkovic (2009). Gundel &
Weber (2008) study risk constraints in terms of utility-based shortfall risk. While most of the
initial literature worked under the basic assumption that the joint distribution of portfolio assets
is known, the subsequent literature has expanded the scope of research to include situations
where there is uncertainty about the joint dependence across assets. The corresponding robust
optimal portfolio problems under dependence uncertainty have been studied, e.g., in Gundel &
Weber (2007), Quaranta & Zaffaroni (2008) and Zhu & Fukushima (2009).

The goal of this note is to investigate optimal portfolio problems in a mean-risk framework where
risk is measured by Recovery Average Value at Risk (RecAV@R). This is a prominent example
of a recovery risk measure, a concept that has been recently introduced in Munari, Weber &
Wilhelmy (2023). As argued there, recovery risk measures are designed to complement standard
risk measures used in solvency regulation by offering portfolio managers the ability to exert a
tighter control on the recovery of liabilities. In this sense, recovery risk measures have natural
applications to mean-risk portfolio problems in an asset-liability management setting, where
the risk constraint plays, for example, the role of an external regulatory constraint that can
be interpreted as a solvency capital requirement. In the case of AV@R, one can only ensure
solvency on average in the worst, say, 1% (as in the Swiss Solvency Test) or 2.5% (as in Basel
III) of scenarios, but this per se does not provide any information about the ability to cover any
pre-specified fraction of liabilities. However, it clearly matters to liability holders, and regulators
on their behalf, if, say, 95% or only 5% of liabilities is recovered in the case of insolvency. A
recovery risk measure like RecAV@R can be employed to this effect. By definition, RecAV@R
ensures that assets are sufficient to cover on average any pre-specified fraction λ of liabilities
in the worst 100γ(λ)% of scenarios. The function γ can be chosen to tailor the relevant size
of the tail distribution depending on the size of liabilities to be recovered. In particular, it is
reasonable to assume that γ is increasing and γ(1) coincides with a regulatory threshold like 0.01
(as in the Swiss Solvency Test) or 0.025 (as in Basel III) to make sure a priori that RecAV@R
is more stringent than the AV@R used in insurance or banking regulation.

This note is organized as follows. In Section 2 we briefly review the definition and the main
properties of RecAV@R. In Section 3 we focus on optimal portfolio problems under RecAV@R
both without and with dependence uncertainty. The main contribution is to show, by means
of suitable minimax theorems, that optimal portfolios can be determined by solving appropri-
ate linear programming problems that are both conceptually and computationally akin to the
problems studied by Rockafellar & Uryasev (2000), Rockafellar & Uryasev (2002), and Zhu &
Fukushima (2009) in the setting of mean-AV@R portfolio selection. In Section 4 we apply our
results to study optimal portfolios in two concrete case studies. The first case study shows that
there can be a marked difference between optimal portfolios under AV@R and RecAV@R. More
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specifically, in the presence of a risk-free and a risky asset, there are realistic situations where
it is optimal under AV@R to fully invest in the risky asset whereas the optimal holding in the
risky asset is capped if RecAV@R is used to measure risk. In the second case study we focus on
the more computational aspects and show that, in the presence of two risky assets whose returns
follow standard distributions encountered in applications, the determination of robust efficient
frontiers under RecAV@R is feasible and computationally similar to the one under AV@R.

2 Recovery Average Value at Risk

In this section we recall the definition and the basic properties of the risk measure Recovery
Average Value at Risk (RecAV@R) introduced in Munari et al. (2023), to which we refer for
the relevant proofs and for additional details. In the next sections we will take up the study of
mean-risk portfolio problems where risk is quantified by RecAV@R.

Let (Ω,F ,P) be a probability space and denote by L0 the vector space of Borel measurable
functions X : Ω → R (modulo P-almost sure equality). Throughout the paper we assume
that positive values of X represent a profit or a positive balance whereas negative values of X
represent a loss or a negative balance. The Value at Risk (V@R) of X ∈ L0 at level α ∈ [0, 1]

is defined by
V@Rα(X) := inf{x ∈ R ; P(X + x < 0) ≤ α}.

The Average Value at Risk (AV@R) of X ∈ L0 at level α ∈ [0, 1] is defined by

AV@Rα(X) :=

 1
α

∫ α
0 V@Rβ(X)dβ, if α ∈ (0, 1],

inf{x ∈ R ; P(X + x ≥ 0) = 1} if α = 0.

Definition 1. Let γ : [0, 1] → [0, 1] be an increasing function. The Recovery Average Value at
Risk (RecAV@R) of (X,Y ) ∈ L0 × L0 with level function γ is defined by

RecAV@Rγ(X,Y ) := sup
λ∈[0,1]

AV@Rγ(λ)(X + (1− λ)Y ).

Clearly, RecAV@R is an extension of AV@R. Indeed, by taking a constant function γ, say γ ≡ α

for some α ∈ [0, 1], one easily verifies that for every X and for every positive Y

RecAV@Rγ(X,Y ) = AV@Rα(X).

The definition of RecAV@R is motivated by the following application. Consider a financial firm
with stylized balance sheet at a generic time t given by

Assets Liabilities

At
Lt

Et = At − Lt

The quantity Et represents the net asset value of the firm and can be either positive or negative
depending on whether the asset value At is larger than the liability value Lt or not. In the
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typical setting of a one-year horizon there are two reference dates, t = 0 (today) and t = 1

(end of the year). In a risk-sensitive solvency framework, the firm is adequately capitalized if
its available capital E0 is larger than a suitable solvency capital requirement that depends on
the size of E1 and therefore captures the inherent risk in the evolution of the balance sheet. In
practice, solvency capital requirements are determined by applying a suitable risk measure ρ

like V@R or AV@R to the variation1 in the net asset value ∆E1 := E1−E0. The corresponding
solvency test therefore takes the form

ρ(∆E1) ≤ E0.

