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Abstract. We present a general framework of interest rate models driven
by Wiener processes and Poisson random measures. Using as numéraire the
growth optimal portfolio, we model the interest rate term structure under the
real-world probability measure, and hence, we do not need the existence of
an equivalent risk-neutral probability measure. Our investigations include the
derivation of the growth optimal portfolio dynamics, the derivation of the drift
condition, an existence proof of the corresponding term structure equation and
a characterization of positivity preserving models.

1. Introduction

The time t value of a Euro at time T ≥ t is expressed by a Zero Coupon Bond
with maturity T . This is a contract which guarantees the holder one Euro to be
paid at the maturity date T . The corresponding bond prices can be written as the
continuous discounting of one unit of cash

Pt(T ) = exp

(
−
∫ T

t

ft(s)ds

)
,

where ft(T ) is the rate prevailing at time t for instantaneous borrowing at time T ,
also called the forward rate for date T .

In the spirit of [4, 6], we model the forward rate dynamics, which are driven
by jump-diffusions, under the real-world probability measure. This is based on the
Benchmark Approach presented in [27]. More precisely, we suppose that, under the
real-world probability measure P, for every date T the forward rates f(T ) follow
an Itô process of the form

(1.1)
dft(T ) = αt(T )dt+ σt(T )dWt +

∫
B

γt(T, x)(µ(dt, dx)− F (dx)dt)

+

∫
Bc
γt(T, x)µ(dt, dx), t ∈ [0, T ]

with a (possibly infinite dimensional) Wiener processW and a homogeneous Poisson
random measure µ. The integral

∫
B
represents the small jumps of the forward rates,

and
∫
Bc

represents the large jumps. Note that (1.1) includes the original Heath-
Jarrow-Morton (HJM) framework from [21] and its extensions such as [2, 3], [5]
and [14, 13, 9, 10, 11, 12], which require the existence of a risk-neutral probability
measure Q ∼ P.
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From a financial modeling point of view, the drift and the volatilities should be
allowed to depend on the state of the prevailing forward curve. As argued in [18],
after switching to the Musiela parametrization (see [24])

rt(ξ) := ft(t+ ξ), ξ ≥ 0

this leads to a stochastic partial differential equation (SPDE)
drt =

(
d
dxrt + α(rt)

)
dt+ σ(rt)dWt

+
∫
B
γ(rt−, x)(µ(dt, dx)− F (dx)dt)

+
∫
Bc
γ(rt−, x)µ(dt, dx)

r0 = h0

(1.2)

in the spirit of [7] (see also [29, 19]) and [25], the so-called Heath-Jarrow-Morton-
Musiela (HJMM) equation.

Our goal of this paper is to present new results concerning the HJMM equation
(1.2) with real-world dynamics which extend and generalize prior contributions to
this field. The precise objectives are the following:

• The growth optimal portfolio Sδ∗ plays a crucial role in the Benchmark
Approach from [27]. We will show that it has the dynamics

(1.3)
dSδ∗t = Sδ∗t−

[(
rt(0) + ‖θt‖2L0

2(R) +

∫
E

ψt(x)2

1− ψt(x)
F (dx)

)
dt

+ θtdWt +

∫
E

ψt(x)

1− ψt(x)
(µ(dt, dx)− F (dx)dt)

]
,

where θ and ψ denote the reference market prices of risk with respect to
the Wiener processW and the Poisson random measure µ. This generalizes
the dynamics that have been derived in [27, 6].

• We will show that in an arbitrage free bond market (in the spirit of [27])
the drift term in (1.1) is given by

(1.4)

αt(T ) =
〈
σt(T ), θt +

∫ T

t

σt(s)ds
〉
L0

2(R)

−
∫
B

γt(T, x)

[
exp

(
− φt(x)−

∫ T

t

γt(s, x)ds

)
− 1

]
F (dx)

−
∫
Bc
γt(T, x) exp

(
− φt(x)−

∫ T

t

γt(s, x)ds

)
F (dx),

where φ denotes the transformation

φt(x) := − ln(1− ψt(x)),

of the reference market prices of risk with respect to the Poisson random
measure µ. This generalizes the dynamics that have been derived in [27, 4].
Moreover, with θ ≡ ψ ≡ 0 we obtain the HJM drift conditions for interest
rate models under an assumed risk-neutral probability measure Q, which
have been derived in the aforementioned papers on HJM models.

• Under suitable regularity conditions, we will prove existence and uniqueness
of mild solutions to the HJMM equation (1.2) with real-world dynamics.
These evolutions are more general and provide more modeling freedom than
term structure models under classical risk-neutral pricing, which require
the existence of an equivalent risk-neutral probability measure Q ∼ P.
Simultaneously, we relax the regularity conditions on the volatilities, which
have been assumed to be Lipschitz and bounded in [18]. This is due to a
recent result from [32], which shows that local Lipschitz and linear growth
conditions are sufficient for existence and uniqueness of mild solutions.
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• In practice, we are interested in term structure models producing positive
forward curve, because negative forward rates are very rarely observed.
Denoting by P the closed, convex cone of all nonnegative forward curves,
we will show that the three conditions

σj(h)(ξ) = 0 for all (h, ξ) ∈ P × R+ with h(ξ) = 0, for all j ∈ N,
h+ γ(h, x) ∈ P for all h ∈ P , for F–almost all x ∈ E,
γ(h, x)(ξ) = 0 for all (h, ξ) ∈ P × R+ with h(ξ) = 0, for F–almost all x ∈ E,

are necessary and sufficient for the positivity preserving property of the
HJMM equation (1.2). Surprisingly, these conditions do not involve the
market prices of risk θ, φ and resemble those from [18], which have been
derived under an assumed risk-neutral probability measure Q ∼ P.

The remainder of this paper is organized as follows: In Section 2 we introduce
the general stochastic framework. In Section 3 we derive the dynamics (1.3) of
the growth optimal portfolio and in Section 4 we derive the drift condition (1.4).
In Section 5 we present our existence and uniqueness result for mild solutions to
the HJMM equation (1.2) – see Theorem 5.1 – and in Section 6 we provide our
result concerning positivity preserving models. Finally, in Section 7 we illustrate
our results by focusing on Lévy process driven interest rate models with real-world
forward rate dynamics. For the sake of lucidity, we have postponed the proof of
Theorem 5.1 to Appendix A.

