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ON THE SILHOUETTE OF BINARY SEARCH TREES

BY RUDOLF GRÜBEL

Leibniz Universität Hannover

A zero-one sequence describes a path through a rooted directed binary
tree T ; it also encodes a real number in [0,1]. We regard the level of the ex-
ternal node of T along the path as a function on the unit interval, the silhou-
ette of T . We investigate the asymptotic behavior of the resulting stochastic
processes for sequences of trees that are generated by the binary search tree
algorithm.

1. Introduction. Let (ξn)n∈N be a sequence of independent random variables,
where each ξn is uniformly distributed on the unit interval. The binary search
tree (BST) algorithm sequentially stores these variables in a sequence (Tn)n∈N

of rooted, directed, labeled binary trees. T1 consists of the root node only, with
label ξ1. In order to obtain Tn+1 from Tn, we compare ξn+1 with the labels of the
nodes along a path through Tn, beginning at the root and moving to the left if ξn+1
is smaller, to the right if it is greater than the label associated with the respective
node. Once an empty node has been found, we attach it to the tree and ξn+1 is
the label of the new node (formal definitions will be given below). The BST al-
gorithm is one of the basic and classical search procedures and is discussed in the
standard texts in this area; see, for example, Knuth (1973), Mahmoud (1992) and
Sedgewick and Flajolet (1996).

Let Tn be the set of rooted directed binary trees with n nodes. Then, Tn is a
random variable with values in Tn, but the distribution of Tn is not the uniform
distribution on Tn. For uniformly distributed plane trees or, more generally, sim-
ply generated trees, there are various codings, for example, by depth-first search,
that relate the trees to random walks (Harris correspondence). These codings pro-
vide the basis for an in-depth study of simply generated trees, leading to limit
results that involve Brownian excursions, and that, in turn, have applications to
certain nonlinear partial differential equations; see Aldous (1991), Chapter 6 in
Pitman (2006) and Le Gall (1999).

For the present BST case, we investigate an encoding by a function that we call
the silhouette X(T ) = (Xs(T ))0≤s≤1 of the tree T . Any s ∈ [0,1] defines a path
through T by its binary expansion and Xs(T ) is simply the depth (or level) of the
external node of T along this path. In contrast to other notions such as the profile
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of the tree [see Chauvin, Drmota and Jabbour-Hattab (2001)], this is a coding in
the sense that T can be reconstructed from X. The notion and use of paths through
the tree is of course not new and appears in, for example, Pittel (1985, 1986); the
label “silhouette” was coined in Grübel (2005). Applied to the output sequence Tn,
n ∈ N, of the BST algorithm, the silhouette yields a sequence (Xs(Tn))0≤s≤1, n ∈
N, of stochastic processes. Our main result shows that these processes converge in
a weak sense to a nondegenerate limit process as n → ∞.

Section 2 contains some formal definitions related to trees. In Section 3, we
define the silhouette and show that distributional convergence to a nondegenerate
limit process does not hold with respect to pointwise convergence on the under-
lying function space. The weak convergence essentially refers to the integrated
silhouette, and a key role for the analysis of the latter is played by the discounted
external path length, which we discuss in Section 4. In Section 5, we consider the
finite-dimensional distributions of the integrated silhouette, prove the convergence
to a limit process, characterize the limit distribution as the unique solution to a
fixed point equation on a suitable space of measures and study the paths of the
limit process. In the final section, we collect some comments on related questions
and on possible variations of our findings.

Throughout, we write #A for the number of elements of the set A and L(X) for
the distribution of the random variable X. Sometimes, we write X ∼ μ instead of
L(X) = μ. A random variable X is stochastically smaller than or equal to another
random variable Y (both real-valued), written X ≤D Y , if P(X ≥ x) ≤ P(Y ≥ x)

for all x ∈ R. Finally, “=D ” denotes equality in distribution and “→D ” denotes
convergence in distribution.

2. Some notation for trees. A tree is a graph and thus consists of vertices (or
nodes) and edges. In the context of binary trees, it is convenient to represent (or
define) nodes as elements of N ,

N :=
∞⋃

k=0

{0,1}k,

where {0,1}0 := {∅}. Stated in different terminology, N is the set of finite words
over the alphabet that consists of the two letters 0 and 1. By a rooted, directed
binary tree, we mean a finite set T of (internal) nodes with the following property:

u = (u1, . . . , uk) ∈ T , k ≥ 1 �⇒ ũ := (u1, . . . , uk−1) ∈ T .(1)

A binary tree can therefore be regarded as a finite and prefix-stable set of finite
words with letters 0 and 1. Informally, ui = 0 means that we move to the left (to
the right, if ui = 1) on the path from the root node to the node in question.

We may interpret ũ in (1) as the direct ancestor or predecessor of u. The root
node is represented by the empty string and has no predecessor. The edges of the
tree are the pairs (ũ, u) with u 
= ∅. The size of a tree is simply the number of
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its nodes. T denotes the set of all binary trees. By a labeled tree, we mean a pair
(T ,φ), with T ∈ T and a function φ :T → R; the value φ(u) is the label associated
with the node u ∈ T .

Given a tree T ∈ T , we may now formally define two associated trees, L(T )

and R(T ), the left and right subtree of T , by

L(T ) := {u = (u1, . . . , uk) ∈ N : (0, u1, . . . , uk) ∈ T },
(2)

R(T ) := {u = (u1, . . . , uk) ∈ N : (1, u1, . . . , uk) ∈ T }.
Obviously, any nonempty T ∈ T is uniquely determined by the corresponding
subtrees L(T ) and R(T ) (which may, of course, be empty). For u ∈ N and T ∈ T ,
let T (u) be the subtree of T that consists of u, now regarded as the root node, and
all descendants of u in T . A formal definition, as in (2), is straightforward. Indeed,
we may consider L(T ) and R(T ) as the subtrees T (u) associated with the nodes
u = (0) and u = (1), respectively.

A node u = (u1, . . . , uk) has depth |u| = k. It is an external node of T if u itself
is not an element of T , but its predecessor is. The formal definition of the set ∂T

of external nodes of the tree T ∈ T is

∂T := {u = (u1, . . . , uk) ∈ N :k ≥ 1, u /∈ T , (u1, . . . , uk−1) ∈ T }.
We augment this with the convention that ∂T0 = {∅} for the empty tree T0.