The risk measure RecAV@R can be used to define a solvency test of this type. Indeed, if the
random variables X and Y in Definition 1 are interpreted, respectively, as the net asset value
E1 and liabilities L1 in the firm’s balance sheet, then we can design the solvency test

RecAV@Rγ(∆E1, L1) ≤ E0. (1)

The financial interpretation is clear once we observe that (1) is equivalent to requiring that

AV@Rγ(λ)(A1 − λL1) ≤ 0, ∀λ ∈ [0, 1].

In words, the firm is adequately capitalized with respect to RecAV@R if, for every fraction
λ ∈ [0, 1], a firm with assets A1 and liabilities λL1 is solvent on average in the worst 100γ(λ)%

scenarios (under P). In particular, the firm must be solvent on average in the worst 100γ(1)%

scenarios (under P), showing that (1) is more stringent than a standard AV@R test at level
γ(1). It therefore comes as no surprise that, in the special case where the level function γ is
constant, say γ ≡ α for some α ∈ [0, 1], the test (1) boils down to a standard AV@R test

AV@Rα(∆E1) = RecAV@Rγ(∆E1, L1) ≤ E0 ⇐⇒ AV@Rα(E1) ≤ 0. (2)

In this case the firm is adequately capitalized if it is solvent on average in the worst 100α%

scenarios (under P). The flexibility added by (1) to the standard test (2) is that one can control
recovery on liabilities, which is not permitted by standard solvency capital requirements based
on AV@R. This control is made possible by prescribing, in principle for each recovery level
λ ∈ [0, 1], a different tail threshold γ(λ). In this sense, it is natural to assume, as in Definition
1, that γ is an increasing function: When we target a higher recovery on liabilities, we require
solvency over a larger portion of the tail of ∆E1. It should be noted that (1) also allows to
control the probability of recovering the pre-specified fractions of liabilities. This is because, for
any given α level, AV@R is larger than V@R and therefore

RecAV@Rγ(∆E1, L1) ≤ E0 =⇒ V@Rγ(λ)(A1 − λL1) ≤ 0, ∀λ ∈ [0, 1].

1In practice, instead of E0 the expectation of E1, typically discounted, is frequently used, see Hamm, Knispel
& Weber (2020) for a discussion.
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Translated in terms of recovery probabilities, we obtain as claimed

RecAV@Rγ(∆E1, L1) ≤ E0 =⇒ P(A1 < λL1) ≤ γ(λ), ∀λ ∈ [0, 1].

The next proposition records an equivalent formulation of RecAV@R when the level function γ

is piecewise constant. In this case, RecAV@R is especially tractable and it is precisely this type
of level functions that will be later used in our numerical studies.

Proposition 2. For n ∈ N0 let 0 ≤ α1 < · · · < αn+1 ≤ 1 and 0 < r1 < · · · < rn < rn+1 = 1.
Define a function γ : [0, 1] → [0, 1] by

γ(λ) =



α1 if 0 ≤ λ < r1,

α2 if r1 ≤ λ < r2,
...

αn if rn−1 ≤ λ < rn,

αn+1 if rn ≤ λ ≤ rn+1 = 1.

For all X ∈ L0 and Y ∈ L0
+

RecAV@Rγ(X,Y ) = max
i=1,...,n+1

AV@Rαi(X + (1− ri)Y ).

We conclude this section by stating some basic properties of RecAV@R, which follow at once
from well-known properties of AV@R.

Proposition 3. Let γ : [0, 1] → [0, 1] be increasing. The following properties hold:

(i) Cash-invariance in the first component: For all X,Y ∈ L0 and m ∈ R

RecAV@Rγ(X +m,Y ) = RecAV@Rγ(X,Y )−m.

(ii) Monotonicity: For all X1, X2, Y1, Y2 ∈ L0 such that X1 ≥ X2 and Y1 ≥ Y2

RecAV@Rγ(X1, Y1) ≤ RecAV@Rγ(X2, Y2).

(iii) Subadditivity: For all X1, X2, Y1, Y2 ∈ L0

RecAV@Rγ(X1 +X2, Y1 + Y2) ≤ RecAV@Rγ(X1, Y1) + RecAV@Rγ(X2, Y2).

(iv) Positive homogeneity: For all X,Y ∈ L0 and a ≥ 0

RecAV@Rγ(aX, aY ) = aRecAV@Rγ(X,Y ).
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3 Optimal portfolio selection under RecAV@R

Risk measures are an important instrument to limit downside risk in portfolio optimization
problems. This idea is related to the classical portfolio problem studied in Markowitz (1952),
where the objective was to select portfolios of reference financial assets with the goal of maxi-
mizing the expected return of the portfolio without exceeding a pre-specified level of standard
deviation. In this sense, optimal portfolios represent the best tradeoff between risk and return.
A similar problem can be reformulated in the language of asset-liability management for a fi-
nancial institution, in which case the risk constraint is interpreted as a regulatory constraint.
Standard deviation is, however, not a good risk measure in this type of applications because
it fails to disentangle upside and downside risk. For this reason, the subsequent literature has
investigated the mean-risk problem under different choices of tail risk measures, including V@R

and AV@R; see, e.g., Rockafellar & Uryasev (2000), Basak & Shapiro (2001), Campbell et al.
(2001), Rockafellar & Uryasev (2002), Zhu & Fukushima (2009). Special attention has been
devoted to AV@R because the resulting problem becomes convex and allows to exploit the rich
methodology of convex optimization to characterize optimal portfolios.