2. The stochastic framework

In this section, we shall present the general stochastic framework for our inves-
tigations in the forthcoming sections.

Throughout this text, let (Ω,F , (Ft)t≥0,P) be a filtered probability space satis-
fying the usual conditions.

Let U be a separable Hilbert space and let Q ∈ L(U) be a nuclear, self-adjoint,
positive definite linear operator. Then, there exist an orthonormal basis (ej)j∈N of
U and a sequence (λj)j∈N ⊂ (0,∞) with

∑
j∈N λj <∞ such that

Qej = λjej for all j ∈ N,

namely, the λj are the eigenvalues of Q, and each ej is an eigenvector corresponding
to λj . The space U0 := Q1/2(U), equipped with the inner product

〈u, v〉U0 := 〈Q−1/2u,Q−1/2v〉U ,

is another separable Hilbert space and (
√
λjej)j∈N is an orthonormal basis. Let W

be an U -valued Q-Wiener process, see [7, p. 86, 87]. For another separable Hilbert
space H, we denote by L0

2(H) := L2(U0, H) the space of Hilbert-Schmidt operators
from U0 into H, which, endowed with the Hilbert-Schmidt norm

‖Φ‖L0
2(H) :=

(∑
j∈N
‖Φ(

√
λjej)‖2

)1/2

, Φ ∈ L0
2(H)

itself is a separable Hilbert space.
Let (E, E) be a measurable space which we assume to be a Blackwell space (see

[8, 20]). We remark that every Polish space with its Borel σ-field is a Blackwell space.
Furthermore, let µ be a time-homogeneous Poisson random measure on R+ × E,
see [22, Def. II.1.20]. Then its compensator is of the form dt⊗F (dx), where F is a
σ-finite measure on (E, E). In the sequel, B ∈ E denotes a set with F (Bc) <∞.
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3. The growth optimal portfolio

In this section, we will derive the dynamics (1.3) of the growth optimal portfo-
lio in a market driven by a Wiener process and a Poisson random measure. The
growth optimal portfolio is characterized as the portfolio maximizing the expected
logarithmic utility from terminal wealth. For more detailed explanations about the
growth optimal portfolio and related concepts, the reader is referred to [27], [6] and
references therein.

We consider a financial market (S0, S1) consisting of the savings account S0 and
one risky asset S1 with dynamics

dS0
t = S0

t rt(0)dt,(3.1)

dS1
t = S1

t−

(
atdt+ btdWt +

∫
B

ct(x)(µ(dt, dx)− F (dx)dt)(3.2)

+

∫
Bc
ct(x)µ(dt, dx)

)
,

where rt(0) denotes the short rate and the process c satisfies c > −1. Important
quantities are the market price of risk processes θ : Ω × R+ → L0

2(R) and ψ :
Ω × R+ × E → R. In our financial market, the market prices of risks are specified
as the solution (θ, ψ) with ψ < 1 of the equation

〈bt, θt〉L0
2(R) +

∫
E

ct(x)ψt(x)F (dx) = at +

∫
Bc
ct(x)F (dx)− rt(0),

which we rewrite as

at = rt(0) + 〈bt, θt〉L0
2(R) +

∫
E

ct(x)ψt(x)F (dx)−
∫
Bc
ct(x)F (dx).

Inserting this equation into (3.2), we obtain the dynamics of the risky asset

(3.3)
dS1

t = S1
t−

[(
rt(0) + 〈bt, θt〉L0

2(R) +

∫
E

ct(x)ψt(x)F (dx)

)
dt

+ btdWt +

∫
E

ct(x)(µ(dt, dx)− F (dx)dt)

]
.

Let δ = (δ0, δ1) be a self-financing strategy and denote by Sδ the corresponding
portfolio

Sδt = δ0
t S

0
t + δ1

t S
1
t .

Incorporating (3.1) and (3.3), by the self-financing property we obtain the portfolio
dynamics

dSδt = δ0
t dS

0
t + δ1

t dS
1
t

= Sδt rt(0)dt+ δ1
t S

1
t−

[(
〈bt, θt〉L0

2(R) +

∫
E

ct(x)ψt(x)F (dx)

)
dt

+ btdWt +

∫
E

ct(x)(µ(dt, dx)− F (dx)dt)

]
.

It will be convenient to introduce the fraction πδ of Sδ that is invested in the risky
asset S1. This fraction is given by

πδ,t := δ1
t

S1
t

Sδt
.
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Then we obtain the portfolio dynamics

(3.4)
dSδt = Sδt−

[
rt(0)dt+ πδ,t

((
〈bt, θt〉L0

2(R) +

∫
E

ct(x)ψt(x)F (dx)

)
dt

+ btdWt +

∫
E

ct(x)(µ(dt, dx)− F (dx)dt)

)]
.

The growth optimal portfolio Sδ∗ is characterized as the portfolio maximizing the
expected log-utility E[ln(Sδt )] among all self-financing portfolios δ. In order to de-
termine the dynamics of the growth optimal portfolio, we compute the dynamics
of ln(Sδt ) for the portfolio dynamics (3.4). Applying Itô’s formula we obtain

d lnSδt =

[
rt(0) + πδ,t

(
〈bt, θt〉L0

2(R) +

∫
E

ct(x)ψt(x)F (dx)

)
− 1

2
π2
δ,t‖bt‖2L0

2(R)

+

∫
E

(
ln(1 + πδ,tct(x))− πδ,tct(x)

)
F (dx)

]
dt

+ πδ,tbtdWt +

∫
E

ln(1 + πδ,tct(x))(µ(dt, dx)− F (dx)dt).

Since the growth optimal portfolio Sδ∗ is characterized as the portfolio maximiz-
ing the expected log-utility, the fraction πδ∗ corresponding to the growth optimal
portfolio should be chosen such that it maximizes the drift term. Differentiating the
drift term with respect to πδ∗ and putting it equal to zero we obtain the equation

〈bt, θt〉L0
2(R) +

∫
E

ct(x)ψt(x)F (dx)− πδ∗,t‖bt‖2L0
2(R)

+

∫
E

(
ct(x)

1 + πδ∗,tct(x)
− ct(x)

)
F (dx) = 0.

The solution (θ, ψ) to this equation is given by

θt = πδ∗,tbt and ψt(x) =
πδ∗,tct(x)

1 + πδ∗,tct(x)
.