3. The silhouette. A sequence u = (uk)k∈N in {0,1}N can be regarded as the
binary expansion s = ∑∞

k=1 uk2−k of some number s in the unit interval [0,1].
Conversely, for any s ∈ [0,1], we have a unique such binary expansion if we re-
quire that binary rationals s < 1 have uk = 0 for all k ≥ k0, for some k0 ∈ N. For
any T ∈ T , we now introduce its silhouette as the function s �→ Xs(T ) on the unit
interval defined by

Xs(T ) := min{k ∈ N0 : (u1, . . . , uk) /∈ T };
an informal description of the silhouette was given in Section 1. These functions
are piecewise constant on intervals with binary rational endpoints if the length of
these intervals is chosen small enough, and they are continuous from the right and
have left-hand limits; at s = 1 they are left-continuous. The left part of Figure 1
shows an example for a tree of size 500.

We will occasionally write X(T , s) instead of Xs(T ). A basic fact is the fol-
lowing recursion, which, because of the preparations undertaken in the previous
section, can now be expressed concisely as

Xs(T ) = 1 + X2s(L(T ))1[0,1/2)(s) + X2s−1(R(T ))1[1/2,1](s)(3)

for 0 ≤ s ≤ 1, provided that T 
= ∅. Obviously, X(∅) ≡ 0.
Now, let Tn be the random tree generated by the BST algorithm from the first n

variables in a sequence of independent, uniformly distributed random variables, as
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FIG. 1. An example of a silhouette (left) and the corresponding normalized integrated silhouette
(right).

explained in the Introduction [hereafter, we will simply refer to (Tn)n∈N as a BST
sequence]. Then, for each n ∈ N, the silhouette X(Tn) = (Xs(Tn))0≤s≤1 can be
regarded as a stochastic process with time parameter ranging over the unit interval.

We first consider the finite-dimensional distributions of the silhouette processes.
It is well known [see, e.g., Régnier (1989)] that the present combination of input
and algorithm leads to the following stochastic dynamics of the tree sequence:
Tn+1 is obtained from Tn by picking one of the n + 1 external nodes of Tn uni-
formly at random and then adding this node to Tn. As a consequence, the sequence
(Xs(Tn))n∈N of depths of the external nodes along the path s can be represented
as the sequence of partial sums of an independent sequence (In)n∈N of indicator
variables, with P(In = 1) = 1/n for all n ∈ N. Extending this observation to more
than one path provides the basis for our first result.

THEOREM 1. Let s1, . . . , sd , with 0 ≤ s1 < · · · < sd ≤ 1, be given. The d-di-
mensional random vectors Yn = (Yn,1, . . . , Yn,d) with

Yn,l := X(Tn, sl) − logn√
logn

for l = 1, . . . , d

then converge in distribution as n → ∞ to a d-dimensional standard normal limit.

PROOF. Given s1, . . . , sd , we define a sequence (Zn)n∈N of d-dimensional
random vectors Zn = (Zn,1, . . . ,Zn,d) by Zn,l = X(Tn, sl) − X(Tn−1, sl). As we
add one node at a time, these all take values in the set consisting of the zero vec-
tor and the standard basis vectors ej , j = 1, . . . , d , where the kth component of
ej is 1 if k = j and 0 otherwise. Let (Z̃n)n∈N0 be another such sequence where,
now, Z̃n = (Z̃n,1, . . . , Z̃n,d), n ∈ N, are independent, with P(Z̃n = el) = 1/n for
l = 1, . . . , d and P(Z̃n = (0,0, . . . ,0)) = 1 − l/n if n ≥ d . For the “tilded” vari-
ables, we have asymptotic normality by the multivariate version of the Lindeberg–
Feller central limit theorem (or the usual one-dimensional version, together with
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the Cramér–Wold device). The difference between the standardized partial sum
processes associated with the Z- and the Z̃-variables is asymptotically negligible
as the time that the last of the pairwise last common ancestors is reached is finite
with probability 1. �

Hence, if we consider the silhouette itself, the appropriate scaling would lead
to independent components in the limit. This shows that in order to obtain a non-
degenerate limit process for the silhouette sequence (X(Tn))n∈N associated with a
BST sequence (Tn)n∈N, we need to weaken the notion of convergence. A standard
strategy is to regard the paths of the process X(Tn) as “weak” functions in the
sense of linear forms on some function space F , that is, to investigate the random
linear functionals f �→ ∫ 1

0 Xt(Tn)f (t) dt , f ∈ F . A key role is played by f ≡ 1,
a case that we study in the next section.

4. The discounted external path length. For a binary tree T , let

Uk(T ) := #{u ∈ ∂T : |u| = k}
be the number of external nodes of T with depth k, k ∈ N0. We then have

η(T ) :=
∫ 1

0
Xs(T )ds =

∞∑
k=1

2−kkUk(T ),

which means that we can regard the integral of the silhouette over the whole unit
interval as a discounted external path length of the tree.

Now, let (Tn)n∈N be a BST sequence, as explained in the previous section; we
abbreviate η(Tn) to ηn. For the proof of Theorem 1, we have used the dynamical
view of this sequence, obtaining Tn+1 from Tn by inclusion of a randomly chosen
element of ∂Tn. For the analysis of the BST sequence, the recursive view is equally
important: for n ≥ 1, the subtrees L(Tn) and R(Tn) are conditionally independent
given In := #L(Tn), In is uniformly distributed on {0, . . . , n − 1} and, on In = k,
L(Tn) =D Tk , R(Tn) =D Tn−1−k . This is a consequence of the fact that the sub-
sequences of the input sequence (ξn)n∈N to the BST algorithm that consist of the
values smaller than and greater than ξ1 are independent conditionally on ξ1 and
uniformly distributed on the intervals (0, ξ1) and (ξ1,1), respectively. Hence, we
obtain from (3) (or directly) that, for n ≥ 1,

ηn =D 1 + 1
2(ηIn + η′

n−1−In
),(4)

with (ηm)m∈N0 , (η′
m)m∈N0 and In independent, η′

m =D ηm for all m ∈ N0 and
In ∼ unif{0,1, . . . , n − 1}. Clearly, η0 ≡ 0. Let H(n) = Hn = ∑n

k=1 1/k be the
nth harmonic number. For an := Eηn, we have a0 = 0 and (4) implies that

an = 1 + 1

n

n−1∑
m=0

am for all n ∈ N,
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which easily leads to

Eηn = Hn.(5)

The undiscounted path length
∑∞

k=1 kUk(Tn) plays a key role in the analysis of
Quicksort and we now use the techniques that were successful in that situation:
martingales [see Régnier (1989)] and the contraction method [see Rösler (1991)].
The filtration (Fn)n∈N of interest in the former context will be the one generated
by the sequence (Tn)n∈N. We write L2 for the set of square integrable random
variables.