In this section, we study the mean-risk problem for a financial institution that is subject to
solvency capital requirements expressed in terms of the convex recovery risk measure RecAV@R.
Our goal is to characterize the corresponding optimal portfolios. This task is, at first sight, more
challenging than under AV@R because its recovery counterpart is defined as a supremum of
standard AV@R’s, making the mean-risk problem mathematically more involved. With the help
of a suitable minimax theorem, which we establish for this purpose, we can nevertheless reduce
the problem and show that standard techniques from linear programming can be exploited to
identify optimal portfolios.

We consider a financial institution with total budget b > 0 at time t = 0. The company
can invest in k = 1, . . . ,K financial assets whose prices at dates t = 0, 1 are described by
Sk
t and whose relative returns are denoted by Rk so that Sk

1 = Sk
0 (1 + Rk). We assume that

R1, . . . , RK ∈ L1. For every k = 1, . . . ,K the company invests a fraction xk ≥ 0 of its total
budget into asset k so that

∑K
k=1 x

k = 1. For later convenience we define

∆K :=

{
x ∈ RK

+ ;
K∑
k=1

xk = 1

}
.

We also set R = (R1, . . . , RK)⊤ and x = (x1, . . . , xK)⊤. The total asset value at time t = 1 is
thus equal to

A1(x) := b
K∑
k=1

xk(1 +Rk) = b

(
1 +

K∑
k=1

xkRk

)
.

In addition, we suppose that the company’s liabilities at time t = 1 amount to a random fraction
Z of the initial budget, i.e., the liabilities are equal to L1 := bZ. We assume that Z ∈ L1. The
net asset value of the company equals

E1(x) := A1(x)− L1 = b

(
1 +

K∑
k=1

xk Rk − Z

)
.



7

The expected net asset value is therefore given by

E(E1(x)) = b

(
1 +

K∑
k=1

xk E(Rk)− E(Z)

)
.

The mean-risk problem can equivalently be stated either as the maximization of expected returns
under a risk constraint or as the minimization of risk for a target expected return. We focus on
the latter formulation. For a given level function γ : [0, 1] → [0, 1] and for given a ∈ R, we are
thus interested in the following problem:

min
x∈∆K

RecAV@Rγ(E1(x), L1) (3)

s.t. E(A1(x)) ≥ a.

It is convenient to formulate the constraint for the expected return instead of the expected asset
value. Using the properties of AV@R recorded in Proposition 3 and filtering out all constant
terms, we can equivalently focus on the following problem for given µ ∈ R:

min
x∈∆K(µ)

RecAV@Rγ

(
K∑
k=1

xkRk − Z,Z

)
,

where the set of admissible portfolios is defined by

∆K(µ) :=

{
x ∈ ∆K ;

K∑
k=1

xkE(Rk) ≥ µ

}
.

We focus on the special case of piecewise-constant level functions γ introduced in Proposition
2. In this case, RecAV@R is a maximum of finitely many AV@R’s and the optimal portfolio
problem can be equivalently written for given µ ∈ R as:

min
x∈∆K(µ)

max
i=1,...,n+1

AV@Rαi

(
K∑
k=1

xkRk − riZ

)
.

As a last step, we exploit the representation of AV@R established in Rockafellar & Uryasev
(2000) and Rockafellar & Uryasev (2002) to conveniently reformulate the problem above. To
this effect, for i = 1, . . . , n+ 1 and x ∈ ∆K we can write

AV@Rαi

(
K∑
k=1

xkRk − riZ

)
= min

v∈R
Ψi(x, v),

where the auxiliary function Ψi(x, ·) : R → R is defined by

Ψi(x, v) :=
1

αi
E

(
max

{
v −

K∑
k=1

xkRk + riZ, 0

})
− v.

As a consequence, our original optimal portfolio problem can be equivalently reformulated into
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the following minimax problem for given µ ∈ R:

min
x∈∆K(µ)

max
i=1,...,n+1

min
v∈R

Ψi(x, v). (4)

At first sight, this optimization problem seems difficult to cope with because of the entanglement
between minimization and maximization. The following theorem shows that, by appropriately
increasing the dimensionality of the internal minimization problem, we can interchange the
order of minimum and maximum, thereby reducing the problem of finding optimal portfolios to
a tractable linear programming problem.

Theorem 1. For every x ∈ ∆K the following minimax equality holds:

max
i=1,...,n+1

min
v∈R

Ψi(x, v) = min
v∈Rn+1

max
i=1,...,n+1

Ψi(x, vi).

In particular, problem (4) can be equivalently written as

min
x∈∆K(µ)

min
v∈Rn+1

max
i=1,...,n+1

Ψi(x, vi).

Proof. It is known from Rockafellar & Uryasev (2000) that, for each i = 1, . . . , n+1, the convex
function Ψi(x, ·) attains its minimum on the (nonempty) compact interval [q−i , q

+
i ], where q−i

and q+i are the lower, respectively upper, αi-quantiles of
∑K

k=1 x
kRk−riZ. The desired minimax

equality therefore follows at once from Theorem 4 in the appendix.

In view of Theorem 1, the problem of determining the portfolios with miminal risk for a fixed
expected target return µ ∈ R can be equivalently expressed as

min
(x,v,T )∈∆K(µ)×Rn+1×R

{
T ; Ψi(x, vi) ≤ T, i = 1, . . . , n+ 1

}
.