Noting that

πδ∗,tct(x) =
ψ(x)

1− ψt(x)
,

by (3.4) we obtain the dynamics of the growth optimal portfolio

(3.5)
dSδ∗t = Sδ∗t−

[(
rt(0) + ‖θt‖2L0

2(R) +

∫
E

ψt(x)2

1− ψt(x)
F (dx)

)
dt

+ θtdWt +

∫
E

ψt(x)

1− ψt(x)
(µ(dt, dx)− F (dx)dt)

]
,

which are just the dynamics (1.3) stated in the introduction. This generalizes the
dynamics that have been derived in [27, 6]. Note that the dynamics (3.5) do not
depend on the choice of the drift a of the risky asset S1, which appears in (3.2).

4. The drift condition

In this section, we derive the drift condition (1.4) for arbitrage free real-world
forward rate dynamics of the type (1.1). In the framework of the Benchmark Ap-
proach from [27], the absence of arbitrage is only subject to the existence of the
growth optimal portfolio, which has the feature that benchmarked portfolios are
nonnegative local martingales, and hence supermartingales. Using the dynamics
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(3.5) of the growth optimal portfolio, we will first compute the dynamics of the
bond prices

Pt(T ) = P̂t(T )Sδ∗t ,

and then we will derive the dynamics of the forward rates ft(T ) = − ∂
∂T lnPt(T ),

which will yield the drift condition (1.4).
Since the benchmarked bond prices P̂ (T ) = P (T )

Sδ∗
are nonnegative local martin-

gales, we assume that they have the dynamics

dP̂t(T ) = −P̂t−(T )

[
Σ̂t(T )dWt +

∫
E

Λ̂t(T, x)(µ(dt, dx)− F (dx)dt)

]
with Λ̂ < 1. Introducing the new process

Γ̂t(T, x) := ln(1− Λ̂t(T, x)),

we can express Λ̂ as

Λ̂t(T, x) = 1− eΓ̂t(T,x),

and obtain the dynamics of the benchmarked bond prices

dP̂t(T ) = −P̂t−(T )

[
Σ̂t(T )dWt +

∫
E

(
1− eΓ̂t(T,x)

)
(µ(dt, dx)− F (dx)dt)

]
.(4.1)

Furthermore, introducing the transform

φt(x) := − ln(1− ψt(x))

of the reference market prices of risk with respect to the Poisson random measure
µ, we get the identities

ψt(x) = 1− e−φt(x),

ψt(x)

1− ψt(x)
=

1− e−φt(x)

e−φt(x)
= eφt(x) − 1,

ψt(x)2

1− ψt(x)
=
(
eφt(x) − 1

)(
1− e−φt(x)

)
.

Incorporating these identities into (3.5), we obtain the dynamics of the growth
optimal portfolio

(4.2)
dSδ∗t = Sδ∗t−

[(
rt(0) + ‖θt‖2L0

2(R) +

∫
E

(
eφt(x) − 1

)(
1− e−φt(x)

)
F (dx)

)
dt

+ θtdWt +

∫
E

(
eφt(x) − 1

)
(µ(dt, dx)− F (dx)dt)

]
.

Because of the dynamics (4.1) and (4.2), the covariation of P̂ (T ) and Sδ∗ is given
by

d[P̂ (T ), Sδ∗ ]t = −Pt−(T )

[
〈Σ̂t(T ), θt〉L0

2(R)dt

+

∫
E

(
1− eΓ̂t(T,x)

)(
eφt(x) − 1

)
µ(dt, dx)

]
.
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Therefore, by the definition of we the covariation (see [22, Def. I.4.45]) obtain

dPt(T ) = d(P̂t(T )Sδ∗t ) = P̂t−(T )dSδ∗t + Sδ∗t−dP̂t(T ) + d[P̂ (T ), Sδ∗ ]t

= Pt−(T )

[(
rt(0) + ‖θt‖2L0

2(R) +

∫
E

(
eφt(x) − 1

)(
1− e−φt(x)

)
F (dx)

)
dt

+ θtdWt +

∫
E

(
eφt(x) − 1

)
(µ(dt, dx)− F (dx)dt)

− Σ̂t(T )dWt −
∫
E

(
1− eΓ̂t(T,x)

)
(µ(dt, dx)− F (dx)dt)

− 〈Σ̂t(T ), θt〉L0
2(R)dt−

∫
E

(
1− eΓ̂t(T,x)

)(
eφt(x) − 1

)
F (dx)dt

−
∫
E

(
1− eΓ̂t(T,x)

)(
eφt(x) − 1

)
(µ(dt, dx)− F (dx)dt)

]
.

These dynamics simplify to

dPt(T ) = Pt−(T )

[(
rt(0) + 〈θt, θt − Σ̂t(T )〉L0

2(R)

+

∫
E

(
eΓ̂t(T,x) − e−φt(x)

)(
eφt(x) − 1

)
F (dx)

)
dt

+ (θt − Σ̂t(T ))dWt

+

∫
E

(
eΓ̂t(T,x)+φt(x) − 1

)
(µ(dt, dx)− F (dx)dt)

]
.

Hence, due to the boundary condition PT (T ) = 1 we obtain

θt = Σ̂t(t) and φt(x) = −Γ̂t(t, x).

Defining the new processes

Σt(T ) := Σ̂t(T )− θt,

Γt(T, x) := Γ̂t(T, x) + φt(x),

we thus have the boundary conditions

Σt(t) = 0 and Γt(t, x) = 0.(4.3)

Furthermore, we can express the dynamics of the bond prices as

dPt(T ) = Pt−(T )

[(
rt(0)− 〈θt,Σt(T )〉L0

2(R)

+

∫
E

(
eΓt(T,x)−φt(x) − e−φt(x)

)(
eφt(x) − 1

)
F (dx)

)
dt

− Σt(T )dWt +

∫
E

(
eΓt(T,x) − 1

)
(µ(dt, dx)− F (dx)dt)

]
.