THEOREM 2. As n → ∞, ηn − Hn converges almost surely and in quadratic
mean to a random variable η∞. Within the set of distributions with finite second
moment and zero mean, the distribution of η∞ is characterized by the fixed point
equation

η∞ =D
1
2(η∞ + η′∞) + ζ∞,(6)

where η∞, η′∞ and ζ∞ are independent, η∞ =D η′∞ and

ζ∞ := 1 + 1
2

(
log(ξ) + log(1 − ξ)

)
,(7)

with ξ uniformly distributed on the unit interval.

PROOF. The transition from Tn to Tn+1 means that an external node of (ran-
dom) level K becomes an internal node. This entails a loss of K2−K , but, as the
new internal node spawns two external nodes at level K + 1, there is also a gain of
2(K + 1)2−K−1 for the discounted external path length, hence

ηn+1 − ηn = 2(K + 1)2−K−1 − K2−K = 2−K.

By the stochastic dynamics of the tree sequence described in Section 3, we have
that, given Tn with the associated values Uk(Tn) for the number of external nodes
at level k,

P [K = k|Tn] = 1

n + 1
Uk(Tn) for all k ∈ N0.

Hence, with Fn as defined above,

E[ηn+1 − ηn|Fn] = 1

n + 1

∞∑
k=0

Uk(Tn)2
−k = 1

n + 1
.(8)

[The last equality uses the well-known fact that
∑∞

k=0 2−kUk(T ) = 1 for all binary
trees T . Note that 2−kUk(Tn) is the Lebesgue measure of X(Tn)

−1({k}), so this
fact has a simple interpretation in terms of the silhouette.] From (8), we immedi-
ately obtain that (ηn − Hn, Fn)n∈N0 is a zero mean martingale; (8) also provides
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an alternative proof for (5). The individual random variables are all bounded and
hence elements of L2.

We next show that the martingale is bounded in L2. Let σ 2
n := E(ηn − Hn)

2 =
var(ηn). From (4), we obtain

σ 2
n = 1

4 var(ηIn + η′
n−1−In

).

Because of

E(var[ηIn + η′
n−1−In

|In]) = E(σ 2
In

+ σ 2
n−1−In

) = 2

n

n−1∑
m=0

σ 2
m

and

var(E[ηIn + η′
n−1−In

|In]) = var(HIn + Hn−1−In),

the conditional variance formula leads to

σ 2
n = 1

2n

n−1∑
m=0

σ 2
m + 1

4bn, with bn := var(HIn + Hn−1−In).

As ((ηn −Hn)
2, Fn)n∈N0 is a submartingale, we have that m �→ σ 2

m is nondecreas-
ing, so the sum may be bounded from above by σ 2

n−1/2. To obtain boundedness of
the sequence (σ 2

n )n∈N0 , it is therefore enough to show that the sequence (bn)n∈N is
bounded. This, in turn, will follow from the boundedness of (E(HIn − Hn)

2)n∈N

if we use Minkowski’s inequality and the fact that In and n− 1 − In have the same
distribution. From the elementary inequalities

logm ≤ Hm ≤ logm + 1 for all m ∈ N,

we obtain

log
In

n
− 1 ≤ HIn − Hn ≤ log

In

n
+ 1

on {In > 0}. Hence, the required boundedness will be implied by

sup
n∈N

E

(
1{In>0} log

In

n

)2

< ∞,

which finally follows from

E

(
1{In>0} log

In

n

)2

= 1

n

n−1∑
m=1

(
log

m

n

)2

≤
∫ 1

0
(logx)2 dx = 2.

Because of its boundedness in L2, the martingale (ηn −Hn)n∈N converges to some
limit η∞ almost surely and in L2 as n → ∞.

Next, we derive the fixed point equation for the distribution of η∞. We first note
that (4) implies that for n ≥ 1,

ηn − Hn =D
1
2(ηIn − HIn) + 1

2(η′
n−1−In

− Hn−1−In) + ζn(9)
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with

ζn := 1 + 1
2(HIn + Hn−1−In) − Hn.

We may assume that In = �nξ� with ξ ∼ unif(0,1). With the standard asymptotic
result for harmonic numbers, Hn = log(n) + γ + o(1), we then obtain

ζn = 1 + 1

2

(
log(�nξ�) − log(n)

) + 1

2

(
log(n − 1 − �nξ�) − log(n)

) + o(1)

= 1 + 1

2
log

(�nξ�
n

)
+ 1

2
log

(
1 − �nξ� + 1

n

)
+ o(1)

→ 1 + 1

2
log(ξ) + 1

2
log(1 − ξ).

Using ηn − Hn →D η∞ and the distributional assumptions on (ηn)n∈N, (η′
n)n∈N

and In, we now obtain (6) by letting n → ∞ in (9).
Finally, the right-hand side of (6) defines an operator 	 on the space M2,0

of distributions μ with mean zero and finite second moment. A straightforward
calculation shows that

d2
2 (	(μ1),	(μ2)) ≤ 1

2d2
2 (μ1,μ2) for all μ1,μ2 ∈ M2,0,

where d2 denotes the usual Wasserstein 2-distance. Hence, 	 is a contraction and
the distribution of η∞ is characterized in M2,0 by (6). �

Note that with ξ as in the theorem, − log(ξ) and − log(1−ξ) both have an expo-
nential distribution with mean 1 (of course, they are not independent); in particular,
ζ∞ has finite moments of all orders, Eζ∞ = 0 and var(ζ∞) = 1−π2/12 ≈ 0.1775.
The fact that the distribution of ζ∞ is nondegenerate implies the same for the dis-
tribution of η∞.

It is known that in order to obtain a nondegenerate distributional limit for the
undiscounted external path length η̃n := ∑∞

k=1 kUn,k , we need to shift and rescale:
(η̃n − 2n logn)/n →D η̃∞, where η̃∞ is a real, nonconstant random variable [see
Régnier (1989) and Rösler (1991)]. It may seem surprising that for the discounted
version, it is enough to shift. Roughly, because of the asymptotic independence
of the marginal distributions of the silhouette, the “thin spikes” and the “broad
valleys” cancel out to a certain extent; see Figure 1. Note that η̃n/(n + 1) and ηn

can be regarded as the mean associated with the random distribution μ̃n and μn,
respectively, where μ̃n has density k �→ 2k/(n + 1) with respect to μn. In fact, if
we regard η̃n/(n + 1) as the basic variables, then, again, it is enough to shift to
obtain a nondegenerate limit distribution.