The evaluation of the functions Ψi’s involves the calculation of an expected value. In typical real-
world applications, this is performed through Monte Carlo simulation. If (R1, Z1), . . . , (RS , ZS)

are S independent simulations of the pair (R, Z), we obtain the associated problem

min
(x,v,T )∈∆K(µ)×Rn+1×R

{
T ;

1

αiS

S∑
s=1

max

{
vi −

K∑
k=1

xkRk
s + riZs, 0

}
− vi ≤ T, i = 1, . . . , n+ 1

}
.
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The original problem can eventually be formulated as a tractable linear program of the form

minT

s.t.
1

αiS

S∑
s=1

uij − vi ≤ T, i = 1, . . . , n+ 1,

uis ≥ vi −
K∑
k=1

xkRk
s + riZs, i = 1, . . . , n+ 1, s = 1, . . . , S,

uis ≥ 0, i = 1, . . . , n+ 1, s = 1, . . . , S,

1

m

S∑
s=1

K∑
k=1

xkRk
s ≥ µ,

K∑
k=1

xk = 1,

xk ≥ 0, k = 1, . . . ,K,

T, v1, . . . , vn+1 ∈ R.

4 Robust optimal portfolio selection under RecAV@R

In this section we study the optimal portfolio problem under uncertainty about the underlying
probabilistic model. We will show that, in spite of the added complexity, the problem can still
be reduced to a tractable linear programming problem.

Throughout the section we fix a measurable space (Ω,F) and denote by L0 the vector space of
Borel measurable functions X : Ω → R. The set of all probability measures on (Ω,F) is denoted
by P. Throughout we use a superscript to make explicit the dependence of our risk measures
on the chosen probability measure in P.

Definition 4. Let γ : [0, 1] → [0, 1] be an increasing function and M ⊂ P. The Worst-Case
Recovery Average Value at Risk of (X,Y ) ∈ L0 × L0 with level function γ and uncertainty set
M is defined by

RecAV@RM
γ (X,Y ) := sup

P∈M
RecAV@RP

γ(X,Y ).

For a given level function γ : [0, 1] → [0, 1] and a given uncertainty set M ⊂ P, and for given
a ∈ R, we are interested in the following robust version of problem (3):

min
x∈∆K

RecAV@RM
γ (E1(x), L1) (5)

s.t. inf
P∈M

EP(A1(x)) ≥ a.

In the sequel we specify our analysis to two ways to define the uncertainty set M, which have
been applied in Zhu & Fukushima (2009) to the study of robust mean-risk portfolio problems
where the reference risk measure is AV@R.
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4.1 Mixture uncertainty

In a first step, we assume the existence of a finite number of benchmark probability measures,
denoted by P1, . . . ,Pm ∈ P, and consider all possible convex combinations mixing them. This
corresponds to the uncertainty set

Mmix :=


m∑
j=1

λjPj ; λ ∈ ∆m

 .

Consider a piecewise constant level function γ as in Proposition 2. For i = 1, . . . , n + 1 and
x ∈ ∆K and for j = 1, . . . ,m define the auxiliary function Ψi

j(x, ·) : R → R by

Ψi
j(x, v) :=

1

αi
EPj

(
max

{
v −

K∑
k=1

xkRk + riZ, 0

})
− v.

Repeating the reasoning in Section 3 we can recast the robust portfolio problem (5) with un-
certainty set Mmix in the following equivalent form for given µ ∈ R:

min
x∈∆K

mix(µ)
max
λ∈∆m

max
i=1,...,n+1

min
v∈R

m∑
j=1

λjΨ
i
j(x, v), (6)

where the set of admissible portfolios is defined by

∆K
mix(µ) :=

{
x ∈ ∆K ; min

j=1,...,m

K∑
k=1

xkEPj (R
k) ≥ µ

}
.

The next theorem shows that the maxima and minima appearing in problem (6) can be reordered
and coupled, thereby reducing the problem to a tractable linear programming problem.

Theorem 2. For every x ∈ ∆K the following minimax equality holds:

max
λ∈∆m

max
i=1,...,n+1

min
v∈R

m∑
j=1

λjΨ
i
j(x, v) = min

v∈Rn+1
max

j=1,...,m
max

i=1,...,n+1
Ψi

j(x, v
i).

In particular, problem (6) can be equivalently written as

min
x∈∆K

mix(µ)
min

v∈Rn+1
max

j=1,...,m
max

i=1,...,n+1
Ψi

j(x, v
i).

Proof. By Rockafellar & Uryasev (2000), for all i = 1, . . . , n + 1 and j = 1, . . . ,m the convex
function Ψi

j(x, ·) attains its minimum on the (nonempty) compact interval [q−i,j , q
+
i,j ], where

q−i,j and q+i,j are the lower, respectively upper, αi-quantiles under Pj of the random variable∑K
k=1 x

kRk − riZ. For every i = 1, . . . , n + 1 and for every choice of λ ∈ ∆m the function∑m
j=1 λjΨ

i
j(x, ·) must therefore attain its minimum in the same compact interval, namely

Ii :=
[

min
j=1,...,m

q−i,j , max
j=1,...,m

q+i,j

]
.
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For every i = 1, . . . , n + 1 the sets ∆m and Ii are compact and convex and the function
(λ, v) 7→

∑m
j=1 λjΨ

i
j(x, v) is linear in λ and convex in v. As a consequence, the minimax

theorem in Fan (1953) delivers for every i = 1, . . . , n+ 1

max
λ∈∆m

min
v∈R

m∑
j=1

λjΨ
i
j(x, v) = max

λ∈∆m
min
v∈Ii

m∑
j=1

λjΨ
i
j(x, v) = min

v∈Ii
max
λ∈∆m

m∑
j=1

λjΨ
i
j(x, v)

= min
v∈R

max
λ∈∆m

m∑
j=1

λjΨ
i
j(x, v) = min

v∈R
max

j=1,...,m
Ψi

j(x, v).

Since we can always interchange two consecutive maxima, we infer that

max
λ∈∆m

max
i=1,...,n+1

min
v∈R

m∑
j=1

λjΨ
i
j(x, v) = max

i=1,...,n+1
min
v∈R

max
j=1,...,m

Ψi
j(x, v).