Applying Itô’s formula, we obtain

d lnPt(T ) =

(
rt(0)− 〈θt,Σt(T )〉L0

2(R)

+

∫
E

(
eΓt(T,x)−φt(x) − e−φt(x)

)(
eφt(x) − 1

)
F (dx)

− 1

2
‖Σt(T )‖2L0

2(R) −
∫
E

(
eΓt(T,x) − Γt(T, x)− 1

)
F (dx)

)
dt

− Σt(T )dWt +

∫
E

Γt(T, x)(µ(dt, dx)− F (dx)dt).
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We can express these dynamics as

d lnPt(T ) =

(
rt(0)− 〈θt,Σt(T )〉L0

2(R) −
1

2
‖Σt(T )‖2L0

2(R)

−
∫
E

(
eΓt(T,x)−φt(x) − Γt(T, x)− e−φt(x)

)
F (dx)

)
dt

− Σt(T )dWt +

∫
E

Γt(T, x)(µ(dt, dx)− F (dx)dt)

Defining the new processes

σt(T ) :=
∂

∂T
Σt(T ) and γt(T ) := − ∂

∂T
Γt(T, x),

by the boundary conditions (4.3) we have

Σt(T ) =

∫ T

t

σt(s)ds and Γt(T, x) = −
∫ T

t

γt(s, x)ds.

Therefore, the forward rates ft(T ) = − ∂
∂T lnPt(T ) have the dynamics

dft(T ) =

[〈
σt(T ), θt +

∫ T

t

σt(s)ds
〉
L0

2(R)

−
∫
E

γt(T, x)

[
exp

(
− φt(x)−

∫ T

t

γt(s, x)ds

)
− 1

]
F (dx)

]
dt

+ σt(T )dWt +

∫
E

γt(T, x)(µ(dt, dx)− F (dx)dt),

which we can write as

dft(T ) =

[〈
σt(T ), θt +

∫ T

t

σt(s)ds
〉
L0

2(R)

−
∫
B

γt(T, x)

[
exp

(
− φt(x)−

∫ T

t

γt(s, x)ds

)
− 1

]
F (dx)

−
∫
Bc
γt(T, x) exp

(
− φt(x)−

∫ T

t

γt(s, x)ds

)
F (dx)

]
dt

+ σt(T )dWt +

∫
B

γt(T, x)(µ(dt, dx)− F (dx)dt) +

∫
Bc
γt(T, x)µ(dt, dx).

Consequently, we arrive at real-world forward rate dynamics of the type (1.1) with
drift term being of the form (1.4), as stated in the introduction. This generalizes
the dynamics that have been derived in [27, 4]. In particular, with θ ≡ ψ ≡ 0 it
generalizes the various drift conditions that have been derived for risk-neutral HJM
models under an assumed risk-neutral probability measure Q ∼ P

5. Existence and uniqueness of mild solutions to the HJMM equation

In this section, we establish existence and uniqueness of mild solutions to the
HJMM equation (1.2).

We fix an arbitrary constant β > 0 and denote by Hβ the space of all absolutely
continuous functions h : R+ → R such that

‖h‖β :=

(
|h(0)|2 +

∫
R+

|h′(x)|2eβxdx
)1/2

<∞.

Spaces of this kind have been introduced in [15]. We also refer to [30, Sec. 4], where
some relevant properties have been summarized. The spaceHβ is a separable Hilbert
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space and the shift semigroup (St)t≥0 given by Sth = h(t + •) is a C0-semigroup
on Hβ with infinitesimal generator d/dξ on the domain

D(d/dξ) = {h ∈ Hβ : (d/dξ)h ∈ Hβ}.

Let H0
β be the subspace

H0
β :=

{
h ∈ Hβ : lim

x→∞
h(x) = 0

}
.

We fix arbitrary constants 0 < β < β′ and set

Cβ := 1 +
1√
β
.(5.1)

Let σ : Ω × Hβ → L0
2(H0

β′), θ : Ω × Hβ → L0
2(R) and γ : Ω × Hβ × E → H0

β′ ,
φ : Ω ×Hβ × E → R be measurable mappings. Note that the volatilities σ, γ and
the market prices of risk θ, φ may depend on ω ∈ Ω and on the current state of
the forward curve. In particular, they could also depend on some underlying factor
process. We define the sequences (σj)j∈N and (θj)j∈N as

σj : Ω×Hβ → H0
β′ , σj(h) := σ(h)

√
λjej ,

θj : Ω×Hβ → R, θj(h) := θ(h)
√
λjej .

The following standing assumptions prevail throughout this section:
• There exist sequences (Ln)n∈N ⊂ R+ and (κj)j∈N ⊂ R+ with∑

j∈N
(κj)2 <∞

such that P–almost surely for all j, n ∈ N and all h1, h2 ∈ Hβ with
‖h1‖β , ‖h2‖β ≤ n we have

‖σj(h1)− σj(h2)‖β′ ≤ Lnκj‖h1 − h2‖β ,(5.2)

|θj(h1)− θj(h2)| ≤ Lnκj‖h1 − h2‖β ,(5.3)

and for all j ∈ N and h ∈ Hβ we have

‖σj(h)‖β′ ≤ κj
√

1 + ‖h‖β ,(5.4)

|θj(h)| ≤ κj
√

1 + ‖h‖β .(5.5)

• There exist a measurable mapping ρ : B → R+ with∫
B

ρ(x)2F (dx) <∞(5.6)

and constants Mγ ,Mφ ≥ 0 with Mγ ≤ 1 and√
1

β′(β − β′)
Mγ +Mφ ≤ 1

such that P–almost surely for all x ∈ B, n ∈ N and h1, h2 ∈ Hβ with
‖h1‖β , ‖h2‖β ≤ n we have

‖γ(h1, x)− γ(h2, x)‖β′ ≤ Lnρ(x)‖h1 − h2‖β ,(5.7)
|φ(h1, x)− φ(h2, x)| ≤ Lnρ(x)‖h1 − h2‖β ,(5.8)

and for all x ∈ B and h ∈ Hβ we have

‖γ(h, x)‖β′ ≤Mγ ln∗
(
ρ(x)

√
1 + ‖h‖β

)
,(5.9)

|φ(h, x)| ≤Mφ ln∗
(
ρ(x)

√
1 + ‖h‖β

)
,(5.10)
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where ln∗ : R+ → R+ denotes the inverse of the strictly increasing function

exp∗ : R+ → R+, x 7→ x · exp(Cβx).