Despite the close connection between μ̃n and μn, the fixed point equations for
the respective distributional limits are quite different in the two cases. Indeed, in
the undiscounted case, Rösler (1991) obtained the equation

η̃∞ =D ξ η̃∞ + (1 − ξ)η̃′∞ + C(ξ),(10)
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where ξ is uniformly distributed on the unit interval, η̃∞, η̃′∞ and ξ are indepen-
dent, η̃∞ =D η̃′∞ and

C(x) = 1 + 2
(
x log(x) + (1 − x) log(1 − x)

)
.(11)

A first major difference between (10) and (6) is the fact that in the latter case, the
linear combination on the right-hand side of the independent copies of the left-
hand side has the deterministic coefficients 1/2 and 1/2 instead of ξ and 1 − ξ . As
we will see in the next result, this makes it possible to obtain a simple and explicit
representation for η∞, which is lacking in the undiscounted case. We mention, in
passing, that the distribution of η̃∞ has been the subject of considerable attention;
see, for example, Cramer (1996), Devroye, Fill and Neininger (2000) and Fill and
Janson (2000). A second important difference is the fact that the function C in (11)
is bounded, whereas the corresponding function of ξ in (7) is only bounded from
above. This has an important consequence for the tail behavior (finiteness domain
of the moment generating function) of the respective solutions.

THEOREM 3. Let {ζn,k :n ∈ N0, k ∈ {1, . . . ,2n}} be a family of independent
random variables, all with the same distribution as ζ∞, where ζ∞ is given in (7).
Then, with η∞ as in Theorem 2,

η∞ =D
∞∑

n=0

2−n
2n∑

k=1

ζn,k.(12)

Further, the moment generating function M(t) = E exp(tη∞) for η∞ is finite for
all t > −2. Finally, with ηn as in Theorem 2, we have that

Mn(t) := E exp
(
t (ηn − Hn)

) ≤ M(t) for all t > −2.(13)

PROOF. It is easily checked that the sequence (η∞,n)n∈N of partial sums,

η∞,n :=
n∑

m=0

2−m
2m∑
k=1

ζm,k,

is a zero mean martingale that is bounded in L2 and hence converges almost surely
and in L2 to a random variable η∞,∞. It is equally easy to check that η∞,∞ solves
(6), hence (12) follows with the uniqueness statement in Theorem 2.

We know from the proof of Theorem 2 that (ηn − Hn)n∈N is a martingale that
converges in L2 to η∞. This convergence implies the representation

ηn − Hn = E[η∞ | Fn] for all n ∈ N,(14)

where (Fn)n∈N denotes the natural filtration associated with (ηn − Hn)n∈N. We
now know that η∞ and η∞,∞ have the same moment generating function, hence
(13) follows from (14) on using Jensen’s inequality for conditional expectations.



1790 R. GRÜBEL

It remains to prove the finiteness of M(t) for t > −2. The moment generating
function for ζ∞ can be given explicitly as

M0(t) = et
∫ 1

0
xt/2(1 − x)t/2 dx = �(1 + t/2)2et

�(2 + t)
,

where, of course, t/2 > −1 is required for the integral to be finite. From (12), we
obtain

M(t) =
∞∏

n=0

M0(2
−nt)2n

.

As Eζ∞ = 0 and hence M ′
0(0) = 0, it is straightforward to show that the product

converges for t > −2. �

In the undiscounted case, the moment generating function exists on the whole
real line. The inequality (13) will be used to obtain a uniform tail bound for the
variables ηn − Hn that is needed in the next section.

5. The integrated silhouette. We now return to the functional point of view
explained at the end of Section 3, taking for F the set of indicator functions 1[0,t],
0 ≤ t ≤ 1. This leads us to consider the integrated silhouette Y(T ) = (Yt (T ))0≤t≤1
associated with a binary tree T , where

Yt (T ) :=
∫ t

0
Xs(T )ds for all t ∈ [0,1].

We define the normalized version Y ◦(T ) = (Y ◦
t (T ))0≤t≤1 by

Y ◦
t (T ) := Yt (T ) − tY1(T ) for all t ∈ [0,1].

This “ties down” the original process, in the sense that Y ◦
0 (T ) = Y ◦

1 (T ) = 0. Also,
Y1(T ) = η(T ), the discounted external path length discussed in the previous sec-
tion. We also use η◦(T ) := η(T ) − H(#T ) to denote the centered external path
length.

Suppose, now, that (Tn)n∈N is a BST sequence. Our aim is a functional limit
theorem for the resulting sequence (Y (Tn))n∈N of stochastic processes. Instead of
Y(Tn), we will consider the pairs

Zn :=
(

Y ◦(Tn)

η◦(Tn)

)
,(15)

which we regard as random quantities with values in the linear space

S := C00[0,1] × R,(16)

where C00[0,1] denotes the set of all continuous functions f : [0,1] → R that have
f (0) = f (1) = 0. We can obviously recover Y(Tn) from Zn (and Hn). Together
with

‖z‖ := ‖f ‖∞ + |a| for all z = (f, a) ∈ S,
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the linear space S becomes a separable Banach space. Here, ‖f ‖∞ :=
sup0≤t≤1 |f (t)| denotes the supremum norm. We will show that Zn converges
in distribution as n → ∞, where the convergence refers to the topological struc-
ture induced by this norm. For this, we follow the classical route, as laid out in
Billingsley (1968), considering first the finite-dimensional distributions and then
proving tightness, but the actual details need to be adapted to the present setup.

In connection with the finite-dimensional distributions, instead of considering
the Y ◦(Tn) part of Zn at arbitrary arguments t0, . . . , td ∈ [0,1], we restrict our-
selves to complete sets of binary rationals of the same depth, that is, we take d = 2k

and tj = j2−k for j = 0, . . . ,2k . A standard argument using the continuity of the
paths of Y ◦(Tn) shows that weak convergence of the resulting random vectors, for
all k ∈ N, is enough to characterize the limit distribution. In fact, in order to sim-
plify the description of the limiting finite-dimensional distributions, we will not
consider the values Y ◦

tj
(Tn) themselves, but rather the differences. Again, in the

present situation, this suffices as Y ◦
0 (Tn) ≡ 0.

