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Abstract

We extend the scope of risk measures for which backtesting models are available by
proposing a multinomial backtesting method for general distortion risk measures. The
method relies on a stratification and randomization of risk levels. We illustrate the per-
formance of our methods in numerical case studies.
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1 Introduction

In the face of risk and uncertainty financial institutions need to measure and quantify the risk

they are exposed to. These measurements can be used to determine the capital that is needed

as a buffer against adverse scenarios. Risk measures also help to compare portfolios or balance

sheets to each other and to guide management decisions. In this paper, we extend the scope of

risk measures for which backtesting models are available.

A variety of risk measures has been suggested in the literature. Value at Risk (V@R)

and Average Value at Risk (AV@R) are the basis of different solvency regimes. An axiomatic

investigation of monetary risk measures goes back to Artzner et al. (1999), Föllmer and Schied

(2002), and Frittelli and Gianin (2002), see also Föllmer and Schied (2016) and Föllmer and

Weber (2015). We introduce a general methodology for backtesting an important class of risk

measures that includes the regulatory benchmarks V@R and AV@R as special cases: distortion

risk measures (DRMs).

DRMs encompass all distribution-based coherent risk measures. This fact is a direct con-

sequence of a representation theorem by Kusuoka (2001). But DRMs include many additional
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risk measures that are not necessarily convex, e.g. V@R and Range Value at Risk (RV@R).

DRMs are important examples of comonotonic risk measures, i.e., risk measures for which risks

simply add up for comonotonic positions.

In practice, risk measures are used to assess the risk of future positions and balance sheets.

They are applied to probabilistic models that are estimated from past data. Backtesting refers to

methodologies that compare observed values of positions to model-based risk assessments. The

methods test the adequacy of the risk measurement models of banks and insurance companies

in the face of uncertainty and help to identify misspecifications that impair risk assessments.

Thereby financial firms can validate their forecasting tools for investments and balance sheets

positions on both the asset and liability side.

It is extremely important that risk measures adequately capture those properties that are

needed in the risk management process. Risk measures quantify risk. By numerically rep-

resenting risk, they facilitate the communication within firms, with customers, investors and

regulators and provides a solid basis for decisions. Risk measures reduce the complexity of risk

by focussing on specific features of random positions. These issues are systematically studied

in the axiomatic theory of risk measures that also provides a variety of examples with different

properties, cf. Föllmer and Schied (2016) and Föllmer and Weber (2015). In this paper, we com-

plement this literature by expanding the class of risk measures for which powerful backtesting

algorithms are available.

Our contributions are the following:

(i) We propose a multinomial backtesting method for general DRMs which extends the non-

randomized AV@R-backtest of Kratz et al. (2018). The method relies on a stratification

and randomization of risk levels. Our stratified mixture approach captures important

characteristics of the DRM by weighting quantiles according to their contribution.

(ii) We illustrate the performance of our methods in numerical case studies. First, we

consider fixed distributions of loss positions under the null hypothesis and under the

alternatives and evaluate the size and the power of our test in this simple setting.

Second, we apply our method to asset-liability-management.

(iii) In the special case of AV@R, our backtesting methodology deviates from previously

considered multinomial backtests suggested in Kratz et al. (2018) due to the random-

ization of risk levels. A numerical comparison of both methods shows that our approach
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improves the power of the backtests in all case studies.

Literature

For reviews on the theory of monetary risk measures, including distortion risk measures, we

refer to Föllmer and Schied (2016) and Föllmer and Weber (2015). References to various

seminal papers, including Value at Risk (V@R) and Average Value at Risk (AV@R), also called

Expected Shortfall, are given in the Bibliographical notes to Chapter 4 in Föllmer and Schied

(2016), and in the Notes and Comments to Chapter 2 in McNeil et al. (2015). Range Value

at Risk was introduced in Cont et al. (2010). The class of distortion risk measures and the

closely related mathematical notion of Choquet integrals are e.g. discussed in Choquet (1954),

Greco (1982), Schmeidler (1986), Wang (1995), Wang (1996), Denneberg (1994), Acerbi (2002),

Dhaene et al. (2006), Song and Yan (2006), Song and Yan (2009a), Song and Yan (2009b),

Embrechts et al. (2018), Weber (2018), and Kim and Weber (2021). Some of our arguments rely

on the representation of distortion risk measures as mixtures of V@R as described in Dhaene

et al. (2012). A specific example that we consider is GlueV@R, a risk measure proposed in

Belles-Sampera et al. (2014a) and Belles-Sampera et al. (2014b). Further examples of DRMs

have continuously received attention, for example proportional hazard transform in Wang (1995,

1996), min/max V@R transforms in Cherny and Madan (2009), and Range V@R in Bignozzi

and Tsanakas (2016). We provide a list of such examples in Appendix A.2 with the respective

references, originally compiled by Methni and Stupfler (2017). The robust representation of

coherent distribution-based risk measures that are a subfamily of DRM is due to Kusuoka

(2001).

The literature on backtesting the V@R is extensive. Kupiec (1995) describes an algorithm

that considers the time and size of the first V@R exceedance. Christoffersen (1998) shows

that backtests of V@R can be based on the fact that the sequence of V@R exceedances are

independent Bernoulli random variables under the null hypothesis. This observation is a starting

point for numerous backtesting schemes, see e.g. Christoffersen and Pelletier (2004), Wong

(2010), Berkowitz et al. (2011), and Ziggel et al. (2014).

Some strategies for backtesting are associated to the notion of elicitability. The coherent risk

measure AV@R is, however, not elicitable, see Weber (2006) and Gneiting (2011). All coherent

and convex elicitable risk measures are characterized in Weber (2006), Bellini and Bignozzi

(2015), and Delbaen et al. (2016). Discussions on the issue of the possibility of backtesting
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AV@R can be found in Carver (2013), Carver (2014), Chen (2014), Acerbi and Szekely (2014),

and Fissler et al. (2016).

Specific backtests for AV@R are developed in the following papers: Emmer et al. (2015)

and Kratz et al. (2018) consider discrete V@R level exceedances to implicitly backtest AV@R.

Costanzino and Curran (2015) and Costanzino and Curran (2018) develop a traffic light system

that is based on a backtest of weighted V@R exceedance indicators. Du and Escanciano (2016)

and Löser et al. (2019) test the martingale property of the cumulated violation process. Another

approach relies on testing a forecast of the probability density of the P&L distribution. As

suggested in Diebold et al. (1998), plugging the observed profits and losses into the forecast

cumulative distribution function should lead to a uniform distribution. This strategy is refined

in Berkowitz (2001), Kerkhof et al. (2003) and Gordy and McNeil (2020) in the context of risk

management.

Our approach modifies and extends multinomial backtests as considered in Kratz et al.

(2018) in the context of AV@R where test statistics are adopted from classical multinomial tests.

Pearson’s χ2-test was developed1 in Pearson (1900). A finite sample correction of Pearson’s χ2-

test was developed by Nass (1959). We also consider a likelihood ratio test, cf. Section 10.3

of Casella and Berger (2002). For a multinomial null hypothesis and multinomial alternatives

these tests are compared in Cai and Krishnamoorthy (2006).

Outline

The paper is structured as follows: Section 2 and Section A.1 in the appendix review the defini-

tion and properties of DRMs. We pay particular attention to the representation of a distortion

function as a sum of right- and left-continuous functions and the corresponding decomposition

of the DRM. In Section 3 we develop the backtesting methodology for general DRMs. We begin

in Section 3.1 with a review of a multinomial backtesting scheme for AV@R that was introduced

by Kratz et al. (2018). In the next two sections we describe our stratified and randomized exten-

sion: in Section 3.2 for left- and right-continuous distortion functions, in Section 3.3 for general

distortion functions. Section 4 illustrates the tractability and performance of our method in

numerical experiments. We show in the special case of AV@R that randomization may improve

the power of backtests; the numerical experiments are adopted from Kratz et al. (2018), and

1Seven alternative proofs for the asymptotic behavior of the test statistic under the null hypothesis can be
found in Benhamou and Melot (2018).
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the results are compared to their paper. We also consider an example of a DRM with distor-

tion functions with jumps, GlueV@R, and illustrate the application of the proposed backtest.

Section 5 applies the method to a more complex asset-liability-model. Section 6 concludes and

discusses further research. All proofs and auxiliary material are collected in an appendix.

2 Distortion Risk Measures

Our backtesting methodology focuses on Distortion Risk Measures2 (DRM), as described in

Wang (1996) and Acerbi (2002), operating on some vector space X of financial positions or

insurance losses. More precisely, X is a vector space of measurable functions on a measurable

space (Ω,F); we always assume that constant functions are included in X . Our sign convention

is that positive values correspond to losses and negative values to gains.

DRMs are a subset of comonotonic risk measures, cf. Föllmer and Schied (2016), and the

definition of DRMs and their link to comonotonic risk measures is briefly summarized in Ap-

pendix A.1. For our backtesting methodology, we need the following decomposition theorem

which is related to the continuity properties of distortion functions, an important issue that is

also investigated in Dhaene et al. (2012) :

Theorem 2.2. Let g be a distortion function. Then there exists a unique decomposition

g(u) = crgsr(u) + clgsl(u) + ccgc(u) ∀u ∈ [0, 1],

where gsr, gsl are right- resp. left-continuous step distortion functions, gc is a continuous

distortion function, and cr, cl, cc ∈ [0, 1], cr + cl + cc = 1.

In particular, the corresponding distortion risk measures satisfy the following relation:

ρg = crρgsr + clρgsl + ccρgc .

2A risk measure ρ is a mapping which assigns to X ∈ X a quantitative measurement of the probability and
severity of losses:

Definition 2.1. A function ρ : X → R is called a monetary risk measure if it satisfies

(i) Monotonicity: If X ≤ Y, X, Y ∈ X , then ρ(X) ≤ ρ(Y ).

(ii) Cash-Invariance: If X ∈ X and m ∈ R, then ρ(X +m) = ρ(X) +m.

A risk measure is normalized if ρ(0) = 0. If X is a space of random variables on some probability space (Ω,F ,P),
the risk measure is called distribution-based if ρ(X) = ρ(Y ) whenever the distributions of X and Y under P are
equal, i.e., PX = PY for X,Y ∈ X . An excellent reference on scalar monetary risk measures is the book Föllmer
and Schied (2016). For a brief survey we refer to Föllmer and Weber (2015).
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Proof. See Appendix A.3.1.

Remark 2.3. The decomposition of a distortion function g according to Theorem 2.2 can be

computed as follows:

gsr(u) = a
∑
r≤u

(g(r)−g(r−)), gsl(u) = b
∑
l<u

(g(l+)−g(l)), gc(u) = c

(
g(u)− 1

a
gsr(u)−

1

b
gsl(u)

)

with normalizing constants a, b, c. Setting cr = a−1, cl = b−1, cc = c−1, we have

g = crgsr + clgsl + ccgc.

An example of a convex decomposition g = dlhl + drhr according to Theorem A.4 can then be

obtained by setting

dl =
(
cl +

cc
2

)
, hl =

(
cl +

cc
2

)−1 (
clgsl(u) +

cc
2
gc(u)

)
,

dr =
(
cr +

cc
2

)
, hr =

(
cr +

cc
2

)−1 (
crgsr(u) +

cc
2
gc(u)

)
,

where dl + dr = 1, dl, dr ≥ 0 and hl, hr are left- resp. right-continuous distortion functions.

Examples of DRMs and their distortion functions are given in Methni and Stupfler (2017),

for example, and are also provided in appendix A.1.

3 Multinomial Tests for Distortion Risk Measures

3.1 Preliminaries

The goal of this paper is to develop backtesting methods for general distortion risk measures and

to improve upon existing approaches.3 The true losses are generated according to a stochastic

process L = (Lt)t=1,...,n whose law is unknown. The process is adapted to the information

filtration of the insurance company or bank and is observable. More specifically, we suppose

that the information filtration is generated by L. For the purpose of risk measurement the

firm uses a stochastic process M = (Mt)t=1,...,n with known distribution, also called model.

The conditional cumulative distribution functions FMt|Mt−1,...,M1
are assumed to be continuous.

3A multilevel V@R backtest is proposed by Emmer et al. (2015) as an implicit backtesting method for AV@R;
Kratz et al. (2018) approximate AV@R by the sum of multiple V@R values at different levels and refine the
original algorithm.
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We are interested in computing risk measures for future losses at time t conditional on the

information available at time t− 1.

We begin by studying AV@Rα for some small α ∈ (0, 1). An approximation of the risk

measure can be obtained by considering an equidistant partition αj :=
j

m+1α, j = 0, 1, . . . ,m+1,

of the interval [0, α]. The AV@Rα at time t− 1 of future losses at time t is approximated by

AV@Rt−1
α (Mt) =

1

α

∫ α

0
V@Rt−1

λ (Mt)dλ

≈ 1

m+ 1

(
V@Rt−1

α1
(Mt) + · · ·+ V@Rt−1

αm+1
(Mt)

)
,

where the superscripts in AV@Rt−1
α and V@Rt−1

λ indicate that that risk measures are com-

puted from the conditional distribution of the arguments given the past, i.e., in this case from

FMt|Mt−1,...,M1
using the observations Mt−1 = Lt−1, . . . , M1 = L1.

Christoffersen (1998) analyzes backtesting of V@R. Fixing a level β, we ask if

∀t = 1, 2, . . . , n : P
(
Lt > V@Rt−1

β (Mt)|Lt−1, . . . , L1

)
= β.

This question is equivalent to testing the hypothesis that the exception indicators 1{Lt>V@Rt−1
β (Mt)},

t = 1, 2, . . . , n, are a sequence of independent Bernoulli random variables with parameter β. This

hypothesis is, of course, satisfied if the stochastic processes L and M possess the same law. It

is often rephrased in terms of the following two properties:

i. The unconditional coverage hypothesis: E
[
1{Lt>V@Rt−1

β (Mt)}
]
= β for all t.

ii. The independence hypothesis: The random variables 1{Lt>V@Rt−1
β (Mt)}, t = 1, 2, . . . , n, are

independent.

We now return to the equidistant partition (αj)j=0,1,...,m+1 and define the random number

of breached levels at time t by

Xt :=

m+1∑
j=1

1{
Lt>V@Rt−1

αj
(Mt)

}, (1)

taking values in {0, 1, . . . ,m,m+1}. If the unconditional coverage hypothesis holds, the distribu-

tion ofXt is multinomial with one trial, i.e.,Xt ∼ MN (1, (α1 − α0, . . . , αm+1 − αm, 1− αm+1)) .

The observed cell counts (O0, O1, . . . , Om+1), defined as Oi =
∑n

t=1 1{Xt=i}, i = 0, 1, . . . ,m+1,
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follow a multinomial distribution with n trials

(O0, O1, . . . , Om+1) ∼ MN (n, (α1 − α0, . . . , αm+1 − αm, 1− αm+1)) , (2)

if the independence hypothesis holds. This result provides a backtesting methodology for the

question whether or not the model computations AV@Rt−1
α (Mt), t = 1, 2, . . . , n, are a proper

basis for assessing the true risk. Kratz et al. (2018) consider the null hypothesis (2).