Recall that the constant Cβ > 0 was defined in (5.1).
• There exist measurable mappings τ : Bc → R+, ζ : Bc → [1,∞) with∫

Bc
(1 ∨ τ(x))ζ(x)(1 ∨ ln∗∗(ζ(x)))F (dx) <∞(5.11)

such that P–almost surely for all x ∈ Bc, n ∈ N and h1, h2 ∈ Hβ with
‖h1‖β , ‖h2‖β ≤ n we have

‖γ(h1, x)− γ(h2, x)‖β′ ≤ Lnτ(x)‖h1 − h2‖β ,(5.12)
|φ(h1, x)− φ(h2, x)| ≤ Lnτ(x)‖h1 − h2‖β ,(5.13)

and for all x ∈ Bc and h ∈ Hβ we have

‖γ(h, x)‖β′ ≤Mγ ln∗∗(ζ(x)),(5.14)

|φ(h, x)| ≤Mφ ln∗∗(ζ(x)),(5.15)

where ln∗∗ : [1,∞) → R+ denotes the inverse of the strictly increasing
function

exp∗∗ : R+ → [1,∞), x 7→ (1 + x) · exp(Cβx).

Recall that the constant Cβ > 0 was defined in (5.1).
• In view of (1.4), we assume that the drift α : Ω×Hβ → Hβ is given by

(5.16)

α(h) =
∑
j∈N

σj(h)

(
θj(h) +

∫ •
0

σj(h)(η)dη

)

−
∫
B

γ(h, x)

[
exp

(
− φ(h, x)−

∫ •
0

γ(h, x)(η)dη

)
− 1

]
F (dx)

−
∫
Bc
γ(h, x) exp

(
− φ(h, x)−

∫ •
0

γ(h, x)(η)dη

)
F (dx).

Then the HJMM equation (1.2) is a SPDE on the state space Hβ . In order to
state our main result of this section, we recall that existence of mild solutions to
(1.2) holds, if for each F0-measurable random variable h0 : Ω→ Hβ there exists a
Hβ-valued, càdlàg, adapted process r such that P–almost surely

rt = Sth0 +

∫ t

0

St−sα(rs)ds+

∫ t

0

St−sσ(rs)dWs

+

∫ t

0

∫
B

St−sγ(rs−, x)(µ(ds, dx)− F (dx)ds)

+

∫ t

0

∫
Bc
St−sγ(rs−, x)µ(ds, dx), t ≥ 0.

Furthermore, we say that existence of mild solutions to (1.2) holds, if for two mild
solutions r and r′ with the same initial condition h0 we have r = r′ up to indistin-
guishability.

5.1. Theorem. Under the previous conditions, existence and uniqueness of mild
solutions to the HJMM equation (1.2) holds.

We will provide the proof of Theorem 5.1 in Appendix A.

5.2. Remark. Note that we have relaxed the regularity conditions on the volatilities
σ and γ, which have been assumed to be Lipschitz and bounded in [18]. Indeed,
conditions (5.4), (5.5) show that the growth of the mappings σ and θ is of order
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1 + ‖h‖β, and conditions (5.9), (5.10) show that for fixed x ∈ B the growth of

the mappings γ(•, x) and φ(•, x) is of order ln∗(ρ(x)
√

1 + ‖h‖β).

6. Positivity preserving models

In applications, we are often interested in interest rate models producing posi-
tive forward curves. In this section, we characterize those real-world forward rate
dynamics of the form (1.2) which are positivity preserving.

We start with a general result. Let α : Ω×Hβ → Hβ , σ : Ω×Hβ → L0
2(H0

β) and
γ : Ω×Hβ × E → H0

β be measurable mappings. We denote by

P := {h ∈ Hβ : h ≥ 0}
the closed, convex cone of nonnegative forward curves.

6.1. Definition. The HJMM equation (1.2) is called positivity preserving, if for
each F0-measurable random variable h0 : Ω→ Hβ with P(h0 ∈ P ) = 1 there exists
a mild solution r to (1.2) with P(rt ∈ P ) = 1 for all t ≥ 0.

Extending the arguments from [18], we obtain the following general result con-
cerning positivity preserving models.

6.2. Theorem. Suppose that (α, σ, γ|B) are locally Lipschitz and satisfy the lin-
ear growth condition. Furthermore, suppose that P–almost surely we have σ ∈
C2(Hβ ;L0

2(Hβ)) and that the mapping

Ω×Hβ → Hβ , h 7→
∑
j∈N

Dσj(h)σj(h)

is locally Lipschitz. Then, the HJMM equation (1.2) is positivity preserving if and
only if we have P–almost surely∫

B

γ(h, x)(ξ)F (dx) <∞ for all (h, ξ) ∈ P × R+ with h(ξ) = 0(6.1)

α(h)(ξ)−
∫
B

γ(h, x)(ξ)F (dx) ≥ 0 for all (h, ξ) ∈ P × R+ with h(ξ) = 0(6.2)

σj(h)(ξ) = 0 for all (h, ξ) ∈ P × R+ with h(ξ) = 0, for all j ∈ N(6.3)
h+ γ(h, x) ∈ P for all h ∈ P , for F–almost all x ∈ E.(6.4)

Now, let θ : Ω×Hβ → L0
2(R) and φ : Ω×Hβ × E → R be the market prices of

risk. We suppose that the regularity conditions for σ, θ and γ, φ from Section 5 are
fulfilled and that the drift α is given by (5.16). Furthermore, suppose that P–almost
surely we have σ ∈ C2(Hβ ;L0

2(H0
β′)) and that the mapping

Ω×Hβ → H0
β′ , h 7→

∑
j∈N

Dσj(h)σj(h)

is locally Lipschitz.

6.3. Proposition. The following statements are equivalent:
(1) We have (6.1)–(6.4).
(2) We have (6.3), (6.4) and

(6.5)
γ(h, x)(ξ) = 0 for all (h, ξ) ∈ P × R+ with h(ξ) = 0,

for F–almost all x ∈ E.

Proof. Suppose that conditions (6.3), (6.4) are satisfied. We will prove the equiva-
lence (6.1), (6.2) ⇔ (6.5). By (6.4) we have

(6.6)
γ(h, x)(ξ) ≥ 0 for all (h, ξ) ∈ P × R+ with h(ξ) = 0,

for F–almost all x ∈ E.
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Because of (6.3) and the structure (5.16) of the drift term α, the conditions (6.1),
(6.2) are satisfied if and only if

−
∫
E

γ(h, x)(ξ) exp

(
− φ(h, x)−

∫ ξ

0

γ(h, x)(η)dη

)
F (dx) ≥ 0

for all (h, ξ) ∈ Hβ × R+ with h(ξ) = 0, for F–almost all x ∈ E.