Formally, for k ∈ N, let �k be the operator that maps a function f : [0,1] → R

to a vector �kf = ((�kf )j )
2k

j=1 of dimension 2k , with

(�kf )j := f (j2−k) − f
(
(j − 1)2−k) for j = 1, . . . ,2k.

The following theorem shows that these increments converge in distribution and
also gives a description of the limits. For the statement of the result, we need some
more notation. Let u(k, j) = (u1(k, j), . . . , uk(k, j)) ∈ {0,1}k , j = 1, . . . ,2k , be
the nodes of depth k ∈ N in the order of their associated binary rationals [the com-
ponents can be given explicitly as um(k, j) = �2−k+m(j − 1)�(mod2)] and let

u(k, j, l) = (u1(k, j), . . . , ul(k, j))

be the ancestor of u(k, j) at depth l, l = 0, . . . , k − 1, with the understanding that
u(k, j,0) = ∅. We also write 1k for the 2k-dimensional vector that has all entries
equal to 1.

THEOREM 4. For k ∈ N fixed and with n → ∞,
(

�kY
◦(Tn)

η◦(Tn)

)
→D

(
2−k(k1k + ρk + ηk − η◦∞)

η◦∞

)
.(17)

Here, ρk = (ρk,1, . . . , ρk,2k ) and ηk = (ηk,1, . . . , ηk,2k ) are independent 2k-dimen-
sional random vectors, given (distributionally) as follows. The components ηk,j of
ηk are independent and each ηk,j has the same distribution as η∞, defined in (6).
Further, the components ρk,j of ρk have the joint distributional representation

ρk,j =D
∑

{l : ul(k,j)=1}
log ξu(k,j,l−1) + ∑

{l : ul(k,j)=0}
log

(
1 − ξu(k,j,l−1)

)
,(18)
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where ξu, u ∈ N , is a family of independent random variables, all uniformly dis-
tributed on the unit interval. Finally,

η◦∞ = 2−k
2k∑

j=1

(ρk,j + ηk,j ).

PROOF. Let T k,j := T (u(k, j)) denote the subtree of T with root u(k, j). We
have, provided that the fill level of T is at least k so that none of the subtrees is
empty,

Y ◦
j2−k (T ) − Y ◦

(j−1)2−k (T )

=
∫ j2−k

(j−1)2−k
Xs(T ) ds − 2−kη(T )

(19)
= 2−k(k + η(T k,j ) − η(T )

)
= 2−k(k + H(#T k,j ) − H(#T ) + η0(T k,j ) − η◦(T )

)
for j = 1, . . . ,2k . Further, these differences sum to zero in view of Y ◦

1 (T ) =
Y ◦

0 (T ), hence,

η◦(T ) = 2−k
2k∑

j=1

(
k + η0(T k,j ) + H(#T k,j ) − H(#T )

)
.(20)

The development thus far has been for a fixed tree T ∈ T . We now substitute the
elements Tn of a BST sequence for T . Let Nn,k := (Nn,k,1, . . . ,Nn,k,2k ) be the
random vector that counts the size of the subtrees of Tn at level k, that is,

Nn,k,j = #T k,j
n , j = 1, . . . ,2k.

Because of (19) and (20), in order to obtain the distributional limits in (17), it is
enough to work out the asymptotic behavior of the vector

(
η◦(T k,1

n ), . . . , η◦(T k,2k

n ),H(Nn,k,1) − H(n), . . . ,H(Nn,k,2k ) − H(n)
)

(21)

as n → ∞ (the quantities of interest can be written as a fixed linear function of
these vectors, so the continuous mapping theorem applies).

Given that a node u at level l has #Tn(u) = m, there are �mξu� nodes in the left
subtree and m − 1 − �mξu� nodes in the right subtree of Tn(u), independent of
what happened at levels 0, . . . , l − 1. Hence,

1

n
Nn,k →D Vk = (Vk,1, . . . , Vk,2k ),

where

Vk,j =D
k∏

l=1

ξ
ul(k,j)
u(k,j,l−1)

(
1 − ξu(k,j,l−1)

)1−ul(k,j)
,
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jointly in j = 1, . . . ,2k . Further, given Nn,k,j = mj , the trees T
k,j
n are independent

with

T k,j
n =D Tmj

, j = 1, . . . ,2k,

so that the familiar asymptotics of harmonic numbers, together with Theorem 2,
imply that the random vector in (21) converges in distribution to

(ηk,1, . . . , ηk,2k , ρk,1, . . . , ρk,2k )

as n → ∞, with ηk,j , ρk,j as in the statement of the theorem. The theorem now
follows by appropriately combining elements. �

Hence, in contrast to the silhouette itself, where the individual random variables
are asymptotically independent, we now have limiting finite-dimensional distrib-
utions that might be compatible with a limit process that has somewhat regular
(e.g., continuous) paths. Below, we will see that the representation of the finite-
dimensional distributions given in (18) provides the key to the proof of path prop-
erties of the limit process.

To obtain convergence in distribution, we need tightness of the sequence
(Zn)n∈N. For this, we require a technical detail that we state separately as a lemma.
We say that a family (Xi)i∈I of nonnegative random variables has uniformly expo-
nentially decreasing tails if, for some constants κ > 0 and C < ∞,

P(Xi ≥ x) ≤ C exp(−κx) for all x ≥ 0 and i ∈ I.(22)

Some obvious properties of this notion, such as stability with respect to taking
sums, will be used below without further comment.

LEMMA 5. Let (Xn)n∈N0 and (An)n∈N be sequences of nonnegative random
variables with X0 ≡ 0 and, for all n ∈ N,

Xn ≤D
1√
2

max{XIn,X
′
n−1−In

} + An,(23)

where (Xn)n∈N0, (X
′
n)n∈N0, In are independent, (X′

n)n∈N0 =D (Xn)n∈N0 and In ∼
unif{0, . . . , n − 1}. In this situation, if (An)n∈N0 has uniformly exponentially de-
creasing tails, then so does (Xn)n∈N0 .

PROOF. Suppose that, for some κ > 0 and C < ∞,

P(An ≥ x) ≤ C exp(−κx) for all x ≥ 0, n ∈ N.