This approach can also be used to backtest the models evaluated with a DRM, but it would

neglect the weights introduced by the distortion function. Where the distortion function puts

more weight, the corresponding losses are more important. Based on this observation, we

propose a novel extension to the multinomial V@R backtests to DRMs that is better adapted

to the significance of misspecifications.

3.2 Left- and Right-Continuous Distortion Functions

We begin with the case of left-continuous distortion functions. The general case will be studied

in Section 3.3.

For any distortion function g we denote by ρt−1
g (Mt) the distortion risk measure ρg evaluated

for the conditional distribution FMt|Mt−1,...,M1
using the observations Mt−1 = Lt−1, . . . , M1 =

L1. The corresponding conditional quantile function is denoted by qt−1
Mt

. If g is left-continuous,

then the DRM can – according to Theorem A.2 – be expressed as

ρt−1
g (Mt) =

∫
[0,1]

qt−1
Mt

(u)dḡ(u) (3)

for a right-continuous distribution function ḡ on the interval [0, 1]. Letting Ḡ be a real-valued

random variable, independent of L and M , with distribution function ḡ and G = 1− Ḡ, we may

rewrite the DRM risk measurement as ρt−1
g (Mt) = E

[
qt−1
Mt

(Ḡ)
]
= E

[
qt−1
Mt

(1−G)
]
.

We now introduce a backtesting methodology that is based on a discrete approximation,

generalizing the approach for AV@R. Let 0 = α0 < α1 < · · · < αm < αm+1 = 1 be a partition of

[0, 1] with g(αj)− g(αj−1) ̸= 0 for all j = 1, . . . ,m+ 1. The exceptions indicators are replaced

by randomized exception indicators: For t, j, we let Gt,j be independent random variables,

independent of L and M , with distribution L(G|G ∈ [αj−1, αj)), i.e., the distribution of G

conditional on G ∈ [αj−1, αj). The randomized exception indicators that can be used for
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backtesting are

1t,j =


1 if Lt > qt−1

Mt
(1−Gt,j)

0 else.

, j = 1, . . . ,m+ 1.

Obviously, if L and M possess the same law, then for all j:

P
(
Lt > qt−1

Mt
(1−Gt,j)

)
= P

(
Mt > qt−1

Mt
(1−Gt,j)

)
.

In this case, versions of the unconditional coverage hypothesis and independence hypothesis

hold that can be used as the basis for a backtest.

Lemma 3.1. If M and L possess the same law, then

E [1t,j ] =
E
[
G1{G∈[αj−1,αj)}

]
g(αj)− g(αj−1)

(4)

for all t = 1, . . . , n, and the random vectors (1t,j)j=1,...,m+1, t = 1, . . . , n, are independent.

Proof. See Appendix A.3.2.

The randomized numbers of breached levels are Xt :=
∑m+1

j=1 1t,j , t ∈ {1, . . . , n}.

Lemma 3.2. Suppose that the unconditional coverage hypothesis (4) holds and that the random

vectors (1t,j)j=1,...,m+1, t = 1, . . . , n, are independent. Then the number of breached levels Xt

satisfies

P(Xt ≤ k) = 1−
E
[
G1{G∈[αm−k,αm−k+1)}

]
g(αm−k+1)− g(αm−k)

, 0 ≤ k ≤ m,

P(Xt ≤ m+ 1) = 1,

and the random variables (Xt)t=1,...,n are independent.

Proof. See Appendix A.3.2.

The number of breached levelsXt follows a multinomial distribution,Xt ∼ MN(1, (p0, . . . , pm+1)),

where MN(n, (p0, . . . , pm+1)) denotes a multinomial distribution with n trials and m + 2 pos-

sible outcomes. The probabilities pk = P(Xt = k) can be computed from Lemma 3.2; they are

stated explicitly in Theorem 3.3.
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The observed cell counts

Ok :=
n∑

t=1

1{Xt=k}, k = 0, 1, . . . ,m+ 1 (5)

are the key statistics of the multinomial backtest.

Theorem 3.3. Suppose that the unconditional coverage hypothesis (4) holds and that the ran-

dom vectors (1t,j)j=1,...,m+1, t = 1, . . . , n, are independent. Then the observed cell counts possess

the multinomial distribution

(O0, O1, . . . , Om+1) ∼ MN(n, (p0, p1, p2, . . . , pm+1)), (6)

p0 = P(Xt = 0) = 1−
E
[
G1{G∈[αm,1)}

]
g(1)− g(αm)

pk = P(Xt = k) =
E
[
G1{G∈[αm+1−k,αm+2−k)}

]
g(αm+2−k)− g(αm+1−k)

−
E
[
G1{G∈[αm−k,αm+1−k)}

]
g(αm+1−k)− g(αm−k)

, 1 ≤ k ≤ m,

pm+1 = P(Xt = m+ 1) =
E
[
G1{G∈[0,α1)}

]
g(α1)

.

Proof. See Appendix A.3.2.

As stated in Lemma 3.1, if M and L possess the same law, the conditions of Theorem

3.3 are satisfied. In generalization of previous results, we thus suggest to use the multinomial

distribution (O0, O1, . . . , Om+1) in (6) as a starting point for the analysis of the null hypothesis

in a backtest for a DRM. The corresponding results for general distortion functions are stated

in the next section.

Remark 3.4. In contrast to the approach of Kratz et al. (2018) that we reviewed in Section 3.1,

our approach includes an additional randomization. When applied to AV@R, the levels of the

V@R-thresholds in the computation of the breached levels in (1) are randomized. This leads

to alternative tests that are more powerful according to our case studies in Section 4. The

corresponding multinomial distribution of the observed cell counts (O0, O1, . . . , Om+1) under the

null hypothesis is characterized in Section 4.1.1 and in Appendix A.6 for arbitrary partitions of

[0, 1].

Remark 3.5. In the case of right-continuous distortion functions the results need to be adjusted

as follows:
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i. The distortion function g is the distribution function of a probability measure on [0, 1]. We

denote by G a random variable, independent of L and M , with this distribution, and, for

all t, j, by Gt,j independent random variables, independent of L and M , with distribution

L(G|G ∈ (αj−1, αj ]), i.e., the distribution of G conditional on G ∈ (αj−1, αj ].

ii. The randomized exception indicators are

1t,j =


1 if Lt > q+,t−1

Mt
(1−Gt,j)

0 else.

, j = 1, . . . ,m+ 1.

iii. If M and L possess the same law, then E [1t,j ] =
E
[
G1{G∈(αj−1,αj ]}

]
g(αj)−g(αj−1)

for all t = 1, . . . , n.

iv. In Theorem 3.3 all left-closed and right-open intervals must be replaced by left-open and

right-closed intervals.

With these technical modifications, all results, stated before for left-continuous distortion func-

tions, also hold in the right-continuous case.

3.3 General Distortion Functions

General DRMs are slight more challenging. In this case, we split the distortion function g of the

DRM into three components, a left-continuous, a right-continuous and a continuous part. This

admits to work with a mixture of three distributions and to use a similar approach as described

in Section 3.2.

We denote by ρt−1
g (Mt) the distortion risk measure ρg evaluated for the conditional distribu-

tion FMt|Mt−1,...,M1
using the observations Mt−1 = Lt−1, . . . , M1 = L1. According to Theorem

2.2 this risk measurement may be rewritten as

ρt−1
g (Mt) = crρ

t−1
gsr (Mt) + clρ

t−1
gsl

(Mt) + ccρ
t−1
gc (Mt).

We simplify the notation by writing gl, gr instead of gsl, gsr. We denote by Gl, Gr, Gc ran-

dom variables, independent of L and M , distributed according to gl, gr, gc, respectively, and

independent of the random variable C that takes the values l, r, c with probabilities cl, cr, cc,
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respectively. We also choose C independently of L and M . Setting

G = 1{C=r}G
r + 1{C=l}G

l + 1{C=c}G
c,

the random variable G has the mixture distribution function g = crgr + clgl + ccgc. With this

notation, the risk measurement can be expressed as

ρt−1
g (Mt) = crE

[
q+,t−1
Mt

(1−Gr)
]
+ clE

[
qt−1
Mt

(1−Gl)
]
+ ccE

[
qt−1
Mt

(1−Gc)
]

= E
[
1{C=r}q

+,t−1
Mt

(1−Gr) + 1{C=l}q
t−1
Mt

(1−Gl) + 1{C=c}q
t−1
Mt

(1−Gc)
]

= E
[
1{C=r}q

+,t−1
Mt

(1−G) + 1{C=l}q
t−1
Mt

(1−G) + 1{C=c}q
t−1
Mt

(1−G)
]
.

This equation can be used as a basis for the construction of a backtesting procedure.

Again we consider a partition 0 = α0 < α1 < · · · < αm < αm+1 = 1 of [0, 1], but this

time and deviating from Section 3.2 we impose the requirement that g does not jump at αj ,

j = 1, 2, . . . ,m+ 1. This will be unproblematic, since for a given normative choice of a distortion

function g the selection of a corresponding partition (αj)j=1,2,...,m+1 is quite flexible. This is

contrast to the data-generating mechanism L and the descriptive model M whose performance

and adequacy is tested.

Assumption 3.6.

The function g is continuous in αj and g(αj)− g(αj−1) ̸= 0 for all j = 1, . . . ,m+ 1.

Remark 3.7. i. Since g is increasing, it posses only countable many discontinuities. Hence,

Assumption 3.6 does not substantially restrict the generality of the method.

ii. The assumption ensures that the procedure will not generate different results for the inter-

vals (αj−1, αj ], (αj−1, αj), [αj−1, αj ], or [αj−1, αj), since the set {αj : j = 1, 2, . . . ,m+1}

has probability measure zero for the distribution function g.

We are now in the position to define the randomized exception indicators that are used

for backtesting. Letting Gt,j be independent random variables, independent of L and M , with

distribution L(G|G ∈ [αj−1, αj)), Gt,j follows the corresponding mixture of the conditional

distributions of Gl, Gr, Gc. With Ct,j , t = 1, 2, . . . , n, j = 1, . . . ,m + 1, being independent
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replications of C, independent of L and M , we define

1t,j :=


1 Lt > 1{Ct,j=r}q

+,t−1
Mt

(1−Gt,j) + 1{Ct,j=l}q
t−1
Mt

(1−Gt,j) + 1{Ct,j=c}q
t−1
Mt

(1−Gt,j)

0 else.

When the processes L and M possess the same law, suitable versions of the unconditional

coverage hypothesis and independence hypothesis hold that can be used for backtesting.

Lemma 3.8. If M and L possess the same law, then

E[1t,j ] =
E[G1{G∈[αj−1,αj)}]

g(αj)− g(αj−1)
(7)

for all t = 1, . . . , n, and the random vectors (1t,j)j=1,...,m+1, t = 1, . . . , n, are independent.

Proof. The proof is analogous to the proof of Lemma 3.1.

We define the number of breached levels, Xt =
∑m+1

j=1 1t,j , t = 1, 2, . . . , n, and the observed

cell counts,

Ok =

n∑
t=1

1{Xt=k}, k = 0, 1, . . . ,m+ 1. (8)

Theorem 3.9. Suppose that the unconditional coverage hypothesis (7) holds and that the ran-

dom vectors (1t,j)j=1,...,m+1, t = 1, . . . , n, are independent. Then the following statements hold:

i) The number of breached level has a multinomial distribution, i.e, Xt ∼ MN(1, (p0, . . . , pm+1),

t = 1, . . . , n, with

p0 = P(Xt = 0) = 1−
E
[
G1{G∈[αm,1)}

]
g(1)− g(αm)

,

pk = P(Xt = k) =
E
[
G1{G∈[αm+1−k,αm+2−k)}

]
g(αm+2−k)− g(αm+1−k)

−
E
[
G1{G∈[αm−k,αm+1−k)}

]
g(αm+1−k)− g(αm−k)

,

1 ≤ k ≤ m,

pm+1 = P(Xt = m+ 1) =
E
[
G1{G∈[0,α1)}

]
g(α1)

.

Moreover, the random variables (Xt)t=1,...,n are independent.

ii) The observed cell counts possess the following multinomial distribution:

(O0, O1, . . . , Om+1) ∼ MN(n, (p0, p1, . . . , pm+1)). (9)
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Proof. The proof is analogous to the proofs of Lemma 3.2 and Theorem 3.3.

As in Section 3.2, we suggest to use the cell counts (O0, O1, . . . , Om+1) for backtesting. If

M and L possess the same law, its distribution is multinomial.

Remark 3.10. The statement

(O0, O1, . . . , Om+1) ∼ MN(n, (p0, p1, . . . , pm+1)) (10)

derived from Theorem 3.9 is typically not equivalent to L and M possessing the same distribu-

tion. The cell counts capture only certain features of the distribution of a process such that a

null hypothesis (10) of a multinomial distribution with these parameters includes a larger class

of models. This condition approximates for a specific partition the statement that M provides

a reasonable model for measuring the considered DRM of the true losses L.

The fact that (10) is weaker than L
d
= M can be illustrated by a simple example. Setting

m = 0 and g(u) = 1{0.5<u≤1}, condition (10) is equivalent to

E[1t,1] = P(Lt > qt−1
Mt

(0.5)) = 0.5

This is already true, if the conditional distributions of Lt and Mt given the past have the same

median.

4 Distributional Simulations

We provide a numerical illustration of the DRM backtesting procedure. We consider the set-

ting described in Section 3, extending the methodology of Kratz et al. (2018). Tests for the

multinomial distribution are reviewed in appendix A.4, compiling the relevant results from Cai

and Krishnamoorthy (2006) and Kratz et al. (2018).

The null hypothesis H0 states that the components of L = (Lt)t=1,2,...,n are independent

random variables with standard normal distribution N . This law is also used for the model

M = (Mt)t=1,2,...,n on which risk computations are based.

The test statistics are computed from the observed cell counts (O0, O1, . . . , Om+1) as defined

in (5) and (8). Under the null hypothesis the cell counts possess a multinomial distribution with

n trials and m+ 2 possible outcomes; the parameters p0, p1, . . . , pm+1 will be computed in the
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case studies and depend on the chosen distortion function g and the partition (αj)j=0,1,...,m+1.

All tests are derived from asymptotic distributions; finite sample distributions of the test statis-

tics are not explicitly considered. This implies that the parameter κ that specifies the level of

the tests is typically not identically to their sizes. Instead we will compute the size of each test

on the basis of simulations.