By (6.6), we deduce that (6.1), (6.2) ⇔ (6.5). �

6.4. Theorem. The HJMM equation (1.2) is positivity preserving if and only if we
have (6.3), (6.4), (6.5).

Proof. This is a direct consequence of Theorem 6.2 and Proposition 6.3. �

Consequently, we have generalized the positivity result from [18] for interest rate
models with real-world forward rate dynamics. We point out that the market prices
of risk θ, φ do not affect the positivity preserving property.

7. Lévy process driven interest rate models with real-world
dynamics

In this section, we illustrate our previous results by focusing on real-world in-
terest rate models driven by Lévy processes. Let X1, . . . , Xd be independent Lévy
processes with Lévy-Itô decompositions

Xj = W j + Y j + Zj , j = 1, . . . , d,

where the processes Y and Z are given by

Y jt =

∫
{|x|≤1}

x(µX
j

(ds, dx)− Fj(dx)ds),

Zjt =

∫
{|x|>1}

xµX
j

(ds, dx).

Here, W j denotes a standard Wiener process, µX
j

denotes the random measure
associated to the jumps of Xj , and Fj denotes its Lévy measure. We suppose that
the dynamics of the forward rates are of the form

dft(T ) = αt(T )dt+

d∑
j=1

(
σjt (T )dW j

t + δjt (T )dY jt + ηjt (T )dZjt
)
, t ∈ [0, T ].

Note that these dynamics are of the type (1.1), where the state space of the Wiener
process W is U = Rd, the mark space of the Poisson random measure µ is E = Rd,
the set B is given by B = {‖x‖ ≤ 1}, and the volatility γ is

γt(T, x) =

d∑
j=1

δjt (T )xj for x ∈ B,

γt(T, x) =

d∑
j=1

ηjt (T )xj for x ∈ Bc.
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Then, the dynamics (1.3) of the growth optimal portfolio Sδ∗t become

dSδ∗t = Sδ∗t−

[
rt(0)dt+

d∑
j=1

θjt (θ
j
tdt+ dW j

t )

+

d∑
j=1

∫
{|x|≤1}

ψjt (x)

1− ψjt (x)

(
ψjt (x)Fj(dx)dt+ (µX

j

(dt, dx)− Fj(dx)dt)
)

+

d∑
j=1

∫
{|x|>1}

χjt (x)

1− χjt (x)

(
χjt (x)Fj(dx)dt+ (µX

j

(dt, dx)− Fj(dx)dt)
)]
,

where θ1, . . . , θd denote the reference market prices of risk with respect to the
Wiener processesW 1, . . . ,W d, where ψ1, . . . , ψd denote the reference market prices
of risk with respect to the pure jump parts of Y 1, . . . , Y d, and where χ1, . . . , χd

denote the reference market prices of risk with respect to the pure jump parts of
Z1, . . . , Zd. We suppose that the latter are of the form

ψjt (x) = 1− exp(−ϕjtx) and χjt = 1− exp(−ϑjtx)

for some mappings ϕ1, . . . , ϕd and ϑ1, . . . , ϑd. In the case of finitely many square-
integrable Lévy processes, such dynamics of the growth optimal portfolio have been
used in [28]. In the present situation, the drift condition (1.4) becomes

(7.1)

αt(T ) =

d∑
j=1

σjt (T )

(
θjt +

∫ T

t

σjt (s)ds

)

−
d∑
j=1

δjt (T )

∫
{|x|≤1}

x

[
exp

(
−
(
ϕjt +

∫ T

t

δjt (s)ds

)
x

)
− 1

]
Fj(dx)

−
d∑
j=1

ηjt (T )

∫
{|x|>1}

x exp

(
−
(
ϑjt +

∫ T

t

ηjt (s)ds

)
x

)
Fj(dx).

Now, let us consider the corresponding Lévy process driven HJMM equation

{
drt =

(
d
dxrt + α(rt)

)
dt+

∑d
j=1

(
σj(rt)dW

j
t + δj(rt−)dY jt + ηj(rt−)dZjt

)
r0 = h0.

(7.2)

As in Section 5, we fix constants 0 < β < β′ and choose the state space Hβ . We
suppose that for each j = 1, . . . , n there are constants Nj , εj > 0 such that∫

{|x|>1}
ezxFj(dx) <∞ for all z ∈ Ij .(7.3)

Here Ij denotes the interval Ij = [−(1 + εj)NjCβ , (1 + εj)NjCβ ], where we recall
that the constant Cβ > 0 was defined in (5.1). We introduce the functions

Φj : R→ R, Φj(z) :=

∫
{|x|≤1}

(
ezx − 1− zx

)
Fj(dx),

Ψj : Ij → R, Ψj(z) :=

∫
{|x|>1}

(
ezx − 1

)
Fj(dx).

Let σj : Ω×Hβ → H0
β′ , δ

j : Ω×Hβ → H0
β′ , η

j : Ω×Hβ → H0
β′ and θ

j : Ω×Hβ → R,
ϕj : Ω ×Hβ → R, ϑj : Ω ×Hβ → R for j = 1, . . . , d be measurable mappings. We
suppose that the following conditions are satisfied:

• The mappings σj , δj , ηj and θj , ϕj , ϑj for j = 1, . . . , d are locally Lipschitz.
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• There exists a constant K ≥ 0 such that P–almost surely for all h ∈ Hβ we
have

‖σj(h)‖β′ ≤ K
√

1 + ‖h‖β , j = 1, . . . , n,(7.4)

|θj(h)| ≤ K
√

1 + ‖h‖β , j = 1, . . . , n.(7.5)

• There exist constants M1
δ , . . . ,M

d
δ > 0 and M1

ϕ, . . . ,M
d
ϕ > 0 such that

Mδ ≤ 1 and √
1

β′(β − β′)
Mδ +Mϕ ≤ 1(7.6)

where Mδ := M1
δ + . . .+Md

δ and Mϕ := M1
ϕ + . . .+Md

ϕ, and there exists
a constant C ≥ 0 such that P–almost surely for all n ∈ N and h ∈ Hβ we
have

‖δj(h)‖β′ ≤M j
δ ln∗

(
C
√

1 + ‖h‖β
)
,(7.7)

|ϕj(h)| ≤M j
ϕ ln∗

(
C
√

1 + ‖h‖β
)
.(7.8)

• We have P–almost surely for all h ∈ Hβ the estimates

‖ηj(h)‖β′ ≤MδN
j , j = 1, . . . , n,(7.9)

|ϑj(h)| ≤MϕN
j , j = 1, . . . , n.(7.10)

• In view of (7.1), we assume that the drift α : Ω×Hβ → Hβ is given by

α(h) =

n∑
j=1

σj(h)

(
θj(h) +

∫ •
0

σj(h)(ξ)dξ

)

−
n∑
j=1

δj(h)Φ′j

(
− ϕj −

∫ •
0

δj(h)(ξ)dξ

)

−
n∑
j=1

ηj(h)Ψ′j

(
− ϑj −

∫ •
0

ηj(h)(ξ)dξ

)
.