We have to show that there are finite constants κ̃ > 0 and C̃ < ∞ such that

P(Xn ≥ x) ≤ C̃ exp(−κ̃x) for all x ≥ 0, n ∈ N0.
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If we want to prove this by induction, then the case n = 0 is clear as X0 ≡ 0. We
may also assume that x ≥ x0 := log(C̃)/κ̃ as otherwise the upper bound is greater
than 1. Using (23), we obtain

P(Xn ≥ x) ≤ 2 max
k=0,...,n−1

P

(
Xk ≥ 3x

2
√

2

)
+ P

(
An ≥ x

4

)
,

so the induction step will work if κ̃ and C̃ can be chosen such that

2C̃ exp
(
− 3κ̃x

2
√

2

)
+ C exp

(
−κx

4

)
≤ C̃ exp(−κ̃x) for all x ≥ x0.

This can obviously be done if we first choose κ̃ := κ/8, for example, and then
choose C̃ large enough. �

We next translate the basic recursion (3) for the raw silhouette into a recursion
for the sequence (Zn)n∈N of processes defined in (15). For this, we require the two
linear operators A,B :C00[0,1] → C00[0,1] given by

Af (t) := 1
2f (2t ∧ 1), Bf (t) := 1

2f
(
(2t − 1)+

)
for all t ∈ [0,1]

and the function φ : [0,1] → R,

φ(t) := 1
2

(
t ∧ (1 − t)

)
, 0 ≤ t ≤ 1.

LEMMA 6. For all n ∈ N,

(
Y ◦(Tn)

η◦(Tn)

)
=D

⎛
⎜⎜⎜⎜⎝

AY ◦(TIn) + BY ◦(T ′
n−1−In

) + (
η◦(TIn) − η◦(T ′

n−1−In
)
)
φ

+ (
H(In) − H(n − 1 − In)

)
φ

1 + 1
2

(
η◦(TIn) + η◦(Tn−1−In)

)
+ 1

2

(
H(In) + H(n − 1 − In)

) − Hn

⎞
⎟⎟⎟⎟⎠ ,

where (Tn)n∈N0 , (T ′
n)n∈N0 and In are independent, (Tn)n∈N0 =D (T ′

n)n∈N0 and
In ∼ unif({0, . . . , n − 1}).

PROOF. For a fixed nonempty tree T , the basic recurrence (3) gives

Yt (T ) = t + 1
2Y2t∧1(L(T )) + 1

2Y(2t−1)+(R(T ))

and a straightforward calculation results in

Y ◦
t (T ) = (AY ◦(L(T )))t + (BY ◦(R(T )))t + (

η(L(T )) − η(R(T ))
)
φ(t).

Similarly,

η◦(T ) = 1 + 1
2

(
η(L(T )) + η(R(T ))

) − H(#T ).

From these, the statement follows on using the distributionally recursive structure
of BST sequences explained at the beginning of Section 4. �
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We now introduce the space M of probability measures μ on the Borel subsets
of the space S defined in (16) that satisfy the conditions∫

(‖f ‖2∞ + x2)μ(df, dx) < ∞ and
∫

xμ(df, dx) = 0.

On M, we define a metric d by

d(μ, ν)2 := inf
{
max{E‖Y − Ȳ‖2∞,7E(η − η̄)2} : (Y, η) ∼ μ, (Ȳ , η̄) ∼ ν

}
.

The factor 7 will be useful in the proof of Lemma 7 below. As at the end of the
proof of Theorem 2, we now construct a (nonlinear) operator 	 : M → M whose
definition is motivated by passing to the limit in the recursion given in Lemma 6:
for μ ∈ M, let 	(μ) be the joint distribution of the random function

AY + BY ′ + (η − η′)φ + (
log ξ − log(1 − ξ)

)
φ

and the real random variable

1 + 1
2(η + η′) + 1

2

(
log ξ + log(1 − ξ)

)
,

where (Y, η), (Y ′, η′) and ξ are independent, (Y, η) ∼ μ, (Y ′, η′) ∼ μ and ξ ∼
unif(0,1). It is easy to check that 	 indeed maps M into M.

LEMMA 7. 	 is a strong contraction on (M, d).

PROOF. Let μ and ν be elements of M. For any given ε > 0, we can find
(Y, η) ∼ μ and (Ȳ , η̄) ∼ ν such that

max{E‖Y − Ȳ‖2∞,7E(η − η̄)2} ≤ d(μ, ν)2 + ε.

Now, let (Y ′, η′, Ȳ ′, η̄′) be an independent copy of (Y, η, Ȳ , η̄) and let ξ ∼
unif(0,1) be independent of the two random quantities (Y, η, Ȳ , η̄) and (Y ′, η′,
Ȳ ′, η̄′). By the definition of the operator 	 and the metric d ,

d(	(μ),	(ν))2

≤ max
{
E

∥∥A(Y − Ȳ ) + B(Y ′ − Ȳ ′) + (
(η − η̄) − (η′ − η̄′)

)
φ

∥∥2
∞,

7E
(1

2

(
(η − η̄) + (η′ − η̄′)

))2}
.

For the second component, we use independence of η − η̄ and η′ − η̄′ and the fact
that both have the same distribution to obtain

7 · E(1
2

(
(η − η̄) + (η′ − η̄′)

))2 = 7
2 · E(η − η̄)2 ≤ 1

2

(
d(μ, ν)2 + ε

)
.

The starting point for a similar analysis of the more complicated first part is the
observation that Af vanishes on [1

2 ,1] and that Bf vanishes on [0, 1
2 ] for all f ∈

C00[0,1] so that, splitting the supremum accordingly,∥∥A(Y − Ȳ ) + B(Y ′ − Ȳ ′) + (
(η − η̄) − (η′ − η̄′)

)
φ

∥∥2
∞

≤ max
{∥∥A(Y − Ȳ ) + (

(η − η̄) − (η′ − η̄′)
)
φ

∥∥2
∞,

∥∥B(Y ′ − Ȳ ′) + (
(η − η̄) − (η′ − η̄′)

)
φ

∥∥2
∞

}
.
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The sum of the two terms provides an upper bound for the maximum, hence,

E
∥∥A(Y − Ȳ ) + B(Y ′ − Ȳ ′) + (

(η − η̄) − (η′ − η̄′)
)
φ

∥∥2
∞

≤ E
∥∥A(Y − Ȳ ) + (

(η − η̄) − (η′ − η̄′)
)
φ

∥∥2
∞

+ E
∥∥B(Ȳ − Ȳ ) + (

(η − η̄) − (η′ − η̄′)
)
φ

∥∥2
∞.