We consider three alternatives H1, labelled by T3, T5 and ST. In contrast to the normal

distribution these include heavy tails and possibly skew. To specify the alternatives, consider

an auxiliary process L̃ = (L̃t)t=1,2,...,n with independent components. In all cases, we assume

that the true losses under the alternative H1 are scaled and shifted such that they possess

expectation 0 and unit variance as in the standard normal model, i.e.,

Lt = (L̃t − E[L̃t])/

√
Var(L̃t), t = 1, 2, . . . , n.

The alternatives T3 and T5 choose L̃t, t = 1, 2, . . . , n, as student-t with three and five degrees

of freedom, respectively. ST considers the skewed-t-distribution of Fernández and Steel (1998)

that we recall in Appendix A.5.

We test the null hypothesis H0 versus the three alternative H1 using the procedures intro-

duced in Section A.4. The size of the test, the probability of falsely rejecting the hypothesis if

it is true, can be estimated from simulations as

1

N

N∑
i=1

1{H0 is rejected}(L1,i, . . . , Ln,i), (11)

where the observed losses Lt,i, t = 1, . . . , n, i = 1, . . . , N , are sampled from independent stan-

dard normal distributions. The power, the probability of correctly rejecting the hypothesis

if the alternative is true, can again be estimated by (11), but with the observed losses Lt,i,

t = 1, . . . , n, i = 1, . . . , N , sampled under the distributions specified by the alternatives T3, T5,

and ST, respectively.

In the numerical experiments we focus on three different DRMs: AV@R is described in Sec-

tion 4.1.1, GlueV@R in Section 4.1.2, and a DRM with a neither right- nor left-continuous dis-

tortion function in Section 4.1.3. Section 4.2 analyzes and compares the results. An additional

case study with the risk measure Range Value at Risk (RV@R) is provided in Appendix A.9.

We also apply the methodology to data from the S&P 500 in Appendix A.10.
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4.1 Distortion Risk Measures

We consider three different distortion risk measures to illustrate our backtesting methodology.

4.1.1 AV@R

We consider AV@R at level α = 0.025 as in Basel III corresponding to the distortion function

g(u) :=
u

0.025
1{0≤u≤0.025} + 1{u>0.025}.

Since g(u) is a continuous, we apply the framework of Section 3.2. In contrast to the approach

of Kratz et al. (2018), our multinomial backtest of AV@R includes an additional randomization.

Our numerical analysis will indicate that this is beneficial for backtests. We set4 α0 = 0, αm+1 =

1 and αj =
j

m+1α, for j = 1, . . . ,m. The computation of the probabilities (p0, p1, . . . , pm+1) can

be found in Appendix A.6.

4.1.2 GlueV@R

The second risk measure that we consider is GlueV@R introduced in Example A.3 in Section A.1

in the appendix. Specifically, we choose

GlueV@Rh1,h2

β,α (X) =
1

3
AV@R0.05(X) +

1

3
AV@R0.01(X) +

1

3
V@R0.05(X),

corresponding to the parameters α = 0.05, β = 0.01, h1 = 2/5 and h2 = 2/3. The distortion

function is left-continuous which allows us to apply the backtesting procedure described in

Section 3.2. The partition is again set such that (α1, . . . , αm) are equidistant in [0, α] and

α0 = 0, αm+1 = 1. The calculations of the probabilities (p0, p1, . . . , pm+1) and a method to

sample from the corresponding distortion function are described in Appendix A.7.

4.1.3 A Distortion Function that Is Neither Right- Nor Left-Continuous

As a third example, we consider a DRM corresponding to a distortion function that is nei-

ther right- nor left-continuous. In this case, we apply the framework proposed in Section 3.3.

4A discussion on how to find a good partition is beyond the scope of the current paper. We choose for
simplicity an equidistant partition to illustrate the potential of the backtesting methods.
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Figure 1: The decomposition of the distortion function g(u) in right- and left-continuous parts
scaled with cr, cl.

Modifying the distortion function of the Glue-V@R, we study a distortion function

g(u) =


h1
β u 0 ≤ u ≤ β

h2 +
h3−h2
α−β (u− β) β < u < α

1 α ≤ u ≤ 1,

with 0 ≤ h1 < h2 < h3 < 1, h3 − h2 + h1 ≤ 1 and 0 ≤ β < α ≤ 1. By Theorem 2.2 the

distortion function can be decomposed into a continuous, right-continuous and left-continuous

part, g(u) = crgr(u) + clgl(u) + ccgc(u), as shown in Figure 1. We use an equidistant partition

(α1, . . . , αm) of [0, α] with α0 = 0 and αm+1 = 1. For the simulation study we set the parameters

as α = 0.1, β = 0.01, h1 = 1/5, h2 = 2/5 and h3 = 2/3. Appendix A.8 provides additional

information, i.e., the decomposition of g, the computation of the probabilities (p0, p1, . . . , pm+1)

according to Theorem 3.9, and a method for sampling from the mixture distribution of the

distortion functions gr, gl, gc.

4.2 Results

The results of the numerical experiments are displayed in Tables 1 – 4. Throughout the exper-

iment, we use N = 20000 samples to determine the size and power of the tests. The parameter

n signifies the length of the considered time series, the parameter m determines the number of

considered cells. The level κ in the construction of the approximate tests5 is set to 5%. Table 1

5We will see in the numerical analysis that for large m the desired level κ might significantly deviate from the
actual size for some of the approximate tests. The Nass’ test, however, performs uniformly well.
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shows the results for AV@R, Table 2 compares these to Kratz et al. (2018). Table 3 shows the

result of the backtest for GlueV@R and Table 4 for the distortion function that is neither right-

nor left-continuous. We also provide a comparison of AV@R with the risk measure range value

at risk (RV@R) in Appendix A.9.

Pearson

Lt n|m 1 2 4 8 16 32 64

N 250 0.97 1.26 1.39 1.67 2.26 3.01 4.35
500 0.84 1.11 1.17 1.40 1.82 2.42 3.28
1000 0.93 0.97 1.03 1.29 1.48 1.87 2.55
2000 0.92 1.02 1.06 1.13 1.22 1.58 1.95

T3 250 16.31 24.17 28.97 27.41 38.34 38.00 36.83
500 27.97 38.09 44.51 47.01 52.54 49.53 48.89
1000 52.75 66.15 74.09 77.18 78.97 76.79 74.30
2000 83.33 93.66 97.01 97.87 97.63 96.74 95.75

T5 250 17.72 23.61 26.16 26.12 29.53 36.35 37.66
500 25.56 32.20 36.42 40.58 43.95 43.84 47.80
1000 42.80 51.59 57.49 61.40 64.09 64.29 64.52
2000 68.10 78.47 85.17 87.93 88.62 88.83 87.27

ST 250 35.58 44.04 49.95 49.21 52.42 60.90 58.81
500 54.65 64.81 71.29 75.52 78.99 77.45 78.26
1000 82.30 89.97 93.13 95.13 95.89 95.43 95.61
2000 97.87 99.49 99.77 99.90 99.95 99.90 99.88

Nass

Lt n|m 1 2 4 8 16 32 64

N 250 0.79 0.95 1.05 1.12 1.01 1.08 1.05
500 0.77 0.97 0.94 1.03 1.08 1.03 1.10
1000 0.88 1.11 0.93 1.03 1.08 1.12 1.10
2000 0.83 0.97 0.99 1.02 1.01 1.08 1.11

T3 250 16.26 21.61 21.97 25.54 20.41 20.89 22.73
500 27.82 37.00 41.95 44.80 41.51 45.66 38.55
1000 51.06 65.32 73.06 75.30 74.13 74.07 67.04
2000 83.04 93.36 96.78 97.64 97.27 95.98 94.62

T5 250 17.31 20.83 20.21 22.53 19.60 20.44 19.46
500 25.00 30.43 34.07 37.00 34.69 34.52 30.85
1000 41.93 50.69 56.35 58.89 59.13 58.52 53.65
2000 67.67 77.70 84.69 87.26 87.48 86.43 83.57

ST 250 35.43 41.40 41.73 46.53 42.03 43.10 43.64
500 54.33 63.24 69.56 73.59 71.25 73.45 67.83
1000 81.55 89.66 92.81 94.49 94.74 94.41 93.00
2000 97.84 99.45 99.76 99.88 99.94 99.87 99.82

LRT

Lt n|m 1 2 4 8 16 32 64

N 250 1.36 0.94 0.79 0.42 0.09 0.01 0
500 1.65 1.42 1.39 1.24 0.53 0.07 0
1000 1.08 1.23 1.36 1.60 1.68 0.76 0.04
2000 0.97 1.08 1.20 1.30 1.79 2.47 1.34

T3 250 22.83 22.89 22.32 14.74 6.35 0.52 0.01
500 31.26 39.86 48.78 48.14 34.79 9.32 0.43
1000 53.79 65.89 75.52 79.68 81.43 67.68 21.52
2000 83.76 94.01 97.08 97.95 98.29 98.37 95.09

T5 250 15.85 16.90 16.65 11.09 5.07 0.56 0
500 21.04 25.70 29.79 31.01 23.49 6.82 0.27
1000 37.55 43.61 49.17 52.78 55.75 45.74 12.20
2000 63.24 73.31 79.98 81.65 82.34 84.45 77.24

ST 250 30.84 35.43 37.67 30.90 19.61 03.91 0.07
500 48.46 57.35 64.61 67.94 61.45 32.82 4.62
1000 78.40 86.22 90.19 92.63 93.52 90.09 62.56
2000 97.11 99.18 99.66 99.82 99.86 99.88 99.63

Table 1: Backtesting AV@R: Estimated size (for the hy-
pothesis H0 with distribution N ) and power in % (for
the alternatives H1 with distributions T3, T5, ST, respec-
tively) for the Pearson test, Nass test and LRT. The size
is represented as the fraction of the true size according to
our simulation divided by the desired level κ = 5%. The
colouring scheme for the size is as follows: Values between
0.8 - 1.2 are green, values between 0.9 - 1.1 are dark green;
values above 1.5 are red, above 2 dark red. The colour-
ing scheme for the power is adopted from Kratz et al.
(2018): Green refers to a power ≥ 70%; light red indicates
a power ≤ 30%; dark red indicates poor results with a
power ≤ 10%.

Pearson

Lt n|m 1 2 4 8 16 32 64

N 250 0.78 0.94 1.12 1.70 2.10 2.82 4.30
500 0.78 0.88 1.04 1.32 1.72 2.46 3.24
1000 1.00 1.04 1.00 1.12 1.44 1.80 2.40
2000 1.00 0.90 0.96 1.00 1.26 1.44 1.76

T3 250 12.21 13.97 18.77 6.61 5.94 11 2.63
500 22.77 22.39 28.81 18.61 20.34 13.33 9.09
1000 45.85 39.45 47.39 28.98 25.97 21.99 18.5
2000 76.03 46.46 49.81 18.57 15.13 13.94 13.75

T5 250 13.62 13.41 15.96 5.32 7.13 9.35 3.46
500 20.36 16.5 20.72 12.18 11.75 7.64 8
1000 35.9 24.89 30.79 13.2 11.09 9.49 8.72
2000 60.8 31.27 37.97 8.63 6.12 6.03 5.27

ST 250 30.18 25.14 31.05 10.51 13.72 14.6 8.31
500 47.75 29.91 36.39 10.92 14.39 7.95 8.06
1000 72.8 27.67 30.83 3.83 4.59 3.33 3.61
2000 85.67 8.79 9.07 0.2 0.15 0.1 0.18

Nass

Lt n|m 1 2 4 8 16 32 64

N 250 0.78 0.70 1.00 0.94 1.02 1.00 0.96
500 0.78 0.78 0.94 0.94 1.10 1.10 1.06
1000 1.00 0.96 0.94 0.98 1.02 1.06 1.02
2000 1.00 0.86 0.90 0.90 1.06 1.02 0.98

T3 250 12.66 16.01 9.87 10.74 7.01 7.69 9.13
500 23.02 21.5 19.55 16.1 9.21 16.26 12.15
1000 41.16 30.12 18.96 15 12.73 19.37 12.34
2000 66.44 20.66 6.28 3.44 2.97 6.38 5.02

T5 250 13.21 13.13 7.41 8.43 6.2 6.04 6.46
500 19.8 16.13 13.57 12.5 8.09 8.52 8.15
1000 35.03 25.19 16.85 12.69 10.53 10.82 9.85
2000 60.37 30.7 15.09 9.06 6.68 6.23 6.57

ST 250 30.03 26.1 15.43 16.03 11.83 12.4 12.94
500 47.43 30.04 21.96 17.39 9.85 16.65 11.03
1000 72.05 28.26 10.51 6.39 4.74 6.51 5.1
2000 85.64 8.75 1.16 0.18 0.24 0.37 0.32

LRT

Lt n|m 1 2 4 8 16 32 64

N 250 1.50 2.00 1.34 0.46 0.14 0.02 0
500 1.18 1.16 1.34 1.38 0.64 0.06 0
1000 0.82 1.10 1.08 1.60 1.80 0.88 0.04
2000 0.84 0.98 1.04 1.20 1.78 2.60 1.40

T3 250 12.53 -1.51 2.82 2.14 1.85 0.12 0.01
500 21.76 13.66 9.88 5.74 5.69 1.52 0.13
1000 44.09 18.69 11.22 5.58 4.23 5.18 6.52
2000 67.26 14.51 3.88 1.85 1.29 0.87 1.69

T5 250 8.95 2.5 3.65 1.09 1.27 0.16 0
500 14.54 10.2 6.19 4.81 3.59 1.42 0.07
1000 32.35 17.51 11.27 6.88 5.35 3.84 2.7
2000 57.44 25.31 12.28 6.85 3.94 2.45 2.64

ST 250 22.84 10.83 10.47 5.2 5.11 1.21 0.07
500 40.56 21.45 11.71 8.94 7.55 5.62 1.42
1000 71.5 23.92 8.69 4.63 2.42 2.59 8.46
2000 87.31 7.58 1.16 0.32 0.26 0.08 0.03

Table 2: Backtesting AV@R: Comparison of the results in
Table 1 to the results of Kratz et al. (2018). We display
size and differences in power. The size is represented as
the fraction of the true size according to Kratz et al. (2018)
divided by the desired level κ = 5%. The colouring scheme
for the size is as follows: Values between 0.8 - 1.2 are green,
values between 0.9 - 1.1 are dark green; values above 1.5
are red, above 2 dark red. For the alternative T3, T5,
and ST, the table shows the difference of the power of
our method and the method of Kratz et al. (2018). The
colouring scheme for the power is as follows: Dark green
are notable improvements of the power ≥ 20%; light green
are improvements ≥ 10%.