Before we state our main result of this section, we prepare an auxiliary result.

7.1. Lemma. For all m ∈ N0 and N, ε > 0 there exists a constant C > 0 such that

xmeNx ≤ Ce(1+ε)Nx for each x ∈ R+.

Proof. Setting C := m!
(εN)m , for all x ∈ R+ we have

xmeNx =
m!

(εN)m
(εNx)m

m!
eNx = C

(εNx)m

m!
eNx ≤ CeεNxeNx = Ce(1+ε)Nx,

finishing the proof. �

Here is our existence and uniqueness result regarding the Lévy process driven
HJMM equation with real-world forward rate dynamics.

7.2. Theorem. Under the previous conditions, existence and uniqueness of mild
solutions to the Lévy process driven HJMM equation (7.2) holds.
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Proof. We will show that the conditions from Section 5 are fulfilled. Conditions
(5.2)–(5.5) are satisfied by the local Lipschitz continuity of the σj , θj and by (7.4),
(7.5). Note that the mappings γ and φ are given by

γ(h, x) =

d∑
j=1

δj(h)xj and φ(h, x) =

d∑
j=1

ϕj(h)xj for x ∈ B,

γ(h, x) =

d∑
j=1

ηj(h)xj and φ(h, x) =

d∑
j=1

ϑj(h)xj for x ∈ Bc.

We define the bounded, measurable mapping

ρ : B → R+, ρ(x) :=

d∑
j=1

|xj |.

Then, the integrability condition (5.6) is satisfied, because the measures Fj are Lévy
measures. Moreover, conditions (5.7), (5.8) are fulfilled, because the mappings δj ,
ϕj are locally Lipschitz. By (7.7), for all h ∈ Hβ , x ∈ B and j = 1, . . . , d we have
P–almost surely

exp∗
(
‖δj(h)‖β′ |xj |

M j
δ

)
=
‖δj(h)‖β′ |xj |

M j
δ

exp

(
Cβ
‖δj(h)‖β′ |xj |

M j
δ

)
≤ ‖δ

j(h)‖β′ |xj |
M j
δ

exp

(
Cβ
‖δj(h)‖β′
M j
δ

)
= |xj | exp∗

(
‖δj(h)‖β′
M j
δ

)
≤ |xj |C

√
1 + ‖h‖β ≤ Cρ(x)

√
1 + ‖h‖β ,

and therefore

‖δj(h)‖β′ |xj | ≤M j
δ ln∗

(
Cρ(x)

√
1 + ‖h‖β

)
,

which gives us

‖γ(h, x)‖β′ ≤
d∑
j=1

‖δj(h)‖β′ |xj | ≤Mδ ln∗
(
Cρ(x)

√
1 + ‖h‖β

)
.

Analogously, by using (7.8) we prove that for all h ∈ Hβ and x ∈ B we have
P–almost surely

|ϕ(h, x)| ≤Mϕ ln∗
(
Cρ(x)

√
1 + ‖h‖β

)
,

and hence, conditions (5.9), (5.10) are fulfilled. Next, we define the measurable
mappings τ : Bc → R+, ζ : Bc → [1,∞) as

τ(x) :=

d∑
j=1

|xj | and

ζ(x) := exp∗∗
( d∑
j=1

N j |xj |
)

=

(
1 +

d∑
j=1

N j |xj |
)

exp

(
Cβ

d∑
j=1

N j |xj |
)
.

Then we have

ln∗∗(ζ(x)) =

d∑
j=1

N j |xj | for all x ∈ Bc,

and hence, the integrability condition (5.11) is satisfied by virtue of (7.3) and
Lemma 7.1. Moreover, conditions (5.12), (5.13) are fulfilled, because the mappings
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ηj , ϑj are locally Lipschitz. Furthermore, by (7.9), for all h ∈ Hβ and x ∈ Bc we
have P–almost surely

‖γ(h, x)‖β′ ≤
d∑
j=1

‖ηjt (h)‖β′ |xj | ≤Mδ

d∑
j=1

N j |xj | = Mδ ln∗∗(ζ(x)),

showing (5.14). Analogously, by using (7.8) we prove that (5.15) is fulfilled. Con-
sequently, applying Theorem 5.1 provides the stated existence and uniqueness re-
sult. �

7.3. Remark. Lévy process driven interest rate models as solutions of SPDEs have
been studied in [1, 16, 23, 26, 31] under a risk-neutral measure Q ∼ P. As conditions
(7.4), (7.5) and (7.7), (7.8) show, the volatilities of the diffusion part and of the
small jump part do not need to bounded, and hence, we have improved the conditions
from [16] under real-world forward rate dynamics.

Appendix A. Proof of Theorem 5.1

In this appendix, we will provide the proof of Theorem 5.1. For this purpose, we
will first recall a general existence and uniqueness result (see Theorem A.3) and
then apply it to the HJMM equation (1.2).

We fix constants 0 < β < β′ and denote by Hβ the space of forward curves from
Section 5. Let α : Ω×Hβ → Hβ , σ : Ω×Hβ → L0

2(Hβ) and γ : Ω×Hβ ×E → Hβ

be measurable mappings.

A.1. Definition. We say that the mappings (α, σ, γ|B) are locally Lipschitz, if for
each n ∈ N there is a constant Ln ∈ R+ such that P–almost surely

‖α(h1)− α(h2)‖β ≤ Ln‖h1 − h2‖β ,
‖σ(h1)− σ(h2)‖L0

2(Hβ) ≤ Ln‖h1 − h2‖β ,(∫
B

‖γ(h1, x)− γ(h2, x)‖2F (dx)

)1/2

≤ Ln‖h1 − h2‖β

for all h1, h2 ∈ Hβ with ‖h1‖β , ‖h2‖β ≤ n.