The two terms on the right-hand side have the same structure. Using the triangle in-
equality for the supremum norm, ‖φ‖∞ ≤ 1

4 , ‖Af ‖∞ ≤ 1
2‖f ‖∞ and Minkowski’s

inequality, we obtain

E
∥∥A(Y − Ȳ ) + (

(η − η̄) − (η′ − η̄′)
)
φ

∥∥2
∞

≤ E
(1

2‖Y − Y ′‖∞ + 1
4 |(η − η̄) − (η′ − η̄′)|)2

≤ (1
2(E‖Y − Y ′‖2∞)1/2 + 1

4

(
E

(
(η − η̄) − (η′ − η̄′)

)2)1/2)2
.

Inside the large outer brackets, we now use

E‖Y − Y ′‖2∞ ≤ d(μ, ν)2 + ε

and

E
(
(η − η̄) − (η′ − η̄′)

)2 = 2E(η − η̄)2 ≤ 2
7

(
d(μ, ν)2 + ε

)
,

which, combined, lead to the upper bound

E
∥∥A(Y − Ȳ ) + (

(η − η̄) − (η′ − η̄′)
)
φ

∥∥2
∞

≤ (1
2

(
d(μ, ν)2 + ε

)1/2 + 1√
56

(
d(μ, ν)2 + ε

)1/2)2

≤ c
(
d(μ, ν)2 + ε

)
with some constant c < 1/2. Using the same arguments with the terms involving
the operator B , we arrive at

d(	(μ),	(ν))2 ≤ 2c
(
d(μ, ν)2 + ε

)
.

Since c does not depend on ε, we now obtain the strong contraction property on
letting ε tend to 0. �

THEOREM 8. With Zn, n ∈ N, and 	 as above, Zn →D Z∞ as n → ∞, where
the distribution of Z∞ is the unique fixed point of the operator 	 .

PROOF. Let

Wn(δ) := sup
0≤s,t≤1
|s−t |≤δ

|Y ◦
t (Tn) − Y ◦

s (Tn)|, δ ≥ 0,
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be the modulus of continuity of the process Y ◦(Tn). Using |φ(s)−φ(t)| ≤ |s− t |/2
and Lemma 6, we obtain

Wn(δ) ≤D
1
2 max{WIn(2δ),W ′

n−1−In
(2δ)}

(24)
+ δ

2 |η◦(TIn) + η◦(Tn−1−In)| + δ
2 |H(In) − H(n − 1 − In)|,

where (Wn)n∈N, (W ′
n)n∈N and In are independent, (Wn)n∈N =D (W ′

n)n∈N and In ∼
unif({0, . . . , n − 1}). Now, let

W̃n := sup
0<δ≤1

δ−1/2Wn(δ).

Clearly, W̃0 ≡ 0, and (24) implies that

W̃n ≤D
1√
2

max{W̃In, W̃
′
n−1−In

} + An + Bn for all n ∈ N

with

An := 1
2 |η◦(TIn) + η◦(Tn−1−In)|, Bn := |H(In) − H(n − 1 − In)|

and the usual distributional assumptions. Equation (13) in Theorem 3 implies that
(An)n∈N has uniformly exponentially decreasing tails. To obtain the same property
for Bn, we first observe that it is enough to treat H(n) − H(In), which is nonneg-
ative. It is easy to check that H(n)1{In=0} has uniformly exponentially decreasing
tails. Further, we have(

H(n) − H(In)
)
1{In 
=0} ≤D − log(ξ) + 1

with ξ ∼ unif(0,1), so this term also has the required tail property. Therefore,
Lemma 5 can be applied, leading to a uniform upper bound for the tails of W̃n. In
particular,

lim
δ↓0

sup
n∈N

Wn(δ) = 0 in probability,

which shows that the sequence (Y ◦(Tn))n∈N is tight in C00[0,1]; see Section 8 in
Billingsley (1968). In view of Theorem 2, (η◦(Tn))n∈N is also tight in C00[0,1],
which, by a standard argument using Prohorov’s theorem, implies tightness of the
sequence (Zn)n∈N. Convergence of the finite-dimensional distribution was ob-
tained in Theorem 4. Combining elements, we see that Zn →D Z∞ for some
S-valued random quantity Z∞. Finally, we can pass to the limit in the distribu-
tional equation given in Lemma 6 and then use Lemma 7, together with Banach’s
fixed point theorem to complete the proof. �

What can be said about the paths of the process part Y∞ of the limit Z∞?
The functional limit theorem implies that the paths are continuous as every-
thing happens in C([0,1]). The maximum of the raw silhouette is the height Hn

of the tree. It has been shown by Devroye (1986) that Hn/ logn converges to
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c+ = 4.311. . . in probability as n → ∞. Similarly, the minimum is the tree’s fill
(or saturation) level Ln and Ln/ logn converges to c− = 0.373. . . almost surely as
n → ∞, a result obtained by Biggins (1997) in the context of branching random
walks. Heuristically, as c− < c+, we would therefore expect that the paths of the
limit process are not differentiable. As the next result shows, almost all paths of
Y∞ are indeed not even Lipschitz, but they are Hölder continuous of order α for
all α < 1.

THEOREM 9. With Z∞ = (Y∞, ζ ) as in Theorem 8,

P

(
sup

0≤s<t≤1

|Y∞(t) − Y∞(s)|
|t − s| = ∞

)
= 1

and, for all α < 1,

P

(
sup

0≤s<t≤1

|Y∞(t) − Y∞(s)|
|t − s|α < ∞

)
= 1.

PROOF. Taking s = 0 and t = 2−k in (17), we obtain

|Y∞(t) − Y∞(s)|
|t − s| =D |k + ρk + η|,(25)

where −ρk has a gamma distribution with shape parameter k and scale parame-
ter 1, and η is random variable whose distribution does not depend on k. For k

large, (k + ρk)/
√

k is close in distribution to a standard normal, which shows that
the right-hand side of (25) tends to ∞ in probability as k → ∞. This proves the
first statement.

For proof of the second part, we use the Kolmogorov–Chentsov theorem; see,
for example, Kallenberg (1997), Theorem 2.23. Let ρk and η be as above; note
that −ρk can be written as the sum of k independent random variables that are
exponentially distributed with parameter 1. Moments of all orders exist for these
and for ζ . Hence, by Minkowski’s inequality, for each l ∈ N, there is a constant Cl

such that

E|k + ρk + η|l ≤ Clk
l for all k ∈ N.