Backtesting AV@R. Table 1 shows the size and power of the tests when backtesting AV@R.
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Pearson

Lt n|m 1 2 4 8 16 32 64

N 250 0.88 1.05 1.18 1.44 1.78 2.46 3.24
500 0.87 1.04 1.06 1.20 1.46 1.87 2.38
1000 0.93 0.96 1.03 1.15 1.26 1.44 1.94
2000 0.98 0.97 1.00 1.03 1.17 1.28 1.51

T3 250 29.3 26.04 19.25 18.96 23.03 19.91 18.44
500 60.01 60.38 49.2 43.65 40.1 35.18 31.48
1000 93.08 94.11 90.53 87.19 79.04 69.84 60.94
2000 99.93 99.97 99.89 99.87 99.67 98.15 94.65

T5 250 16.7 18.4 15.65 16.89 19.75 19.51 21.94
500 29.37 30.71 26.66 29.03 29.07 28.42 28.76
1000 52.85 56.72 52.3 53.93 52.75 50.77 46.67
2000 83.76 87.16 84.84 87.35 86.29 83.06 78

ST 250 39.9 41.34 35.68 37.65 43.33 39.7 39.29
500 68.42 71.82 66.81 67.35 67.27 65.3 62.91
1000 94.6 96.18 95.25 95.33 94.45 92.6 90
2000 99.92 99.97 99.98 100 99.97 99.93 99.73

Nass

Lt n|m 1 2 4 8 16 32 64

N 250 0.81 0.93 0.97 1.09 1.12 1.12 1.08
500 0.85 0.97 0.95 1.00 1.07 1.10 1.06
1000 0.91 0.93 0.97 1.04 1.02 1.05 1.15
2000 0.97 0.93 0.96 0.96 1.04 1.08 1.04

T3 250 27.12 23.78 16.51 16.89 14.36 17.77 13.68
500 60.01 59.04 47.24 40.16 35.45 32.56 25.81
1000 93.08 93.91 89.94 85.86 76.88 66.17 57.1
2000 99.93 99.97 99.89 99.86 99.6 97.84 93.49

T5 250 16.23 17.46 13.96 14.84 13.26 13.96 10.8
500 29.37 29.97 25.48 26.71 25 23.76 19.86
1000 52.84 56.19 51.25 52.25 50.18 46.19 40.33
2000 83.56 87.03 84.49 86.9 85.42 81.41 74.99

ST 250 50.38 44.84 35.28 35.65 32.98 36.06 30.22
500 75.36 76.41 68.63 66.25 63.83 62.02 55.15
1000 97 97.42 96.04 95.42 93.96 91.27 88.14
2000 99.96 100 99.98 100 99.97 99.92 99.68

LRT

Lt n|m 1 2 4 8 16 32 64

N 250 1.08 1.05 1.42 1.23 0.58 0.08 0
500 1.13 1.17 1.26 1.60 1.72 0.80 0.05
1000 1.01 1.03 1.14 1.30 1.81 2.46 1.40
2000 1.01 1.02 1.06 1.10 1.38 2.14 3.90

T3 250 42.19 39.52 40 35.42 12.83 1.44 0.01
500 67.25 69.66 66.42 69.22 66.22 34.17 2.08
1000 94.55 95.83 94.49 94.24 93.8 93.45 71.55
2000 99.93 99.97 99.93 99.97 99.91 99.83 99.86

T5 250 18.98 17.92 19.3 17.99 8.38 1.18 0.01
500 27.46 29.94 29.22 33.61 33.92 18.53 1.32
1000 51.34 55.83 53.42 54.66 57.35 60.63 40.72
2000 83.32 86.92 85.3 87.03 85.81 85.69 88.4

ST 250 44.8 43.72 43.95 43.5 26.86 6.19 0.16
500 68.62 73.04 71.3 75.11 75.69 57.18 12.13
1000 94.7 96.5 95.91 96.43 96.53 96.99 90.08
2000 99.92 99.97 99.98 100 99.96 99.97 99.97

Table 3: Backtesting GlueV@R: Estimated size (for the
hypothesis H0 with distribution N ) and power in % (for
the alternatives H1 with distributions T3, T5, ST, respec-
tively) for the Pearson test, Nass test and LRT. The size
is represented as the fraction of the true size according to
our simulation divided by the desired level κ = 5%. The
colouring scheme for the size is as follows: Values between
0.8 - 1.2 are green, values between 0.9 - 1.1 are dark green;
values above 1.5 are red, above 2 dark red. The colour-
ing scheme for the power is adopted from Kratz et al.
(2018): Green refers to a power ≥ 70%; light red indicates
a power ≤ 30%; dark red indicates poor results with a
power ≤ 10%.

Pearson

Lt n|m 1 2 4 8 16 32 64

N 250 0.91 0.97 1.00 1.22 1.43 1.93 2.30
500 1.02 0.92 1.07 1.11 1.23 1.44 1.88
1000 1.06 1.02 1.06 1.06 1.09 1.30 1.52
2000 0.96 1.02 0.94 1.03 1.09 1.06 1.22

T3 250 62.31 56,63 40.22 15.42 13.66 10.98 8.92
500 94.67 93.06 87.89 68.13 47.84 30.08 19.8
1000 99.94 99.95 99.89 99.41 97.72 85.58 58.99
2000 100 100 100 100 100 100 99.27

T5 250 20.95 20.06 14.29 8.54 10.98 10.7 11.11
500 41.06 40.21 33.11 20.04 21.55 19.13 16.5
1000 72.12 73.24 67.47 52.55 51.34 42.45 35.06
2000 96.58 97.15 96.4 91.7 91.38 85.29 74.42

ST 250 60.06 58.77 47.03 26.51 29.97 26.42 23.73
500 92.67 92.54 88.77 74.05 67.87 56.88 47.83
1000 99.86 99.94 99.82 99.4 98.7 95.3 87.76
2000 100 100 100 100 100 100 99.96

Nass

Lt n|m 1 2 4 8 16 32 64

N 250 0.87 0.91 0.90 1.06 1.08 1.13 1.08
500 0.97 0.88 1.01 1.00 1.00 1.05 1.11
1000 1.04 0.99 1.02 0.99 0.98 1.09 1.09
2000 0.95 1.00 0.92 1.00 1.04 0.97 1.00

T3 250 61.07 54.45 37.19 12.86 11.13 9.88 6.62
500 93.72 92.41 87.04 65.86 43.77 26.51 17.62
1000 99.94 99.95 99.88 99.36 97.37 83.04 54.73
2000 100 100 100 100 100 100 99.14

T5 250 20.39 19.1 13.08 7.37 8.66 8.23 6.35
500 39.68 39.11 31.98 18.67 19.61 16.18 12.67
1000 72.03 72.81 67 51.48 49.75 39.6 31.21
2000 96.54 97.11 96.33 91.47 90.94 84.33 72.28

ST 250 59.51 57.23 44.3 23.68 25.75 24.42 18.5
500 91.72 92.01 88.11 72.21 64.9 53.16 43.88
1000 99.86 99.93 99.82 99.36 98.58 94.48 85.74
2000 100 100 100 100 100 100 99.96

LRT

Lt n|m 1 2 4 8 16 32 64

N 250 1.54 1.10 1.17 1.65 1.71 0.80 0.04
500 1.07 1.05 1.17 1.38 1.83 2.49 1.37
1000 1.12 1.07 1.09 1.10 1.32 2.16 3.79
2000 0.98 1.02 0.97 1.05 1.15 1.36 2.69

T3 250 70.37 68.39 64.67 60.66 55.03 13.94 0.1
500 95.55 95.47 93.66 88.75 88.31 86.59 41.03
1000 99.98 99.97 99.95 99.79 99.64 99.34 99.26
2000 100 100 100 100 100 100 100

T5 250 23.86 23.66 22.31 22.71 22.12 7.46 0.17
500 42.74 43.38 40.33 34.53 39.87 42.01 17.36
1000 74.04 75.52 71.97 63.42 64.29 65.74 71.6
2000 96.97 97.4 97.04 94.11 94.09 91.54 91.32

ST 250 65.23 66.43 63.11 59.75 59.07 25.49 0.82
500 93.35 94.42 92.84 88.36 89.5 89.27 60.48
1000 99.89 99.95 99.89 99.81 99.69 99.43 99.56
2000 100 100 100 100 100 100 100

Table 4: Backtesting the DRM corresponding to a dis-
tortion function that is neither left- nor right-continuous:
Estimated size (for the hypothesis H0 with distribution
N ) and power in % (for the alternatives H1 with distribu-
tions T3, T5, ST, respectively) for the Pearson test, Nass
test and LRT. The size is represented as the fraction of
the true size according to our simulation divided by the
desired level κ = 5%. The colouring scheme for the size
is as follows: Values between 0.8 - 1.2 are green, values
between 0.9 - 1.1 are dark green; values above 1.5 are red,
above 2 dark red. The colouring scheme for the power is
adopted from Kratz et al. (2018): Green refers to a power
≥ 70%; light red indicates a power ≤ 30%; dark red indi-
cates poor results with a power ≤ 10%.

The size is represented as the fraction of the true size according to our simulation divided by

the desired level κ = 5%. The size of the Pearson test is only close to the desired level for

sufficiently small m. In the case of the LRT, the size of the test is not always very close to κ,

sometimes smaller, sometimes larger. Table 2 shows the results of the approach6 of Kratz et al.

6Their results are displayed in Table 3 of their paper, Kratz et al. (2018).
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(2018) for comparison. The qualitative behavior of the size of the Pearson and the LRT test is

not very different for both methodologies. Both tests are not ideal for backtesting AV@R. In

contrast, the size of Nass’ test is very close to desired level of κ = 5% in all cases, as displayed

in Table 1. This is qualitatively not very different from Kratz et al. (2018), see Table 2. This

indicates that the Nass’ test is the preferred choice for backtesting AV@R, while the Pearson

and the LRT test should not be chosen.

Table 1 also shows the power of our method for the different alternatives and various choices

of the parameters m and n. As expected, the power is good if n is large. Most interesting is

the Nass’ test. For m smaller than 8, the power exceeds for n = 500 a value of 40% for T3, 25%

for T5, and 66% for ST, respectively. For m smaller than 64 and n = 2000, the power exceeds

93% for T3, 74% for T5, and 99.6% for ST, respectively.

In comparison to Kratz et al. (2018), our method improves the power of all tests for most

case studies. Table 2 shows for the alternatives the difference between the power of our method

and the results of Kratz et al. (2018). Positive numbers indicate that our approach improves

the power. Except for one entry, all numbers are positive. In particular, for the Nass’ test our

method uniformly improves the power substantially.

Comparing different risk measures. We now study the size across the three considered risk

measures. The estimated size of the tests is shown for different n and m in Tables 1, 3 and 4.

As before, the size is represented as the fraction of the true size according to our simulation

divided by the desired level κ = 5%. The data clearly demonstrate that Nass’ test performs

well in terms of approximating the desired level and clearly outperformes the Pearson and the

LRT test in this respect. The latter two work well if m is not too large and n is not too small.

In all case studies, as expected, the power is best for n large. Good backtests require n

to be larger than 500 to 1000 for the chosen hypothesis and alternatives. The best results are

obtained for 2 ≤ m ≤ 16. There is no indication that Nass’ test performs worse than the other

tests in correctly identifying the alternatives if they are true.

Conclusion. The Nass’ test outperforms the Pearson and the LRT test, since its size is

generally close to the desired level and its overall power is not worse than or at least rather

close to the power of the alternative tests across most case studies.

20



5 An Application to Asset-Liability Management

Financial institutions need to manage their risks arising from the evolution of their assets

and liabilities. Asset-liability management (ALM) requires probabilistic models that enable a

stochastic projection of the arising risks into the future. In this section, we apply our backtesting

method to a company’s net asset value in order to validate risk measurements in an ALM model.

5.1 The Model

Inspired by Becker et al. (2014) and Hamm et al. (2020), we consider the assets and liabilities

of a non-life insurance firm. Time is discrete and enumerated by t = 1, . . . , n. Each time period

could be interpreted as years, months, weeks or even days. Denote with At, Lt, Et the book

value of assets, liabilities resp. the net asset value. At every point in time the value of the assets

is equal to the liabilities and the net asset value, i.e. At = Lt + Et.

Asset Model. The market consists of two primary products, a riskless bond and a risky stock

with price processes B = (Bt)t and S = (St)t, respectively. We assume that Bt = exp(rt) and

St = exp

((
µ− σ2

2

)
t+ σWt

)
,

where Wt is a Wiener process. At each point in time t, ηBt and ηSt denote the number of shares

held in the bond and the stock, respectively. The resulting value of the asset portfolio is

At = S̃t + B̃t with S̃t = ηSt St, B̃t = ηBt Bt.

For simplicity, we assume that r = 0.

Investment Strategy. We assume that at the beginning of each period a fraction b ∈ [0, 1]

of the book value of the liabilities and equity is invested into the stock, while the remaining

fraction 1− b is invested into the bond. This implies that

ηSt = b · At

St
, ηBt = (1− b) ·At

Liability Model. The insurer has a constant claims reserve v, such that Lt = v at every

point in time t. At the beginning of every time period the insurer takes in constant premiums

21



π. Insurance claims at the end of every period t are assumed to follow a collective model

Ct =

Nt∑
k=1

ξt,k, t = 1, . . . , n,

where the frequencies Nt ∈ N and the severities ξt,k ≥ 0, k ∈ N, t = 1, . . . , n are independent.

Evolution of the Net Asset Value. At time t = 1, . . . , n the insurer must pay Ct for the

claims incurred in the previous period and receives premium payments π for the next period,

i.e., the amount to be reinvested into the assets equals

At = ηSt−1St + ηBt−1Bt − Ct + π = At−1 ·
(
b · St

St−1
+ (1− b)

)
− Ct + π.

This can be rewritten in terms of the net asset value:

Et = Et−1 + (Et−1 + v) · b ·
(

St

St−1
− 1

)
− Ct + π.

5.2 Simulation Design

To illustrate our backtesting methodology in the context of the model, we consider as in Sec-

tion 4.1.2 the GlueV@R risk measure. We choose the parameters h1 = 2/5, h2 = 2/3, α = 0.05

and β = 0.01. Further case studies for AV@R show similar results and are presented in Ap-

pendix A.11. Individual time periods are interpreted as days. The parameters defining the

evolution of the assets are set to µ = log(1.1)/360, σ = 0.2/
√
360 and b = 0.05. In order to

specify the liability model, we assume that Nt are iid Poisson distributed random variables with

parameter λ > 0. Letting λ = 7, expectation and variance are equal to 7. The claims ξt,k are

iid exponentially distributed with parameter 1/θ > 0. With θ = 1000, we obtain an expectation

of 1000 and a variance of 106. We set E0 = 20000. The premiums per day π equal expected

claims plus a 3% safety margin, i.e., π = 1.03λθ. The reserve is calculated as the expectation

of the annual claims plus a 3% margin, i.e., v = 360 · 1.03λθ.