As for every i = 1, . . . , n + 1 the convex function maxj=1,...,mΨi
j(x, ·) attains its minimum on

Ii, a direct application of Theorem 4 in the appendix yields the desired minimax equality.

In the spirit of Section 3, one can use Theorem 2 to conveniently reformulate the portfolio
problem under mixture uncertainty as

min
(x,v,T )∈∆K

mix(µ)×Rn+1×R

{
T ; Ψi

j(x, v
i) ≤ T, j = 1, . . . ,m, i = 1, . . . , n+ 1

}
.

By approximating the expected value in the functions Ψi
j ’s using Monte Carlo simulation as

before, the problem can again be written as a tractable linear programming problem.

4.2 Box uncertainty

In a second step, we fix a benchmark probability measure P ∈ P under which the random
vector S = (R1, . . . , RK , Z) is discrete and takes the values s1, . . . , sm ∈ RK+1. To simplify
the notation, we set for every j = 1, . . . ,m

πj := P(S = sj).

We consider all possible probability measures under which S remains discrete and that are
obtained by a slight perturbation of the reference probability measure P. The set of perturbation
parameters is defined for given ε, ε ∈ Rm such that ε ≤ ε and π + ε ≥ 0 by

E :=

ε ∈ Rm ; ε ≤ ε ≤ ε,
m∑
j=1

εj = 0


For every ε ∈ E we consider a probability measure Pε ∈ P such that for j = 1, . . . ,m

Pε(S = sj) = πj + εj .



12

The corresponding uncertainty set is given by

Mbox := {Pε ∈ P ; ε ∈ E}.

Consider a piecewise constant level function γ as in Proposition 2. For i = 1, . . . , n + 1 and
x ∈ ∆K and for ε ∈ E define the auxiliary function Ψi

ε(x, ·) : R → R by

Ψi
ε(x, v) :=

1

αi
EPε

(
max

{
v −

K∑
k=1

xkRk + riZ, 0

})
− v.

Repeating the reasoning in Section 3 we can recast the robust portfolio problem (5) with un-
certainty set Mbox in the following equivalent form for given µ ∈ R:

min
x∈∆K

box(µ)
max
ε∈E

max
i=1,...,n+1

min
v∈R

Ψi
ε(x, v), (7)

where the set of admissible portfolios is defined by

∆K
box(µ) :=

{
x ∈ ∆K ; min

ε∈E

K∑
k=1

xkEPε(R
k) ≥ µ

}

Once again, the maxima and minima appearing in problem (7) can be reordered to yield a
tractable linear programming problem. This is recorded in the next result.

Theorem 3. For every x ∈ RK the following minimax equality holds:

max
ε∈E

max
i=1,...,n+1

min
v∈R

Ψi
ε(x, v) = min

v∈Rn+1
max
ε∈E

max
i=1,...,n+1

Ψi
ε(x, v

i).

In particular, problem (7) can be equivalently written as

min
x∈∆K

box(µ)
min

v∈Rn+1
max
ε∈E

max
i=1,...,n+1

Ψi
ε(x, v

i).

Proof. We mimic the argument in the proof of Theorem 2. By Rockafellar & Uryasev (2000),
for all i = 1, . . . , n + 1 and ε ∈ E the convex function Ψi

ε(x, ·) attains its minimum on the
(nonempty) compact interval [q−i,ε, q

+
i,ε], where q−i,ε and q+i,ε are the lower, respectively upper, αi-

quantiles under Pε of the discrete random variable
∑K

k=1 x
kRk − riZ. For every i = 1, . . . , n+1

we can thus define
Ii :=

[
min
ε∈E

q−i,ε,max
ε∈E

q+i,ε

]
.

Clearly, for every i = 1, . . . , n + 1 the sets E and Ii are compact and convex and the function
(ε, v) 7→ Ψi

ε(x, v) is linear in ε and convex in v. As a consequence, the minimax theorem in Fan
(1953) delivers for every i = 1, . . . , n+ 1

max
ε∈E

min
v∈R

Ψi
ε(x, v) = max

ε∈E
min
v∈Ii

Ψi
ε(x, v) = min

v∈Ii
max
ε∈E

Ψi
ε(x, v)

= min
v∈R

max
ε∈E

Ψi
ε(x, v).
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Since we can always interchange two consecutive maxima, we infer that

max
ε∈E

max
i=1,...,n+1

min
v∈R

Ψi
ε(x, v) = max

i=1,...,n+1
min
v∈R

max
ε∈E

Ψi
ε(x, v).

As for every i = 1, . . . , n+ 1 the convex function maxε∈E Ψ
i
ε(x, ·) attains its minimum on Ii, a

direct application of Theorem 4 in the appendix yields the desired minimax equality.

Similarly to the case of mixture uncertainty, Theorem 3 can be used to conveniently reformulate
the original portfolio problem as

min
(x,v,T )∈∆K

box(µ)×Rn+1×R

{
T ; Ψi

ε(x, v
i) ≤ T, ε ∈ E , i = 1, . . . , n+ 1

}
.

Once again, by approximating the expected value in the functions Ψi
ε’s using Monte Carlo sim-

ulation, the problem can be written as a tractable linear programming problem. The procedure
is described in detail for the case where n = 1 in the case study in Section 5.2.

5 Numerical illustrations

This final section is devoted to an illustration of mean-risk portfolio selection under RecAV@R

in the context of two cases studies. In the first case study we compare optimal portfolios under
AV@R and RecAV@R and document that already the choice of a simple level function γ may
lead to a drastic difference in the composition of optimal portfolios. More specifically, in the
presence of a risk-free and a risky asset, there are realistic situations where it is optimal to
fully invest in the risky asset under AV@R whereas the optimal holding in the risky asset is
capped if RecAV@R is used to measure risk. In the second case study we focus on the more
computational aspects and show that, in the presence of two risky assets whose returns follow
standard distributions encountered in applications, the determination of robust efficient frontiers
under RecAV@R is feasible and computationally similar to the one under AV@R. To achieve
this, we exploit the minimax theorems established in the previous section and combine them
with standard Monte Carlo simulation.