If s and t are such that s = j2−k and t = (j + 1)2−k for some j ∈ {0, . . . ,2k − 1},
then we obtain, again using (17),

E|Y∞(t) − Y∞(s)|l ≤ |t − s|l∣∣ log2 |t − s|∣∣lCl.(26)

The desired Hölder continuity now follows on using two facts: first, the right-hand
side of (26) can be bounded by |t − s|l+δ for all δ > 0 and we may choose an
arbitrarily large value for l; second, the chaining proof of the Hölder part of the
Kolmogorov–Chentsov theorem makes use of the moment bounds only for values
of s and t that are of the above form, that is, binary rational neighbors. �
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6. Remarks. In this final section, we briefly discuss another family of search
trees, comment on the methodology and close with a final remark on the “big
picture.”

(i) As in the previous sections, let (ξn)n∈N be a sequence of independent random
variables, all uniformly distributed on the unit interval. The DST (digital search
tree) algorithm uses the binary expansion of the values as a directive of how to
travel through the binary tree, storing each value in the first free (i.e., the unique
external) node; again, we refer to Knuth (1973), Mahmoud (1992) and Sedgewick
and Flajolet (1996) for more information. As in the BST case, the algorithm pro-
duces a sequence (Tn)n∈N of random trees, where Tn is the DST output for the
first n variables ξ1, . . . , ξn of the sequence. In contrast to the BST situation, we no
longer have invariance of the resulting random structures under strictly monotone
transformations of the input data. However, we still have a simple “stochastic dy-
namics”: in both cases, Tn+1 is obtained by adding a randomly selected element
of ∂Tn to Tn, but, whereas in the BST case, one of the n + 1 external nodes of Tn

is chosen uniformly, in the DST case, it is chosen with probability 2−k , where k

is the height of the external node (the fact that these values sum to 1 has already
been mentioned in the proof of Theorem 2). The silhouette of such a tree, in raw
and in normalized integrated form, is shown in Figure 2. It is “visually obvious”
when comparing this with Figure 1 that these functions are quite different in the
BST and DST cases (Figures 1 and 2 are based on the same input and use the same
scale).

A first point of interest is the fact that the associated discounted external path
length ηn now has a direct algorithmic interpretation as the conditional expectation
of the number of bit checks necessary to insert the next data value ξn+1 into the
tree Tn, given Tn. Generally, the DST output is closer to the “ideal” search tree
of minimal height, but makes stronger assumptions on the nature of the input.
One indication of this is the fact that distributional fluctuations appear in the DST

FIG. 2. An example of a silhouette (left) and the corresponding normalized integrated silhouette
(right) in the DST case.
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situation; indeed, if we always stored the next item in an external node of minimal
height, we would have

ηn,opt − log2 n = φ({log2 n}),
where {x} denotes the fractional part of x and φ(x) := 2x −1−x, 0 ≤ x ≤ 1. Some
heuristic arguments support the conjecture that the expectation of ηn differs from
ηn,opt by an asymptotically negligible amount and that the variance of ηn tends to 0
as n → ∞.

As a second point of interest, we note that the analysis of the associated silhou-
ette processes begins to bifurcate at the earliest possible point, that is, in the sit-
uation considered in Theorem 1. As a result of the stochastic dynamics explained
above, the movement along a particular path s ∈ [0,1), that is, the behaviour of
Xs(Tn) for n = 1,2, . . . , is a Markov chain of pure-birth type with state space
N and birth rates pk,k+1 = 2−k . The associated distributions converge along suit-
ably chosen subsequences if we simply subtract logn; see Dennert and Grübel
(2007) for a recent probabilistic approach. Recall that in the BST case, the vari-
ance of Xs(Tn) grows at a logarithmic rate and that a suitably rescaled version
of Xs(Tn) is asymptotically normal. Moreover, the random variables Xs(Tn) and
Xt(Tn) are asymptotically independent by Theorem 1 if s 
= t ; in particular, the
absolute difference between the two converges to ∞ in probability as n → ∞. In
the DST case, however, it follows easily from the result mentioned above, that the
family of distributions of the differences Xt(Tn) − Xs(Tn), n ∈ N, is tight. Again
on the basis of heuristic arguments, I conjecture that the distributional periodici-
ties disappear in an appropriately standardized version of the silhouette, such as
(Xt(Tn) − X0(Tn))0≤t≤1.

(ii) In our proofs, we have used martingale results and contraction arguments.
A survey of the contraction method in the context of the analysis of algorithms is
given in Rösler and Rüschendorf (2001) and, with emphasis on the multivariate
case, in Neininger and Rüschendorf (2006). A first use of the contraction method
in connection with the analysis of algorithms on the level of stochastic processes,
as in the present paper, can be found in Grübel and Rösler (1996). Roughly, martin-
gale arguments often provide almost sure convergence in cases where the contrac-
tion method only yields convergence in distribution, but the latter seems to have
advantages if our interest is in the properties of the limit distribution. The two
methods are closely related to the complementary aspects of BST sequences, the
dynamic structure and the distributionally recursive structure, that we have used
repeatedly in the previous sections.

(iii) According to Knuth (1997), page 308, trees are “the most important non-
linear structures that arise in computer algorithms.” Given a sequence of input
data, both the BST and the DST algorithms generate a sequence (Tn)n∈N of binary
trees that grow by one node at a time. As has been shown in Luczak and Win-
kler (2004), even in the case of uniformly distributed trees, there is a dynamical
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procedure that builds these structures in this sequential manner. From that point
of view, in all three cases, the stochastic process (Tn)n∈N of trees is a transient
Markov chain with a denumerable state space E, with E the set of all finite and
prefix-stable subsets of the denumerable set N of nodes. One would expect that,
in a rough sense, the limit is always the complete binary tree T∞. However, this
is not true in the uniform case; see Luczak and Winkler (2004) and the references
given therein. However, for the search trees that we have considered in the present
paper, the fill level converges to ∞ with probability 1, so a simple compactification
E∞ := E ∪ {T∞} makes (Tn)n∈N a sequence that converges with probability 1 – if
convergence means that every u ∈ N will eventually be an element of Tn. From a
general theoretical point of view, the results of the present paper can be regarded
as a first step toward a more detailed asymptotic analysis, going beyond the one-
point compactification toward classical notions such as the Martin boundary; see
Sawyer (1997). In this connection, it is interesting to note that Régnier’s (1989)
analysis of Quicksort is based on one specific harmonic function associated with
the Markov chain that arises in the BST case.
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