In this simple experimental ALM case study, we consider only the Nass test which showed the

best performance in the case studies in Section 4 (just as in Kratz et al. (2018)) and constitutes

the most promising methodology. The size of the Nass test is estimated as in Section 4. We

consider the following alternatives labeled as NB, PAR and LOGN:

(NB) We replace the Poisson distributed frequencies Nt by frequencies N ′
t with a negative
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binomial distribution with a number of failures r ∈ N and a success probability q ∈ [0, 1].

Setting q = 1/(1 + λ/r), N ′
t and Nt possess the same expectation. Letting r = 7, the

variance of the negative binomial distribution equals Var[N ′
t ] = λ(1 + λ/r) = 14.

(PAR) Claim sizes are given by ξ1t,k − 1 with ξ1t,k being Pareto distributed with scale x0 = 1

and shape a > 0. Setting a = (θ + 1)/θ guarantees that the expectation of the claim

sizes ξ1t,k − 1 of this alternative equals the expectation of the claim sizes ξt,k of the null

hypothesis.

(LOGN) Under this alternative the claim sizes ξ2t,k are log normally distributed with parameters

µ ∈ R and σ > 0. We set µ = log(θ) − σ2/2 such that ξ2t,k has the same expectation as

ξt,k, and we choose σ = 1 such that Var[ξ2t,k] = (exp(σ2)− 1)θ2 ≈ 1.7183 · 106.

Nass

n|m 1 2 4 8 16 32 64

Size 250 1.53 1.34 1.35 1.07 1.03 1.24 1.06
500 1.57 1.36 1.19 1.21 1.19 1.14 1.19
1000 1.77 1.46 1.30 1.22 1.18 1.16 1.25
2000 1.76 1.50 1.34 1.25 1.27 1.20 1.25

NB 250 69.59 65.27 64.09 61.46 59.20 59.08 60.20
500 89.44 89.56 84.74 84.72 82.61 79.70 82.08
1000 99.02 98.88 98.45 98.28 96.74 96.49 95.97
2000 99.99 100.00 99.99 100 99.98 99.93 99.90

PAR 250 97.60 98.31 98.27 97.97 97.75 97.72 97.29
500 99.96 100 99.93 99.97 99.96 99.97 99.95
1000 100 100 100 100 100 100 100
2000 100 100 100 100 100 100 100

LOGN 250 53.11 51.63 50.85 47.94 47.83 46.28 44.05
500 75.63 72.63 70.84 70.22 69.41 69.09 67.51
1000 93.46 94.03 92.31 92.33 91.68 90.70 89.85
2000 99.67 99.68 99.53 99.60 99.62 99.41 99.22

Table 5: Backtesting the ALM model: Estimated size and power in % for the alternatives NB, PAR and LOGN of the
Nass test. The size is represented as the fraction of estimated size divided by the desired level κ = 5%. Values of the size
between 0.9− 1.1 are dark green, between 0.8− 1.2 are light green, above 1.5 are red and above 2 dark red. For the power
green refers to a power ≥ 70%; light red to a power ≤ 30% and dark red indicates a power ≤ 10%.

5.3 Size and Power

We backtest the quantitative risk measurement of the net asset value process (Et)t=1,...,n, apply-

ing GlueV@R.7 The numerical results are summarized in Table 5. We used N = 20000 samples

to estimate the size and the power of the Nass tests. The parameters n and m determine the

7Formally, the argument of the risk measure is −Et, t = 1, . . . , n, due to our sign convention.
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number of observed data and the number of cells considered. As before, the desired level of the

approximate test is set to κ = 5%.

Overall the size of the Nass test in the ALM model is slightly too large as displayed in the

first panel of Table 5 where the quotient of the estimated size and the desired level κ is shown.

We see that the size is close to the desired level κ for large m.

The overall power of the test is quite good. This is due to the fact that the null hypothesis

and the considered alternatives are sufficiently different in all cases. The power is slightly higher

for lower cell counts m and also grows in the number of observed data n. For n = 500, the

power exceeds 89% for NB, 99% for PAR and 75% for LOGN. The biggest power is estimated

at n = 2000 exceeding 99% for all alternatives.

6 Conclusion

This paper proposes a multinomial backtesting methodology for distortion risk measures that is

based on a stratification and randomization of risk levels, extending the non-randomized AV@R-

backtest of Kratz et al. (2018). The method is applicable to a wide range of risk measures – being

at the same time highly tractable. The best results are obtained for the Nass test. Numerical

experiments based on artificial data demonstrate the good performance of the method if the

null hypothesis and the considered alternatives are sufficiently different from each other. For

AV@R, our randomized backtesting method improves upon the multinomial backtest of Kratz

et al. (2018).

Future research should study the performance of DRM backtesting methods on the basis of

real statistical data. Another interesting, but challenging question would be to compute lower

bounds for the power of the method in terms of the number of data points and a measure of

the distance between the null hypothesis and the alternative.
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A Online Appendix

A.1 Comonotonic Risk Measures and DRMs

Definition A.1. (i) A non decreasing function g : [0, 1] → [0, 1], with g(0) = 0 and g(1) = 1,

is called a distortion function.

(ii) Let P be a probability measure on (Ω,F) and g be a distortion function. The monetary

risk measure ρg : X → R defined as

ρg(X) :=

∫ 0

−∞
[g(P({X > x}))− 1] dx+

∫ ∞

0
g(P({X > x}))dx,

is called a DRM with respect to g.

DRMs can be expressed as mixtures of the quantile functions, if the distortion function is

either left- or right-continuous. This is described in Dhaene et al. (2012).

Theorem A.2. (i) If the distortion function g is right-continuous, the DRM ρg(X) is repre-

sented by a Lebesgue-Stieltje integral:

ρg(X) =

∫
[0,1]

q+X(1− u) dg(u)

where q+X(u) := sup{x|FX(x) ≤ u}.

(ii) If the distortion function g is left-continuous, the DRM ρg(X) can be written as:

ρg(X) =

∫
[0,1]

qX(1− u) dg(u) =

∫
[0,1]

qX(u) dḡ(u)

where qX(u) = inf{x|FX(x) ≥ u} and ḡ(q) = 1− g(1− q), 0 ≤ q ≤ 1.

Several well known risk measures can be expressed as DRMs, see for example Cherny and

Madan (2009), Balbás et al. (2009), Föllmer and Schied (2016), and Weber (2018). We consider

some important examples in our applications.

Example A.3. (i) Choosing the distortion function g(u) = 1{α<u≤1} yields the Value at Risk

at level α ∈ (0, 1):

ρg(X) = V@Rα(X) := inf{x|FX(x) ≥ 1− α}.
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(ii) The Average Value at Risk at level α corresponds to a DRM with distortion function

g(u) = u
α1{0≤u≤α} + 1{u>α}:

ρg(X) = AV@Rα(X) =
1

α

∫ α

0
V@Rλ(X)dλ.

(iii) The GlueV@R is a DRM8 with distortion function

g(u) =



h1
β u if 0 ≤ u ≤ β

h1 +
h2−h1
α−β (u− β) if β < u ≤ α

1 if α < u ≤ 1

,

where 0 ≤ β < α ≤ 1 are levels and 0 ≤ h1 ≤ h2 ≤ 1 describe the corresponding distorted

probabilities. The distortion function of the GlueV@R is a piecewise combination of the

distortion functions of V@R and AV@R. The GlueV@R can be expressed as a linear

combination of these risk measures, i.e.,

GlueV@Rh1,h2

β,α (X) = ρg(X) = w1AV@Rβ(X) + w2AV@Rα(X) + w3V@Rα(X),

with w1 = h1 − (h2−h1)β
α−β , w2 =

h2−h1
α−β α and w3 = 1− w1 − w2 = 1− h2.

Dhaene et al. (2012) show that every distortion function can be written as convex combina-

tion of a left- and right-continuous function. This is an important observation: If a distortion

function g is a convex combination of distortion functions g1 and g2, the distortion risk ρg is a

convex combination of the distortion risk measures ρg1 and ρg2 , i.e., if c1, c2 ≥ 0, c1 + c2 = 1,

then g = c1g1 + c2g2 implies that ρg = c1ρg1 + c2ρg2 .

Theorem A.4. Let g be a distortion function. Then there exist right- and left-continuous

distortion functions hr, hl such that g(u) = drhr(u) + dlhl(u) ∀u ∈ [0, 1] with dr, dl ∈ [0, 1],

dr + dl = 1.

The decomposition of the distortion function is not unique unless g is a step function. A

unique decomposition is provided in Theorem 2.2.

The link between comonotonic risk measures, the Choquet integral and DRMs is discussed

in detail in Chapter 4 of Föllmer and Schied (2016) and Song and Yan (2009b). Comonotonic

8This example was suggested by Belles-Sampera et al. (2014a) and Belles-Sampera et al. (2014b).
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risk measures with an absolutely continuous capacity with respect to the underlying probability

measure take the form of a DRM.

A.2 Examples of DRMs

Examples of DRMs are provided in Table 6 which is taken from Methni and Stupfler (2017).

A.3 Proofs

A.3.1 Appendix to Section 2

Proof of Theorem 2.2. As any distortion function g is non decreasing, g has at most countably

many discontinuities. We define the sets of jumps by setting

R := {u ∈ [0, 1]|g(u)− g(u−) > 0}, L := {u ∈ [0, 1]|g(u+)− g(u) > 0}

with corresponding jump heights

g+(u) = g(u)− g(u−), g−(u) = g(u+)− g(u),

respectively. Observe that R and L may possess a non empty intersection of points for which g

is neither right- nor left-continuous. We set

gsr(u) := a
∑
r∈R

g+(r)1{r≤u}, gsl(u) := b
∑
l∈L

g−(l)1{l<u},

where a, b are chosen such that gsr, gsl become distortion functions; for this purpose, we scale

gsr and gsl such that gsr(1) = gsl(1) = 1 by setting

a =
1∑

r∈R g+(r)
, b =

1∑
l∈L g−(l)

.

If R = ∅ and/or L = ∅ the original distortion function g is right- or left-continuous, or contin-

uous; in this case, we choose a = 0 resp. b = 0, and consider only the remaining parts. The

functions gsr and gsl are right- resp. left-continuous step distortion functions. The continuous

part of the decomposition is obtained by setting

gc(u) := c

(
g(u)−

∑
r∈R

g+(r)1{r≤u} −
∑
l∈L

g−(l)1{l<u}

)
, c :=

1

1−
∑

r∈R g+(r)−
∑

l∈L g−(l)
.
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Name Distortion Closed form Reference

MINV@R 1− (1− u)n −E[min{−X1, . . . ,−Xn}] Cherny and Madan (2009)

= E[max{X1, . . . , Xn}] Föllmer and Schied (2016)

Bannör and Scherer (2014)

MAXV@R u1/n −E[Y1] Cherny and Madan (2009)

such that Föllmer and Schied (2016)

max{Y1, . . . , Yn} ∼ −X Bannör and Scherer (2014)

MINMAXV@R 1− (1− u1/n)n −E[min{Y1, . . . , Yn}] Cherny and Madan (2009)

such that Föllmer and Schied (2016)

max{Y1, . . . , Yn} ∼ −X Bannör and Scherer (2014)

MAXMINV@R (1− (1− u)n)1/n −E[Y1] Cherny and Madan (2009)

such that Föllmer and Schied (2016)

max{Y1, . . . , Yn} Bannör and Scherer (2014)

∼ min{−X1, . . . ,−Xn}

RV@R u−β
α−β1{β<u≤α} + 1{u>α}

1
α−β

∫ α

β
V@Rλ(X)dλ Bignozzi and Tsanakas (2016)

(Range V@R) 0 < β < α < 1 Weber (2018), Li et al. (2018)

Proportional u1/γ
∫∞
0

(1− FX(x))1/γdx, Wang (1995, 1996)

hazard transform γ > 1 if X ≥ 0 a.s. Guillen et al. (2018)

Dual power 1− (1− u)γ
∫∞
0

1− FX(x)γdx, Lynn Wirch and Hardy (1999)

transform γ > 1 if X ≥ 0 a.s. Guillen et al. (2018)

Gini’s principle (1− θ)u+ θu2 E[X] + θ
2E[|X −X1|] Yitzhaki (1982),Wozabal (2014)

0 < θ < 1 Guillen et al. (2018)

Exponential 1−exp(−ru)
1−exp(−r) if r > 0 - Methni and Stupfler (2017)

transform u if r = 0 Dowd et al. (2008)

Inverse S-shaped a
[
u3

6 − δu2

2 +
(

δ2

2 + β
)
u
]

Guegan and Hassani (2015)

polynomial a =
(

1
6 − δ

2 + δ2

2 + β
)−1

- Methni and Stupfler (2017)

of degree 3 0 < δ < 1, β ∈ R

Beta family
∫ u

0
ta−1(1−t)b−1

B(a,b) dt - Samanthi and Sepanski (2019)

a, b > 0 Lynn Wirch and Hardy (1999)

Wang transform Φ(Φ−1(u)− Φ−1(q)) - Wang (2000, 2001)

0 < q < 1 Wozabal (2014)

Table 6: Further examples of distortion risk measures of a random variable X. Table 1 of
the online appendix of Methni and Stupfler (2017) also provides these examples of distortion
functions; we also include this table of examples as a convenient reference for the reader. In
the third column, X1, . . . , Xn denote independent copies of X, n ∈ N; Y1, . . . , Yn are suitable
i.i.d. random variables that satisfy the conditions that are specified in the third column of
the table. B denotes the beta function, Φ,Φ−1 the distribution and quantile function of the
standard normal distribution respectively.
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Finally, we obtain that

g(u) =
∑
r∈R

g+(r)1{r≤u} +
∑
l∈L

g−(l)1{l<u} +
1

c
gc(u) =

1

a
gsr(u) +

1

b
gsl(u) +

1

c
gc(u),

where

1

a
+

1

b
+

1

c
= 1−

∑
r∈R

g+(r)−
∑
l∈L

g−(l) +
∑
r∈R

g+(r) +
∑
l∈L

g−(l) = 1.

This decomposition is unique, since the functions grl and gsl are unique for every distortion

function.

A.3.2 Appendix to Section 3.2

Proof of Lemma 3.1. Since the conditional cumulative distribution functions FMt|Mt−1,...,M1
are

continuous, we have for any t that

P(Mt > qt−1
Mt

(1− u)|Mt−1, . . . ,M1) = u. (12)

Hence,

P(Lt > qt−1
Mt

(1−u))
Lt

d
=Mt= P(Mt > qt−1

Mt
(1−u)) = E

[
P(Mt > qt−1

Mt
(1− u)|Mt−1, . . . ,M1)

] (12)
= u.

Thus, E[1t,j |Gt,j ] = Gt,j which implies E[1t,j ] = E[Gt,j ] =
E
[
G1{G∈[αj−1,αj)}

]
g(αj)−g(αj−1)

. We define

1̃t,j =


1 if Mt > qt−1

Mt
(1−Gt,j)

0 else.