5.1 Case study 1: Optimal portfolio without dependence uncertainty

We consider a financial institution with total budget b > 0 at the initial date. The management
can invest in two assets with one-period relative returns given by

R1 = 0, R2 =

0.5% with probability 99.9%,

−4% with probability 0.1%.

At the terminal date the institution is exposed to deterministic liabilities amounting to L1 = bℓ

for given ℓ ∈ (0, 1). We denote by x the fraction of total budget that is invested in the risky
asset. The corresponding end-of-period net asset value is therefore equal to

E1(x) := b(1− x)(1 +R1) + bx(1 +R2)− L1 = b(1 + xR2 − ℓ).
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Set α = 1% and for µ = 0 define the set of admissible holdings in the risky asset by

X := {x ∈ [0, 1] ; (1− x)E(R1) + xE(R2) ≥ µ}.

Since E(R2) = 0.004955, we readily see that X = [0, 1]. In a first step we focus on the problem

min
x∈[0,1]

AV@Rα(E1(x)). (8)

Using the properties of AV@R we can equivalently write

min
x∈[0,1]

AV@Rα(E1(x)) = b

(
min
x∈[0,1]

{AV@Rα(R
2)x} − 1 + ℓ

)
.

This shows that the composition of the optimal portfolio will be driven by the sign of AV@Rα(R
2).

A direct computation shows that

AV@Rα(R
2) =

1

α

(
1

1000

4

100
− 9

1000

5

1000

)
= −0.0005 < 0.

As a result, problem (8) admits a unique optimal solution given by x = 1. In words, the optimal
portfolio under AV@R corresponds to investing the entire available budget into the risky asset.
We turn to investigating how the optimal portfolio changes if AV@R is replaced by RecAV@R.
To this effect, take β ∈ (0, α) and r ∈ (0, 1) and consider a simple level function of the form

γ(λ) :=

α if λ ∈ [r, 1],

β if λ ∈ [0, r).

We modify problem (8) by replacing AV@R with RecAV@R, thereby obtaining the new problem

min
x∈[0,1]

RecAV@Rγ(E1(x), L1). (9)

In view of Proposition 2, we can equivalently write

min
x∈[0,1]

RecAV@Rγ(E1(x), L1) = min
x∈[0,1]

max{AV@Rα(E1(x)),AV@Rα(E1(x) + (1− r)L1)}.

Using the properties of AV@R we obtain the more explicit problem

min
x∈[0,1]

RecAV@Rγ(E1(x), L1) = b min
x∈[0,1]

max{AV@Rα(R
2)x− 1 + ℓ,AV@Rβ(R

2)x− 1 + rℓ}.

The optimal portfolio is thus determined by the sign of AV@Rα(R
2) and AV@Rβ(R

2). By
design, we always have AV@Rβ(R

2) > AV@Rα(R
2). Moreover, recall that AV@Rα(R

2) < 0. A
direct computation shows that

AV@Rβ(R
2) =

 4
100 if β ∈ (0, 0.1%],

45
1000000

1
β − 5

1000 if β ∈ (0.1%, α).
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Figure 1: Top: Optimal percentage of the initial budget invested in the risky asset as a function
of β for ℓ = 10% (left) and ℓ = 20% (right) and for r = 95% (dotted), r = 97.5% (dashed),
r = 99% (solid). Bottom: Recovery probability as a function of λ for ℓ = 10% (left) and
ℓ = 20% (right) and for β = 0.5% and r = 99% under AV@R (dashed) and RecAV@R (solid).

In particular, we have

AV@Rβ(R
2) ≤ 0 ⇐⇒ β ≥ 45

1000000

1000

5
= 0.9%.

As a consequence, we obtain the following picture about optimal portfolios under RecAV@R

as a function of the parameters β and r that determine the level function γ. On the one hand,
if β ≥ 0.9%, then problem (9) admits a unique optimal solution given by x = 1. In this case,
there is no difference between AV@R and RecAV@R and the optimal portfolio in both cases
corresponds to investing the whole budget in the risky asset. On the other hand, if β < 0.9%,
then problem (9) admits the unique optimal solution

x = min

{
(1− r)ℓ

AV@Rβ(R2)−AV@Rα(R2)
, 1

}
.
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In particular, we observe that x < 1 if and only if

(1− r)ℓ < AV@Rβ(R
2)−AV@Rα(R

2) =

0.0405 if β ∈ (0, 0.1%],

0.000045 1
β − 0.0045 if β ∈ (0.1%, 0.9%).

As a result, the optimal proportion of the budget invested in the risky asset depends on the
relative size of the recovery parameters β and r as well as of the liability parameter ℓ. Everything
else remaining equal, the optimal portfolio weight for the risky asset is increasing in β and ℓ while
it is decreasing in r, as one would expect. In Figure 1 (top) we display the optimal percentage
of the initial budget invested in the risky asset as a function of β for different choices of r

and ℓ. More precisely, we consider the situation where management targets a recovery of 95%,
97.5%, or 99% of liabilities and where the size of liabilities amounts to 10% or 20% of the entire
budget. In each of these situations there are realistic choices of β under which, differently from
the AV@R case, it is not optimal to fully invest in the risky asset. In fact, there are situations
where a considerable size of the budget is optimally invested in the risk-free asset.