,

and note that the processes (1t,j)t and (1̃t,j)t possess the same law, since, first, M and L do

and, second, (Gt,j)t is independent of M and L. We set Gt = σ{Gs,j : s ≤ t, j = 1, . . . ,m+ 1}.

We observe that

E[1̃t,j |Mt−1, . . . ,M1,Gt] = E[1̃t,j |Mt−1, . . . ,M1, Gt,j ]
(12)
= Gt,j , (13)

where in the second step we use that 1̃t,j is independent of Gt−1,j , . . . , G1,j and Gt,k, . . . , G1,k

for k ̸= j.

Next, for fixed j = 1, 2, . . . ,m + 1, we prove that the indicators (1̃t,j)t are independent. It
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suffices to show that for any T ⊆ {1, 2, . . . , n} we have that

E

[∏
t∈T

1t,jt

]
=
∏
t∈T

E[1t,jt ] (14)

with jt ∈ {1, 2, . . . ,m+ 1} for t ∈ T .

This can be shown by induction. Suppose that (14) holds for any T such that s ∈ T implies

s < t. We set j := jt. Then

E

[
1t,j

∏
s∈T

1s,js

]
= E

[
1̃t,j

∏
s∈T

1̃s,js

]
= E

[
E

[
1̃t,j

∏
s∈T

1̃s,js |Mt−1, . . . ,M1,Gt

]]

= E

[∏
s∈T

1̃s,jsE
[
1̃t,j |Mt−1, . . . ,M1, Gt,j

]]
(due to measurability and independence)

(13)
= E

[∏
s∈T

1̃s,jsGt,j

]

= E

[∏
s∈T

1̃s,js

]
· E [Gt,j ] (due to independence)

= E [1t,j ] · E

[∏
s∈T

1s,js

]

Proof of Lemma 3.2. The random variable Xt is a sum of the exception indicators 1t,j , j =

1, . . . ,m + 1, for fixed t = 1, . . . , n. Thus, the independence of (Xt)t=1,...,n follows from the

assumption of the independence of the vectors (1t,j)j , t = 1, . . . , n.

For 1 ≤ k ≤ m we compute

P(Xt = k) = P
(
Lt > qt−1

Mt
(1−Gm+2−k), Lt ≤ qt−1

Mt
(1−Gm+1−k)

)
= P

(
qt−1
Mt

(1−Gm+2−k) < Lt ≤ qt−1
Mt

(1−Gm+1−k)
)

= P
(
Lt ≤ qt−1

Mt
(1−Gm+1−k)

)
− P

(
Lt ≤ qt−1

Mt
(1−Gm+2−k)

)
=

E
[
G1{G∈[αm+1−k,αm+2−k)}

]
g(αm+2−k)− g(αm+1−k)

−
E
[
G1{G∈[αm−k,αm+1−k)}

]
g(αm+1−k)− g(αm−k)

.

For k = 0 we have that

P(Xt = 0) = P (Lt ≤ qt−1
Mt

(1−Gm+1)) = 1−
E
[
G1{G∈[αm,1)}

]
g(1)− g(αm)

.
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Therefore, P(Xt ≤ k) =
∑k

i=0 P(Xt = i) = 1−
E
[
G1{G∈[αm−k,αm−k+1)}

]
g(αm−k+1)−g(αm−k)

.

Proof of Theorem 3.3. Let n0, n1, . . . , nm+1 ∈ N such that
∑

ni = n. Then we have that

P(O0 = n0, O1 = n1, . . . , Om+1 = nm+1)

= P

(
n∑

t=1

1{Xt=0} = n0,
n∑

t=1

1{Xt=1} = n1, . . . ,
n∑

t=1

1{Xt=m+1} = nm+1

)

=
∑
π∈Π

P
(
Xπ(0) = 0, . . . , Xπ(n0) = 0, Xπ(n0+1) = 1, . . . , Xπ(n0+n1) = 1,

. . . , Xπ(n0+···+nm+1) = m+ 1, . . . Xπ(n0+···+nm+1) = m+ 1
)

=
∑
π∈Π

m+1∏
k=0

pnk
k .

Here, Π is the set of permutations of {1, . . . , n} such that n0 of the Xt are equal to 0, n1 of the

Xt are equal to 1 and so on. We have n! possible permutations of the set {1, . . . , n}, where the

n0! permutations of the set {t|Xt = 0} are indistinguishable. The same holds for n1, n2, etc.

We conclude that

P (O0 = n0, O1 = n1, . . . , Om+1 = nm+1) =
n!

n0!n1! . . . nm+1!

m+1∏
k=0

pnk
k ,

which is the probability mass function of MN(n, (p0, p1, p2, . . . , pm+1)) for the corresponding

probabilities pk.

A.4 Statistical Tests

This section describes multinomial tests for the null hypotheses (6) and (9) which we review

for the convenience of the reader. Cai and Krishnamoorthy (2006) provide a more detailed

discussions, and the tests are also reviewed and used in Kratz et al. (2018).

We adopt three well-known approximate tests: Pearson’s χ2-test, Nass’ χ2-test, and the

likelihood ratio test. We briefly review9 the design of these tests.

9Cai and Krishnamoorthy (2006) provide numerical comparisons of different methodologies for testing the
parameters of multinomial distributions: Pearson’s χ2-test, Nass’ χ2-test, the likelihood ratio test (LRT), Hoel’s
test and the exact test. The exact method is often impractical in applications.
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A.4.1 Pearson’s χ2-Test

A standard test for the hypothesis that O = (O0, O1, . . . , Om+1) ∼ MN(n, (p0, p1, . . . , pm+1))

relies on results obtained by Pearson (1900). Since E[Ok] = npk, k = 0, . . . ,m+1, the observed

frequencies of the cell counts should be close to npk for a sufficiently large n. The cumulated

relative squared deviations of the observations from the mean

Sm+1 :=
m+1∑
k=0

(Ok − npk)
2

npk
,

are for large n approximately χ2
m+1-distributed. Pearson’s χ

2-test at level κ ∈ (0, 1) rejects the

hypothesis if

Sm+1 > F−1
χ2
m+1

(1− κ),

where F−1
χ2
m+1

(1− κ) is the κ-quantile of the χ2
m+1 distribution. This test is the probably most

widely used multinomial test that typically performs well if the cell probabilities are not too

small.

A.4.2 Nass’ χ2-Test

Nass (1959) suggests a finite sample correction of Pearson’s χ2-test. Instead of approximating

the distribution of Sm+1 with a χ2
m+1-distribution, Nass (1959) proposes to use a distribution

that depends on n, namely the distribution of 1
cZ with Z ∼ χ2

ν where

c =
2E[Sm+1]

Var(Sm+1)
, ν = cE[Sm+1], E[Sm+1] = m+ 1,

Var(Sm+1) = 2(m+ 1) − m2 + 6m+ 6

n
+

m+1∑
k=0

1

n · pk
.

Since c → 1 and ν → m+1 as n → ∞, the distributions used in the finite sample approximation

are asymptotically equal to the asymptotic distribution known from Pearson’s χ2-test. But in

Nass’ χ2-test the distribution of the approximating 1
cZ matches for each n the first two moments

of the distribution of Sm+1, while χ2
m+1 matches only the first moment. One can conjecture

that this might typically lead to a better approximation than Pearson’s test.

On the basis of this finite sample correction that matches the first two moments, the null

hypothesis is rejected in Nass’ χ2-test at level κ ∈ (0, 1), if cSm+1 > F−1
χ2
ν
(1− κ).
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A.4.3 Likelihood Ratio Test

A likelihood ratio test (LRT) is a standard procedure in hypothesis testing that compares the

ratio of the likelihood of the sample under the null hypothesis and without any restriction. More

precisely, suppose that Θ is the parameter set and that Θ0 ⊆ Θ denotes the null hypothesis. By

X we denote the observations and by pϑ the likelihood function for ϑ ∈ Θ. The corresponding

likelihood ratio is given by

λ(X) =
supϑ∈Θ0

pϑ(X)

supϑ∈Θ pϑ(X)
.

The asymptotic distribution of −2 log λ(X) for the number of samples going to ∞ can conve-

niently be characterized in models that satisfy suitable regularity conditions, see e.g. Section

10.3 of Casella and Berger (2002).

A result of this type holds in particular, if Θ includes all multinomial distributions for n

trials and m+2 possible outcomes and the null hypothesis contains only the single distribution

MN(n, (p0, p1, . . . , pm+1)). In this case, the LRT statistic is

R = 2
m+1∑
k=0

Ok log

(
Ok

npk

)

with an asymptotic χ2
m+1-distribution for n → ∞. The corresponding LRT with level κ ∈ (0, 1)

rejects the null hypothesis if R > F−1
χ2
m+1

(1− κ).

A.5 The Skewed t-Distribution of Fernández and Steel (1998)

Consider the probability density function (pdf) gν of the t-distribution with ν degrees of freedom

as

gν(x) =
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

) (1 + x2

ν

)− ν+1
2

.

Fernández and Steel (1998) proposes a class of skewed distributions with the pdf

fν,γ(x) =
2

γ + 1
γ

(
gν

(
x

γ

)
1{x∈[0.∞)} + gν(γx)1{x∈(−∞.0]}

)

for γ ∈ (0.∞).

For the simulation we need to determine the expectation and variance of the skewed t-distribution
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defined above. From Fernández and Steel (1998) we know that if X ∼ fν,γ(x) then

E[Xr] = Mr

γr+1 + (−1)r

γr+1

γ + 1
γ

where Mr =
∫∞
0 sr2gν(s)ds. With Y ∼ gν(s), we have that (see Robert (2014) for the expecta-

tion of |Y |)

M1 =

∫ ∞

0
2s

Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

) (1 + x2

ν

)− ν+1
2

ds = 2E[|Y |] =
2ν

(ν − 1)
√
νπ

Γ
(
ν+1
2

)
Γ
(
ν
2

) .

As gν(s) is symmetric we have

M2 =

∫ ∞

0
2s2gν(s)ds =

∫ ∞

0
s2gν(s)ds+

∫ 0

−∞
s2gν(−s)ds

=

∫ ∞

−∞
s2gν(s))ds = E[Y 2] =

ν

ν − 2
.

Now we can calculate the first two non centered moments of X ∼ fν(x) as

E[X] =

(
γ − 1

γ

)
2ν

(ν − 1)
√
πν

Γ
(
ν+1
2

)
Γ
(
ν
2

) ,

E[X2] =
ν

ν − 2

γ3 + 1
γ3

γ + 1
γ

,

where the second moment exists if ν > 2. So the variance of X is given as

Var(X) = E[X2]− E[X]2

=
ν

ν − 2

γ3 + 1
γ3

γ + 1
γ

−

((
γ − 1

γ

)
2ν

(ν − 1)
√
πν

Γ
(
ν+1
2

)
Γ
(
ν
2

) )2

.

To sample from fν,γ(x), we propose an acceptance-rejection algorithm with sampling distri-

bution gν(x). For this to work we need to calculate k > 0 such that

k ≥ fν,γ(x)

gν(x)
=

γ + 1
γ

2

(
1 + x2

ν

)− ν+1
2

(
1 + x2

γ2ν

)− ν+1
2
1{x∈[0.∞)} +

(
1 + x2γ2

ν

)− ν+1
2
1{x∈(−∞.0)}

.

We distinguish the following two cases.
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(i) x ≥ 0: we require that

k ≥
γ + 1

γ

2

(
1 + x2

ν

1 + x2

γ2ν

)− ν+1
2

.

The function x−
ν+1
2 is strictly falling on x ∈ (0.∞) and the argument of the function

above is positive. Thus, we find k by minimizing the argument

i(x) :=
1 + x2

ν

1 + x2

γν

.

If γ > 1, i(x) is strictly decreasing and the maximum is found at limx→0+ i(x). On the

other hand, if γ ∈ (0.1) the function is strictly monotone increasing and the maximum is

limx→∞ i(x). We can calculate this limit as

lim
x→∞

1 + x2

ν

1 + x2

γ2ν

= lim
x→∞

1

1 + x2

γ2ν︸ ︷︷ ︸
→1

+
1

ν
(

1
x2 + 1

γ2ν

)
︸ ︷︷ ︸

→γ2

= 1 + γ2.

Consequently, for x ≥ 0 we have that

γ + 1
γ

2

(
1 + x2

ν

1 + x2

γ2ν

)− ν+1
2

≤



γ+ 1
γ

2 (1 + γ2)−
ν+1
2 γ < 1

1 γ = 1

γ+ 1
γ

2 γ > 1.

(ii) x < 0: we want to determine k such that

k ≥
γ + 1

γ

2

(
1 + x2

ν

1 + x2γ2

ν

)− ν+1
2

.

Using the same reasoning as above we minimize the argument

i(x) :=
1 + x2

ν

1 + x2γ2

ν

to find the maximum of the density quotient. If γ < 1 we find the minimum of i(x) at
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limx→0− i(x). We have that

lim
x→0−

1 + x2

ν

1 + x2γ2

ν

= lim
x→0−

1

1 + x2γ2

ν

+
1

ν
(

1
x2 + γ2

ν

) = 1 +
1

γ2
.

Therefore,

γ + 1
γ

2

(
1 + x2

ν

1 + x2γ2

ν

)− ν+1
2

≤



γ+ 1
γ

2

(
1
γ2

)− ν+1
2

γ > 1

1 γ = 1

γ+ 1
γ

2 γ < 1

.

From this computation, we determine k as follows: if γ ≥ 1 we set

k := max

γ + 1
γ

γ+ 1
γ

2

(
1

γ2

)− ν+1
2

 =
γ + 1

γ

2
γν+1;

if γ < 1 we set

k := max

{
γ + 1

γ

2

γ + 1
γ

2

(
1 + γ2

)− ν+1
2

}
=

γ + 1
γ

2
.

A.6 Computations for Section 4.1.1

Consider the distortion function g(u) = u
α1{0≤u<α}+1{u≥α} of the AV@R at level α. For G ∼ g

and 0 ≤ a < b ≤ 1 we can calculate E[G1{G∈[a,b)}] by considering the following cases:

(i) if a, b < α,

E
[
G1{G∈[a,b)}

]
=

∫ b

a
u
1

α
du =

1

2α
(b2 − a2);

(ii) if a < α, b ≥ α,

E
[
G1{G∈[a,b)}

]
=

∫ α

a
u
1

α
du =

1

2α
(α2 − a2);

(iii) if a, b ≥ α,

E
[
G1{G∈[a,b)}

]
= 0.
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Let α0, α1, . . . , αm be a partition of [0, α], where αm ≤ α and set αm+1 = 1. Plugging this in

the definition of the probabilities pi in Theorem 3.3, we obtain

p0 = 1−
E[G1{G∈[αm,1)}]

g(1)− g(αm)

= 1−
1
2α(α

2 − α2
m)

1− αm
α

;

pk =
E
[
G1{G∈[αm+1−k,αm+2−k)}

]
g(αm+2−k)− g(αm+1−k)

−
E
[
G1{G∈[αm−k,αm+1−k)}

]
g(αm+1−k)− g(αm−k)

=
1
2α

(
α2
m+2−k − α2

m+1−k

)
1
2α(αm+2−k − αm+1−k)

−
1
2α

(
α2
m+1−k − α2

m−k

)
1
2α(αm+1−k − αm−k)

=

(
α2
m+2−k − α2

m+1−k

)
(αm+2−k − αm+1−k)

−
(
α2
m+1−k − α2

m−k

)
(αm+1−k − αm−k)

; and

pm+1 =
E[G1{G∈[0,α1)}]

g(α1)

=
1
2αα

2
1

α1
α

=
α1

2
,

where k ∈ {1, . . . ,m}.

A.7 Computations for Section 4.1.2

Recall the GlueV@R risk measure introduced in Example A.3 corresponds to the distortion

function

g(u) =



h1
β u if 0 ≤ u ≤ β

h1 +
h2−h1
α−β (u− β) if β < u ≤ α

1 if α < u ≤ 1

.

where 0 ≤ β ≤ α ≤ 1 and 0 ≤ h1 ≤ h2 ≤ 1. The partition is again set such that (α1, . . . , αm)

are equidistant in [0, α] and α0 = 0, αm+1 = 1.

To sample from G|G ∈ [αj , αj+1) for G ∼ g, we use the inverse transform method. If

U ∼ unif(0, 1), then we have that qgc(U) ∼ g. If we let V be the restriction of U to the interval

[αj , αj+1), as

V := g(αj) + (g(αj+1)− g(αj))U,

we obtain that qgc(V ) is distributed as G|G ∈ [αj , αj+1). The left quantile function qgc of the
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distrotion function g can be calculated as

qgc(v) =



β
h1
v , v ∈ [0, h1)

β + α−β
h2−h1

(v − h1) , v ∈ [h1, h2]

α , v ∈ (h2, 1].

Now we can compute the probabilities pk from Theorem 3.3. The distortion function of the

Glue-V@R defines the probability P with an atom at α, where P(G = α) = 1 − h2. For the

absolutely continuous part of P we have

dg(u) =



h1
β du u ∈ [0, β)

h2−h1
α−β du u ∈ [β, α)

0 u ∈ [α, 1].

The computation of the pk requires calculating E
[
G1{G∈[αj ,αj+1)}

]
in the following five cases.

(i) αj ∈ [0, β), αj+1 ∈ [0, β):

E
[
G1{G∈[αj ,αj+1)}

]
g(αj+1)− g(αj)

=

∫ αj+1

αj
uh1

β du

h1
β (αj+1 − αj)

=
1

2
(αj+1 − αj).

(ii) αj ∈ [0, β), αj+1 ∈ [β, α):

E
[
G1{G∈[αj ,αj+1)}

]
g(αj+1)− g(αj)

=

∫ β
αj

udg(u) +
∫ αj+1

β udg(u)

h1 +
h2−h1
α−β (αj+1 − β)− h1

β αj

=

h1
β (β − αj)

2 + h2−h1
2(α−β)(αj+1 − β)2

h1 +
h2−h1
α−β (αj+1 − β)− h1

β αj

.

(iii) αj ∈ [0, β), αj+1 ∈ [α, 1):

E
[
G1{G∈[αj ,αj+1)}

]
g(αj+1)− g(αj)

=

h1
β

∫ β
αj

udu+ h2−h1
α−β

∫ α
β udu+ αP(G = α)

1− h1
β αj

=

h1
2β (β − αj)

2 + h2−h1
2 (α− β) + (1− h2)α

1− h1
β αj

.
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(iv) αj ∈ [β, α), αj+1 ∈ [β, α):

E
[
G1{G∈[αj ,αj+1)}

]
g(αj+1)− g(αj)

=

h2−h1
α−β

∫ αj+1

αj
udu

h1 +
h2−h1
α−β (αj+1 − β)− h1 − h2−h1

α−β (αj − β)
=

1

2
(αj+1 − αj).

(v) αj ∈ [β, α), αj+1 ∈ [α, 1):

E
[
G1{G∈[αj ,αj+1)}

]
g(αj+1)− g(αj)

=

h2−h1
α−β

∫ α
β udu+ αP(G = α)

1− h1 +
h2−h1
α−β (αj − β)

=
h2−h1

2 (α− β) + α(1− h2)

1− h1 +
h2−h1
α−β (αj − β)

.

We can plug these calculations in Theorem 3.3 to obtain pk for the multinomial distribution of

the cell counts O.

A.8 Computations for Section 4.1.3

We consider the distortion function

g(u) :=



h1
β u u ∈ [0, β]

h2 +
h3−h2
α−β (u− β) u ∈ (β, α)

1 u ∈ [α, 1]

,

where 0 ≤ h1 < h2 < h3 < 1 and β ≤ α.

A.8.1 The Unique Decomposition from Theorem 2.2

By Theorem 2.2 the unique decompoisition of the distortion function g(u) is given as

g(u) = crgr(u) + clgl(u) + ccgc(u),

where gr, gl are right- resp. left-continuous step distortion functions and gc is a continuous

distortion function.

As in the proof of Theorem 2.2 we have then

gr(u) = 1{u≥α}, cr = 1− h3,

gl(u) = 1{u>β}, cl = h2 − h1.
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Therefore

gc = c(g(u)− crgr(u)− clgl(u))

= c ·



h1
β u u ∈ [0, β]

h2 +
h3−h2
α−β (u− β)− h2 + h1 u ∈ (β, α)

1− (1− h3)− (h2 − h1) u ∈ [α, 1]

= c ·



h1
β u u ∈ [0, β]

h1 +
h3−h2
α−β (u− β) u ∈ (β, α)

h3 − h2 + h1 u ∈ [α, 1]

.

To normalize gc, we set

c =
1

h3 − h2 + h1

and thus

cc = h3 − h2 + h1.

A.8.2 Sampling from gl, gr, gc

The distortion functions gr and gl describe the trivial distributions only taking α resp. β. To

sample from gc we calculate the quantile function qgc as

qgc(p) =


(h3−h2+h1)β

h1
p 0 ≤ p ≤ h1

h3−h2+h1

(α−β)((h3−h2+h1)u−h1)
h3−h2

+ β h1
h3−h2+h1

< p ≤ 1

We can then sample G|G ∈ [αj , αj+1) be setting

V := g(αj) + (g(αj+1)− g(αj))U
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and the inverse transform method, by considering

G|G ∈ [αj , αj+1)
d
=



β
h1
V V ∈ [0, h1)

β V ∈ [h1, h2)

(α−β)(V−h2)
h3−h2

+ β V ∈ [h1, h3)

α V ∈ [h3, 1]

A.8.3 Calculation of the probabilities pk

To calculate E[G1{G∈[αj ,αj+1)}] for j ∈ {0, . . . ,m}, we first have that

E
[
G1{G∈[αj ,αj+1)}

]
= E

[
E
[
G1{G∈[αj ,αj+1)}|C

]]
= clE[G1{G∈[αj ,αj+1)}|C = l] + crE[G1{G∈[αj ,αj+1)}|C = r]

+ ccE[G1{G∈[αj ,αj+1)}|C = c]

= clβ1{β∈[αj ,αj+1)} + crα1{α∈[αj ,αj+1)} + cc

∫
[αj ,αj+1)

udgc(u).

The differential of gc(u) is given as

dgc(u) =



h1
β(h3−h2+h1)

du u ∈ [0, β]

h3−h2
(α−β)(h3−h2+h1)

du u ∈ (β, α)

0 u ∈ [α, 1]

.

Then we consider the following cases.

(i) If αj ∈ [0, β], αj+1 ∈ [0, β], then

∫
[αj ,αj+1)

udgc(u) =

∫
[αj ,αj+1)

u
h1

β(h3 − h2 + h1)
du

=
h1

β(h3 − h2 + h1)

[
1

2
u2
]αj+1

αj

=
h1

2β(h3 − h2 + h1)

(
α2
j+1 − α2

j

)
.

(ii) If αj ∈ [0, β], αj+1 ∈ (β, α), then

∫
[αj ,αj+1)

udgc(u) =

∫
[αj ,β]

udgc(u) +

∫
(β,αj+1)

udgc(u)
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=
h1

2β(h3 − h2 + h1)

(
β2 − α2

j

)
+

h3 − h2
(α− β)(h3 − h2 + h1)

[
1

2
u2
]αj+1

β

=
h1

2β(h3 − h2 + h1)

(
β2 − α2

j

)
+

h3 − h2
2(α− β)(h3 − h2 + h1)

(
α2
j+1 − β2

)
.

(iii) If αj ∈ [0, β], αj+1 ∈ [α, 1], then

∫
[αj ,αj+1)

udgc(u) =

∫
[αj ,α]

udgc(u)

=
h1

2β(h3 − h2 + h1)

(
β2 − α2

j

)
+

h3 − h2
2(α− β)(h3 − h2 + h1)

(
α2 − β2

)
.

(iv) If αj ∈ (β, α), αj+1 ∈ (β, α), then

∫
[αj ,αj+1)

udgc(u) =

∫
[αj ,αj+1)

u
h3 − h2

(α− β)(h3 − h2 + h1)
du

=
h3 − h2

2(α− β)(h3 − h2 + h1)

(
α2
j+1 − α2

j

)
.

(v) If αj ∈ (β, α), αj+1 ∈ [α, 1], then

∫
[αj ,αj+1)

udgc(u) =

∫
[αj ,α)

udgc(u)

=
h3 − h2

2(α− β)(h3 − h2 + h1)

(
α2 − α2

j

)
.

(vi) If αj ∈ [α, 1], αj+1 ∈ [α, 1], then
∫
[αj ,αj+1)

udgc(u) = 0.

Finally, we plug in the above results in the formulas of Lemma 3.8 to obtain the pk.

A.9 Range Value at Risk

RV@R is a distortion risk measure with distortion function g(u) = u−β
α−β1{β<u≤α} + 1{u>α},

0 < β < α. This risk measure ignores the tail beyond the value at risk at level α and is

therefore – just as the value at risk – not sensitive to extreme events. In the limiting case β → 0,

it coincides with tail-sensitive AV@Rα. We repeat the case studies of Section 4 for RV@R. The

results of the backtests are shown in Tables 7, 8 & 9 for α = 0.025, β ∈ {0.015, 0.005, 0.001}

and sample size N = 20000. We use the partition 0 = α0, αi = β + (α − β)i/(m + 1) for

i ∈ {1, . . . ,m}, and αm+1 = 1, and use otherwise the same backtesting strategy as for AV@R.

The size of the asymptotic tests is in all cases reasonable. The power is generally poor for
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Figure 2: Size and Power for the RV@R approaching the AV@R at level 0.025

β = 0.015 and improves, when smaller values of β are chosen. This is due to the fact that for

decreasing β the risk measures RV@R depends on more extreme parts of the tail. This is also

apparent from Figure 2 where we plot the size of the test and the power for the three considered

alternatives a function of β in the case m = 16, n = 1000. The size is quite reasonable for all

values of β, but the power is low unless β is very close to zero. It increases to acceptable levels

as β → 0 from above, i.e., when approaching the limiting case AV@Rα. A similar behavior

holds also for other levels of α; this is displayed in Figures 3 & 4 for α = 0.5% and α = 10%,

respectively.

The numerical experiments in Tables 7, 8 & 9 for α = 0.025, β ∈ {0.015, 0.005, 0.001} were

also repeated by us for the non-randomized method suggested in Kratz et al. (2018). The

comparison showed again that our randomized method generally improves the power, while

retaining a similar size. For β = 0.015, the power is low for both methods and quite similar

in most cases. For β ∈ {0.005, 0.001}, the power improves. Im particular, for large n and

m = 2, 4 the randomized method performes best as well as better than Kratz et al. (2018). As

an example, we include the detailed comparison for β = 0.005 in Table 10.
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Nass

Lt n|m 1 2 4 8 16 32 64

N 250 0.89 0.75 1.20 0.98 0.99 0.87 1.26
500 0.84 0.97 0.87 0.97 1.06 1.04 0.88
1000 0.88 0.92 0.94 1.06 1.03 1.10 1.08
2000 0.96 0.97 0.97 0.98 1.04 1.11 1.03

T3 250 1.68 1.65 1.36 0.57 0.40 0.32 0.46
500 3.17 1.97 0.78 0.40 0.24 0.26 0.14
1000 6.48 4.32 1.49 0.38 0.12 0.07 0.06
2000 21.70 20.51 9.90 1.91 0.17 0.04 0.03

T5 250 4.96 4.21 3.81 2.29 2.03 1.80 2.08
500 6.46 6.17 3.49 2.38 1.81 1.54 1.04
1000 10.62 9.39 6.16 3.38 2 1.18 0.95
2000 19.98 18.61 13.33 7.34 2.94 1.17 0.57

ST 250 7.46 6.68 4.29 1.47 0.95 0.75 0.78
500 13.13 11.37 6.12 2.83 1.09 0.71 0.36
1000 26.51 24.41 16.48 7.76 2.19 0.64 0.17
2000 53.41 53.58 44.59 27.66 9.49 1.36 0.17

Table 7: Backtesting RV@R with β = 0.015 and α = 0.025: Estimated size (for hypothesis H0

with distribution N ) and power in % (for the alternatives H1 with distributions T3, T5, ST ,
respectively) for the Pearson test, Nass test and LRT. The size is represented as the fraction of
the true size according to our simulations divided by the desired level κ = 5%. The colouring
scheme for the size is as follows: Values between 0.8 − 1.2 are green, values between 0.9 − 1.1
are dark green; values above 1.5 are red, above 2 dark red. The colouring scheme for the power
is adopted from Kratz et al. (2018): Green refers to a power ≥ 70%; light red indicates a power
≤ 30%; dark red indicates poor results with a power ≤ 10%.
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Nass

Lt n|m 1 2 4 8 16 32 64

N 250 0.71 0.90 0.86 0.98 1.14 1.06 0.88
500 0.85 0.96 0.89 1.10 1.08 1.11 1.08
1000 0.98 0.95 0.90 1.04 1.08 1.10 1.12
2000 0.98 0.95 0.98 1 1.06 1.07 1.12

T3 250 7.49 9.01 6.99 4.21 1.57 0.66 0.26
500 15.55 16.54 13.44 8.24 3.33 0.75 0.18
1000 35.82 38.16 35.91 24.43 10.32 2.33 0.27
2000 68.38 76.86 78.44 67.86 43.69 14.09 1.44

T5 250 10.27 11.76 8.94 6.97 4.32 2.73 2.06
500 17.80 17.92 15.22 11.84 7.03 3.43 2.07
1000 32.11 32.20 30.80 23.69 14.71 6.34 2.58
2000 54.40 59.11 58.86 50.96 37.52 19.02 6.39