We complement the previous analysis by assessing the ability of AV@R and RecAV@R to cover
a pre-specified portion of liabilities when budget is invested optimally and capital is adjusted
to respect regulatory requirements. To this effect, we denote the underlying probability by P
and compute for difference choices of λ ∈ (0, 1) the recovery probability

P(λ) := P(b(1− x∗)(1 +R1) + bx∗(1 +R2) + ρ∗ ≥ λL1)

where x∗ is the optimal percentage of the budget invested in the risky asset and

ρ∗ :=

AV@Rα(E1(x
∗)),

RecAV@Rγ(E1(x
∗), L1).

We know that x∗ = 1 under AV@R. In this case, one can easily show that for every λ ∈ (0, 1)

P(λ) = P(R2 +AV@Rα(R
2) + ℓ ≥ λℓ) =

100% if λ ≤ 1− 0.0405
ℓ ,

99.9% if λ > 1− 0.0405
ℓ .

.

If we work under RecAV@R, we obtain for every λ ∈ (0, 1)

P(λ) = P(x∗R2 + ℓ+max{x∗AV@Rα(R
2), x∗AV@Rβ(R

2)− (1− r)ℓ} ≥ λℓ).

In Figure 1 (bottom) we plot recovery probabilities under AV@R and RecAV@R for recovery
parameters β = 0.5% and r = 99%. By definition of R2, the recovery probability is at least
99.9% in both cases. If ℓ = 10%, then the optimal portfolio weight for the risky asset is x∗ ≈ 0.2.
In this case, AV@R guarantees full recovery up to 60% of liabilities whereas RecAV@R performs
much better by ensuring full recovery up to 90% of liabilities. The gap is narrower but still
clear when ℓ = 20%, in which case the optimal portfolio weight for the risky asset is x∗ ≈ 0.4.
In this case, AV@R guarantees full recovery up to 80% of liabilities while RecAV@R continues
to ensure full recovery up to 90% of liabilities.
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5.2 Case study 2: Optimal portfolio with dependence uncertainty

We consider a financial institution with total budget b > 0 at the initial date. The manage-
ment can invest in two assets with one-period relative returns R1 and R2 with the following
characteristics:

• R1 has a normal distribution with mean 0 and standard deviation 1.5%.

• R2 has a Student distribution with mean 0.5%, scale 1%, and 2 degrees of freedom.

• R1 and R2 have a Student copula with linear correlation 0.2 and 2 degrees of freedom.

The second asset is clearly riskier as it has infinite variance. At the terminal date the institution
is exposed to deterministic liabilities amounting to L1 = bℓ for given ℓ ∈ (0, 1). We denote by x

the fraction of total budget that is invested in the second asset. The corresponding end-of-period
net asset value is therefore equal to

E1(x) := b(1− x)(1 +R1) + bx(1 +R2)− L1 = b(1 +R1 + x(R2 −R1)− ℓ).

We study robust portfolio optimization under box uncertainty using the notation introduced in
Section 4.2. As a first step, we apply Monte Carlo simulation to generate a sample of m = 50000

realizations of the random vector (R1, R2), which are denoted by (R1
j , R

2
j ) for j = 1, . . . ,m, and

fix a benchmark probability measure P ∈ P under which (R1, R2) is discrete and satisfies

P((R1, R2) = (R1
j , R

2
j )) =

1

m
= 0.002%.

For a given C ∈ [0, 1
m ] we set ε := (−C, . . . ,−C) and ε := (C, . . . , C) and consider the corre-

sponding perturbation set E . In particular, observe that for every ε ∈ E we have

Pε((R
1, R2) = (R1

j , R
2
j )) ∈

[
1

m
− C,

1

m
+ C

]
, j = 1, . . . ,m.

The degree of box uncertainty therefore increases with the parameter C. In particular, the case
C = 0 corresponds to no box uncertainty. As in the previous case study, set α = 1% and for
β ∈ (0, α) and r ∈ (0, 1) consider the level function given by

γ(λ) :=

α if λ ∈ [r, 1],

β if λ ∈ [0, r).

For given µ > 0 define the set of admissible holdings in the second asset by

X (µ) :=

{
x ∈ [0, 1] ; min

ε∈E
{(1− x)EPε(R

1) + xEPε(R
2)} ≥ µ

}
.

We focus on the robust optimization problem

min
x∈X (µ)

max
ε∈E

RecAV@RPε
γ (E1(x), L1). (10)
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Filtering out the constant b and using the explicit shape of γ we equivalently obtain

min
x∈X (µ)

max
ε∈E

max{AV@RPε
α ((1− x)R1 + xR2 − ℓ),AV@RPε

β ((1− x)R1 + xR2 − rℓ)}.

To determine the efficient frontier we rely on the minimax identity established in Theorem 3
and adapt the approach of Zhu & Fukushima (2009), which was applied to mean-risk problems
under AV@R. First, it follows immediately from Theorem 3 that problem (10) is equivalent to

min T

s.t.
1

β

 1

m

m∑
j=1

u1j +max
ε∈E

m∑
j=1

εju
1
j

− v1 ≤ T,

1

α

 1

m

m∑
j=1

u2j +max
ε∈E

m∑
j=1

εju
2
j

− v2 ≤ T,

u1j ≥ 0, u1j ≥ v1 − (1− x)R1
j − xR2

j + rℓ, j = 1, . . . ,m,

u2j ≥ 0, u2j ≥ v2 − (1− x)R1
j − xR2

j + ℓ, j = 1, . . . ,m,

1

m

m∑
j=1

((1− x)R1
j + xR2

j ) + min
ε∈E


m∑
j=1

((1− x)εjR
1
j + xεjR

2
j )

 ≥ µ,

T, v1, v2 ∈ R, x ∈ [0, 1].