ST 250 21.31 23.41 19.40 13.94 6.83 2.64 1.17
500 39.52 42.03 38.82 30.55 17.89 6.57 1.63
1000 69.27 72.11 71.50 64.32 46.04 23.13 6
2000 93.38 96.14 96.59 94.72 88.51 69.92 32.97

Table 8: Backtesting RV@R with β = 0.005 and α = 0.025: Estimated size (for hypothesis H0

with distribution N ) and power in % (for the alternatives H1 with distributions T3, T5, ST ,
respectively) for the Pearson test, Nass test and LRT. The size is represented as the fraction of
the true size according to our simulations divided by the desired level κ = 5%. The colouring
scheme for the size is as follows: Values between 0.8 − 1.2 are green, values between 0.9 − 1.1
are dark green; values above 1.5 are red, above 2 dark red. The colouring scheme for the power
is adopted from Kratz et al. (2018): Green refers to a power ≥ 70%; light red indicates a power
≤ 30%; dark red indicates poor results with a power ≤ 10%.
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Nass

Lt n|m 1 2 4 8 16 32 64

N 250 0.74 0.99 1.04 1.09 1.09 1.04 0.91
500 0.79 0.90 1.04 1.03 1.05 1.04 1.01
1000 0.86 0.95 0.98 1.06 1.04 1.09 1.08
2000 0.99 0.97 0.96 1.04 1.05 1.09 1.11

T3 250 12.14 18.22 19.82 16 13.33 6.71 2.60
500 24.55 31.22 34.09 32.98 24.34 16.74 6.12
1000 48.77 62.13 65.91 64.52 55.48 39.21 19.71
2000 82.67 91.71 94.80 95.10 91.81 81.75 58.79

T5 250 14.62 17.46 19.05 16.11 12.88 9.62 5.31
500 23.34 28.62 30.15 28.05 23.26 16.82 9.05
1000 40.33 47.04 51.19 50.85 45.08 34.89 20.55
2000 67.08 76.53 81.26 81.16 77.37 67.37 50.02

ST 250 29.59 35.95 39.63 36.11 31.47 21.02 10.08
500 51.02 59.44 63.81 62.87 55.77 45.35 27.75
1000 80.22 86.84 90.03 90.38 87.37 79.75 63.28
2000 97.76 99.28 99.60 99.76 99.56 98.81 95.99

Table 9: Backtesting RV@R with β = 0.001 and α = 0.025: Estimated size (for hypothesis H0

with distribution N ) and power in % (for the alternatives H1 with distributions T3, T5, ST ,
respectively) for the Pearson test, Nass test and LRT. The size is represented as the fraction of
the true size according to our simulations divided by the desired level κ = 5%. The colouring
scheme for the size is as follows: Values between 0.8 − 1.2 are green, values between 0.9 − 1.1
are dark green; values above 1.5 are red, above 2 dark red. The colouring scheme for the power
is adopted from Kratz et al. (2018): Green refers to a power ≥ 70%; light red indicates a power
≤ 30%; dark red indicates poor results with a power ≤ 10%.
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Nass

Lt n|m 1 2 4 8 16 32 64

N 250 0.74 0.92 1.05 0.89 1.08 1.08 0.90
500 1.18 0.90 0.98 1.07 1.10 1.10 1.06
1000 0.94 0.98 0.92 0.97 1.07 1.09 1.02
2000 1.05 0.90 0.94 0.99 1.03 1.07 1.09

T3 250 1.91 2.95 0.94 0.72 0.03 0.01 0.02
500 7.02 5.10 4.04 2.05 0.66 0.11 0.03
1000 28.51 19.27 11.13 5.38 1.59 0.46 0.04
2000 57.49 30.93 15.93 10.05 6.55 2.05 −0.05

T5 250 −0.54 2.37 0.37 0.45 −0.03 0.27 0.05
500 0.93 2 2.92 1.67 0.32 0.27 0.03
1000 10.97 7.56 5.56 2.52 1.24 0.16 0.07
2000 21.63 14.92 10.96 6 2.70 1.11 0.43

ST 250 3.18 6.53 1.45 1.31 0.19 0.16 0.12
500 10.53 8.16 8.03 4.55 2.06 −0.05 −0.27
1000 26.54 15.32 9.70 6.60 3.69 1.21 0.91
2000 25.50 9.30 4.29 2.86 3.18 2.96 0.99

Table 10: Backtesting RV@R: Comparison of the results in Table 8 to the method of Kratz
et al. (2018). The size is represented as the fraction of the true size according to our simulations
divided by the desired level κ = 5%. The colouring scheme for the size is as follows: Values
between 0.8− 1.2 are dark green, values between 0.9− 1.1 are dark green; values above 1.5 are
red, above 2 dark red. For the alternative T3, T5 and ST , the table shows the difference of the
power of our method and the method of KLM. The colouring scheme for the power is as follows:
Dark green are notable improvements of the power ≥ 20%; light green are improvements ≥ 10%.
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Figure 3: Size and Power for the RV@R approaching the AV@R at level 0.005

Figure 4: Size and Power for the RV@R approaching the AV@R at level 0.1
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A.10 S&P 500

Figure 5: QQ-plots of the standard normal distributions and the normalized innovations of the
fitted GARCH models to the S&P 500. The GARCH models are fitted on 500 data points and
the innovations are observed for the following 1000 data points.

We investigate the power of the backtests for log returns of the S&P 500 during three

different time periods, starting at the beginning of the years 2008, 2012 and 2019, respectively.

Since we are focussing on losses, we consider the negative of the log returns, i.e., downside risk

measures are statistical functionals of the upper tail of the corresponding distributions.

The exemplary time series models used are GARCH processes with standard normal in-

novations GARCH(p, q) with p = q and p = 1, 3, 5. The model classes are nested; larger p

corresponds to a larger class and higher complexity. We consider two different methodologies

to fit the models and to apply our backtesting procedure. The first approach fits the GARCH-

processes to the first 250 resp. 500 data points. The backtest is then applied to the 1000

following observations of the processes. The second approach does not assume that the true

data-generating mechanism is a GARCH-process with constant parameters, but refits the pro-

cesses at each point of time based on the latest 250 resp. 500 data points to produce a model

for the next innovation. Again 1000 observations are used for the backtest.

QQ-plots demonstrate that innovations are not Gaussian and that the models are misspec-

ified. We illustrate this for fits based on 500 data points in Figure 5. The deviations from

normality in the upper tail are of different size when varying the time period, model, and fitting

methodology. Risk measures backtests capture the importance of these discrepancies in terms
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of specific functionals of the downside risk. All fitted GARCH processes satisfy Bollerslev’s con-

dition for weak stationarity, cf. Bollerslev (1986), or also Lindner (2009) for a concise survey of

stationarity conditions.

We consider AV@R and GlueV@R with the same parameters as before. The probabilities

of rejection (corresponding to the power) is estimated in 2000 runs of the backtest for m = 8

and a partition α0 < α1 < · · · < αm < αm+1 = 1 such that αi = i/(m+ 1) · α, i ∈ {1, . . . ,m}.

Nass
01.01.2008 01.01.2012 01.01.2019

Model / Fit 250 500 250 500 250 500

GARCH(1, 1) 1 1 1 1 1 1
GARCH(3, 3) 1 1 1 0.13 0.28 1
GARCH(5, 5) 1 1 0 0.07 0.03 0

Table 11: Rejection probabilities of the backtest on log returns of the S&P500 versus GARCH
models fitted on past observations from a fixed time point with respect to the AV@R0.975.

Nass
01.01.2008 01.01.2012 01.01.2019

Model / Fit 250 500 250 500 250 500

GARCH(1, 1) 1 1 1 1 1 1
GARCH(3, 3) 1 1 1 1 0.09 0.48
GARCH(5, 5) 1 1 1 1 0.67 0

Table 12: Rejection probabilities of the backtest on log returns of the S&P500 versus GARCH
models fitted with a rolling collection of observations with respect to the AV@R0.975.

Nass
01.01.2008 01.01.2012 01.01.2019

Model / Fit 250 500 250 500 250 500

GARCH(1, 1) 1 1 1 1 1 1
GARCH(3, 3) 1 1 0.87 0.07 0.01 1
GARCH(5, 5) 1 1 0 0 0 0

Table 13: Rejection probabilities of the backtest on log returns of the S&P500 versus
GARCH models fitted on past observations from a fixed time point with respect to
the GlueV@Rh1,h2

β,α , where h1 = 2/5, h2 = 2/3, α = 0.05, β = 0.01.

Nass
01.01.2008 01.01.2012 01.01.2019

Model / Fit 250 500 250 500 250 500

GARCH(1, 1) 1 1 1 1 1 1
GARCH(3, 3) 1 1 1 1 1 1
GARCH(5, 5) 1 1 1 1 1 1

Table 14: Rejection probabilities of the backtest on log returns of the S&P500 versus GARCH
models fitted with a rolling collection of observations with respect to the GlueV@Rh1,h2

β,α ,
where h1 = 2/5, h2 = 2/3, α = 0.05, β = 0.01.
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Nass

Lt n|m 1 2 4 8 16 32 64

Size 250 1.11 1.47 1.20 1.07 1.07 1.18 1.11
500 1.68 1.36 1.25 1.19 1.26 1.21 1.21
1000 1.73 1.54 1.35 1.21 1.20 1.17 1.06
2000 1.90 1.35 1.28 1.18 1.16 1.21 1.18

NB 250 66.60 65.23 63.64 62.22 58.74 58.74 59.65
500 87.85 88.07 84.25 83.95 81.84 79.24 81.95
1000 98.82 98.87 98.30 98 96.69 96.24 95.89
2000 99.98 99.99 99.99 99.98 99.96 99.93 99.81

PAR 250 95.40 97.19 98.29 98.04 97.64 97.59 96.92
500 99.86 100 99.94 99.94 99.98 99.96 99.96
1000 100 100 100 100 100 100 100
2000 100 100 100 100 100 100 100

LOGN 250 46.91 49.27 49.89 47.54 46.90 46.55 44.87
500 72.78 69.83 70.99 69.46 69.24 70.11 67.91
1000 91.83 92.73 92.77 92.04 91.53 90.53 89.30
2000 99.50 99.68 99.62 99.68 99.50 99.50 99.05

Table 15: ALM Backtest for AV@Rα with α = 0.05. The size is represented as fraction of
estimated size divided by the desired level κ = 0.05. Values of the size between 0.9 − 1.1 are
dark green, between 0.8− 1.2 are light green, above 1.5 are red and above 2 dark red. For the
power green refers to a power ≥ 70%; light red to a power ≤ 30% and dark red indicates a
power ≤ 10%.

Tables 11, 12, 13 & 14 show in most cases the null hypothesis is rejected, especially always

during the financial crisis corresponding to the time period starting at 2008. Only during the

other periods for p ≥ 3 rejection probabilities are low in some cases corresponding to smaller

deviations from normality in the upper tail. The differences between the two fitting methods

make misspecification even more apparent.

A.11 Some Further Results in the Context of ALM

.

We repeat the case studies for AV@R. The parameters are chosen as in the GlueV@R-ALM

simulation, and the partition for the risk measure test statistics is set as in the distribution

simulations. Qualitatively the results are similar as for GlueV@R and shown in Table 15.

Since the true size of the test deviates from the a priori targeted level, since its construction

is based on asymptotic results, we construct alternative tests which are not based on the target

size 0.05 but on a smaller size κ = 0.025 at the expense of deterioration of the power. This is

displayed in Tables 16 & 17. The realized size is in most case smaller than the targeted size,

56



Nass

Lt n|m 1 2 4 8 16 32 64

Size 250 0.57 0.91 0.93 0.62 0.60 0.72 0.57
500 1.12 0.85 0.68 0.66 0.68 0.74 0.67
1000 1.22 0.89 0.82 0.70 0.62 0.65 0.72
2000 1.24 0.95 0.75 0.65 0.69 0.59 0.67

NB 250 60.81 56.89 55.63 54 50.71 49.48 49.31
500 86.17 85.37 79.84 78.95 75.99 72.64 75.97
1000 98.29 98.09 97.40 96.61 94.81 94.31 93.30
2000 99.99 99.98 99.98 99.95 99.92 99.83 99.64

PAR 250 93.59 95.62 97.34 97.08 97.04 96.99 95.84
500 99.83 99.91 99.88 99.93 99.94 99.93 99.92
1000 100 100 100 100 100 100 100
2000 100 100 100 100 100 100 100

LOGN 250 40.21 39.43 43.04 40.07 38.90 38.12 36.79
500 66.71 65.37 64.89 63.40 62.49 61.93 60.08
1000 89.83 89.96 89.24 88.46 88.86 87.85 86
2000 99.15 99.24 99.24 99.43 99.03 99.22 98.66

Table 16: ALM Backtest for AV@Rα with α = 0.05. The level of the tests is set to κ = 0.025.
The estimated size is represented as fraction to 0.05. Values of the size between 0.9 − 1.1 are
dark blue, between 0.8− 1.2 are light blue. For the power green refers to a power ≥ 70%; light
red to a power ≤ 30% and dark red indicates a power ≤ 10%.

and also the power of the tests not reduced by a large amount. The strategy of using a smaller

than target size for the asymptotic construction appears to be a viable method.
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Nass

Lt n|m 1 2 4 8 16 32 64

Size 250 1.08 0.99 0.95 0.69 0.66 0.74 0.53
500 1.03 0.79 0.69 0.67 0.69 0.62 0.63
1000 1.17 0.93 0.71 0.66 0.66 0.63 0.75
2000 1.33 0.92 0.74 0.68 0.68 0.57 0.71

NB 250 58.97 60.05 56.49 54.13 49.21 49.72 49.94
500 86.05 86.23 79.43 78.97 76.74 72.93 75.03
1000 98.79 98.37 97.97 96.91 94.86 94.55 93.93
2000 99.98 99.97 99.97 99.93 99.90 99.86 99.72

PAR 250 94.68 98.03 97.40 96.81 96.69 96.80 96.26
500 99.95 99.96 99.89 99.94 99.94 99.94 99.90
1000 100 100 100 100 100 100 100
2000 100 100 100 100 100 100 100

LOGN 250 40.75 45.98 43.49 40.20 38.59 38.37 36.38
500 69.05 67.28 64.63 63.81 62.54 62.07 59.76
1000 91.99 91.47 89.80 89.11 87.65 86.83 85.32
2000 99.51 99.60 99.19 99.41 99.25 98.96 98.84

Table 17: ALM Backtest for the GlueV@R with h1 = 2/5, h2 = 2/3, α = 0.05, β = 0.01.
he level of the tests is set to κ = 0.025. The estimated size is represented as fraction to 0.05.
Values of the size between 0.9 − 1.1 are dark blue, between 0.8 − 1.2 are light blue. For the
power green refers to a power ≥ 70%; light red to a power ≤ 30% and dark red indicates a
power ≤ 10%.
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