We now follow Zhu & Fukushima (2009), to which we refer for the necessary details, and use the
explicit form of E (remember that ε = (−C, . . . ,−C) and ε = (C, . . . , C) for some C ∈ [0, 1

m ])
to rewrite the inner optimizations over E as convenient linear programs. With respect to the
maximization over E , it suffices to observe that, by duality, for any given u ∈ Rm we have

max
ε∈E

m∑
j=1

εjuj = min
(z,σ,τ )∈R×Rm

+×Rm
−

C
m∑
j=1

(σj − τj) ; z + σj + τj = uj , j = 1, . . . ,m

 .

Similarly, with respect to the minimization over E , for fixed x ∈ [0, 1] we obtain by duality that

min
ε∈E


m∑
j=1

((1− x)εjR
1
j + xεjR

2
j )

 = max
(ζ,η)∈S(x)

C
m∑
j=1

(ζj − ηj)

 ,

where the dual domain is defined by

S(x) := {(ζ,η) ∈ Rm
− × Rm

+ ; ∃w ∈ R, w + ζj + ηj = (1− x)R1
j + xR2

j , j = 1, . . . ,m}.

In addition, we have X (µ) = X ∗(µ) where

X ∗(µ) :=

x ∈ [0, 1] ; ∃(ζ,η) ∈ S(x), 1

m

m∑
j=1

((1− x)R1
j + xR2

j ) + C
m∑
j=1

(ζj − ηj) ≥ µ

 .
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Figure 2: Efficient frontier with RecAV@R with β = 0.5% and r = 90% on the x-axis and
expected relative returns on the y-axis for ℓ = 10% (left) and ℓ = 50% (right) and for C = 0
(solid), C = 0.0001% (dashed), C = 0.0002% (dotted), C = 0.0003% (dotdashed).

As a consequence, problem (10) is equivalent to the tractable linear program

min T

s.t.
1

βm

m∑
j=1

u1j +
C

β

m∑
j=1

(σ1
j − τ1j )− v1 ≤ T,

1

αm

m∑
j=1

u2j +
C

α

m∑
j=1

(σ2
j − τ2j )− v2 ≤ T,

u1j ≥ v1 − (1− x)R1
j − xR2

j + rℓ, j = 1, . . . ,m,

u2j ≥ v2 − (1− x)R1
j − xR2

j + ℓ, j = 1, . . . ,m,

uij ≥ 0, uij = zi + σj + τj , i = 1, 2, j = 1, . . . ,m,

zi ∈ R, σi
j ≥ 0, τ ij ≤ 0, i = 1, 2, j = 1, . . . ,m,

1

m

m∑
j=1

((1− x)R1
j + xR2

j ) + C
m∑
j=1

(ζj − ηj) ≥ µ,

w + ζj + ηj = (1− x)R1
j + xR2

j , j = 1, . . . ,m,

w ∈ R, ζj ≤ 0, ηj ≥ 0, j = 1, . . . ,m,

T, v1, v2 ∈ R, x ∈ [0, 1].

A standard dual simplex method can be employed to find the optimal value ρ∗(µ) of this
linear program as a function of a target expected relative return µ. In Figure 2 we plot the
corresponding efficient frontier, i.e., the set of points (ρ∗(µ), µ), for a given range of expected
relative returns. We focus on the two situations where liabilities amount to 10%, respectively
50%, of the initial budget. As is intuitive, in the latter case the same level of expected relative
returns is achieved at the cost of higher risk. A direct inspection of the plots reveal that, for
the chosen range of target returns, risk is 2 to 4 times higher when liabilities have a larger size.
However, the qualitative impact of dependence uncertainty, in the form of box uncertainty, is
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the same in both situations. If the degree of uncertainty increases, the same level of expected
relative returns is achieved at the cost of higher risk. Interestingly enough, the impact of
dependence uncertainty on risk is more pronounced when the size of liabilities is smaller.

A A minimax theorem

In this appendix we record a special minimax theorem that we apply repeatedly in the paper.
For n ∈ N we denote by ∆n the n-dimensional simplex, i.e., the set of vectors in Rn with
nonnegative components summing up to 1.

Theorem 4. Let f1, . . . , fn : R → R be convex functions attaining their minimum on (nonempty)
compact intervals I1, . . . , In ⊂ R. Then,

max
i=1,...,n

min
x∈R

fi(x) = min
x∈Rn

max
i=1,...,n

fi(xi). (11)

Proof. Set I = I1 × · · · × In. For every x ∈ Rn we can write

max
i=1,...,n

min
x∈R

fi(x) = max
θ∈∆n

n∑
i=1

θimin
x∈R

fi(x) = max
θ∈∆n

min
x∈Rn

n∑
i=1

θifi(xi) = max
θ∈∆n

min
x∈I

n∑
i=1

θifi(xi).

As ∆n and I are compact and convex and the function (θ,x) 7→
∑n

i=1 θifi(xi) is linear in θ

and convex in x, we can apply the classical minimax theorem in Fan (1953) to infer that

max
i=1,...,n

min
x∈R

fi(x) = min
x∈I

max
θ∈∆n

n∑
i=1

θifi(xi) = min
x∈I

max
i=1,...,n

fi(xi) = min
x∈Rn

max
i=1,...,n

fi(xi).

This delivers the desired minimax equality.

Remark 5. The outer minimum in the minimax equality (11) cannot be taken over R in general.
To see this, consider the convex functions f1, f2 : R → R defined by

f1(x) :=


−x− 2 if x ≤ −2,

0 if − 2 < x ≤ −1,

x+ 1 if x > −1,

f2(x) :=


−x+ 1 if x ≤ 1,

0 if 1 < x ≤ 2,

x− 2 if x > 2.

Note that f1 and f2 attain their minimum on [−2,−1] and [1, 2], respectively. However,

max
i=1,2

min
x∈R

fi(x) = 0 < 1 = min
x∈R

max
i=1,2

fi(x).
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