A.2. Definition. We say that the mappings (α, σ, γ|B) satisfy the linear growth
condition, if there exists a constant K ∈ R+ such that P–almost surely

‖α(h)‖β ≤ K(1 + ‖h‖β),

‖σ(h)‖L0
2(Hβ) ≤ K(1 + ‖h‖β),(∫

B

‖γ(h, x)‖2F (dx)

)1/2

≤ K(1 + ‖h‖β)

for all h ∈ Hβ.

A.3. Theorem. If (α, σ, γ|B) are locally Lipschitz and satisfy the linear growth
condition, then existence and uniqueness of mild solutions to (1.2) holds.

Proof. According to [18, Thm. 2.1] there exists another separable Hilbert space
Hβ , a C0-group (Ut)t∈R on Hβ and continuous linear operators ` ∈ L(Hβ ,Hβ),
π ∈ L(Hβ , Hβ) such that πUt` = St for all t ∈ R+. Therefore, existence and
uniqueness of mild solutions to (1.2) follows from [32, Thm. 4.5]. �

In order to prove Theorem 5.1, we will show that under the standing assumptions
of Section 5 the mappings (α, σ, γ|B) are locally Lipschitz and satisfy the linear
growth condition, which allows an application of Theorem A.3. First, we provide
some properties of the space Hβ of forward curves. Proofs of the following auxiliary
results (Lemmas A.4–A.8) can be found in [15], [18] and [30].
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A.4. Lemma. For all h ∈ Hβ we have

‖h‖∞ ≤ Cβ‖h‖β ,

where we recall that the constant Cβ > 0 was defined in (5.1).

A.5. Lemma. Each constant function belongs to Hβ, and we have

‖c‖β = |c| for all c ∈ R.

A.6. Lemma. We have Hβ′ ⊂ Hβ and

‖h‖β ≤ ‖h‖β′ for each h ∈ Hβ′ .

A.7. Lemma. For all h1, h2 ∈ Hβ we have m(h1, h2) := h1h2 ∈ Hβ, and the
multiplication m : Hβ ×Hβ → Hβ is a continuous bilinear operator.

A.8. Lemma. For each h ∈ H0
β′ we have Ih :=

∫ •
0
h(η)dη ∈ Hβ, and the integral

operator I : H0
β′ → Hβ is a continuous linear operator with operator norm

‖I‖ ≤

√
1

β′(β − β′)
.

We will require the following auxiliary result concerning exponentials of functions
from the space of forward curves.

A.9. Lemma. The following statements are true:
(1) For each h ∈ Hβ we have exp(h) ∈ Hβ.
(2) For all h ∈ Hβ we have the estimate

‖ exp(h)‖β ≤ (1 + ‖h‖β) exp(Cβ‖h‖β).(A.1)

(3) There is a constant Kβ > 0 such that for all h1, h2 ∈ Hβ we have

‖ exp(h1)− exp(h2)‖β ≤ Kβ(1 + ‖h2‖β) exp(Cβ max{‖h1‖β , ‖h2‖β})‖h1 − h2‖β .
(A.2)

In particular, the mapping h 7→ exp(h) is locally Lipschitz.
(4) For all h ∈ Hβ we have the estimate

‖ exp(h)− 1‖β ≤ Kβ‖h‖β exp(Cβ‖h‖β).(A.3)

Proof. Let h ∈ Hβ be arbitrary. The function exp(h) is again absolutely continuous
and, by Lemma A.4, for each ξ ∈ R+ we have

| exp(h(ξ))| ≤ exp(‖h‖∞) ≤ exp(Cβ‖h‖β).(A.4)

We deduce that

‖ exp(h)‖2β = | exp(h(0))|2 +

∫
R+

|h′(ξ) exp(h(ξ))|2eβξdξ

≤ (1 + ‖h‖2β) exp(2Cβ‖h‖β) ≤ (1 + ‖h‖β)2 exp(2Cβ‖h‖β).

Therefore, we obtain exp(h) ∈ Hβ and estimate (A.1), proving the first two state-
ments. Now, let h1, h2 ∈ Hβ be arbitrary. By Lemma A.4, for all ξ ∈ R+ we have

| exp(h1(ξ))− exp(h2(ξ))| ≤ max{exp(h1(ξ)), exp(h2(ξ))}|h1(ξ)− h2(ξ)|
≤ max{exp(‖h1‖∞), exp(‖h2‖∞)}‖h1 − h2‖∞
≤ Cβ max{exp(Cβ‖h1‖β), exp(Cβ‖h2‖β)}‖h1 − h2‖β .
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Therefore, we obtain

‖ exp(h1)− exp(h2)‖2β

= | exp(h1(0))− exp(h2(0))|2 +

∫
R+

|h′1(ξ) exp(h1(ξ))− h′2(ξ) exp(h2(ξ))|2eβξdξ

≤ | exp(h1(0))− exp(h2(0))|2

+ 2

∫
R+

|h′1(ξ)− h′2(ξ)|2| exp(h1(ξ))|2eβξdξ

+ 2

∫
R+

|h′2(ξ)|2| exp(h1(ξ))− exp(h2(ξ))|2eβξdξ

≤ (1 + 2‖h2‖2β)C2
β max{exp(2Cβ‖h1‖β), exp(2Cβ‖h2‖β)}‖h1 − h2‖2β

+ 2 exp(2Cβ‖h1‖β)‖h1 − h2‖2β

This gives us

‖ exp(h1)− exp(h2)‖β ≤ ‖h1 − h2‖β
×
(
Cβ(1 + 2‖h2‖β) max{exp(Cβ‖h1‖β), exp(Cβ‖h2‖β)}+ 2 exp(Cβ‖h1‖β)

)
.

Therefore, estimate (A.2) is satisfied with Kβ := 2(Cβ + 1). Moreover, setting
h1 := h and h2 := 0 in (A.2), we deduce estimate (A.3). �

The forthcoming results (Propositions A.10–A.12) are concerned with the struc-
ture of the drift term (5.16).

A.10. Proposition. Let (σj)j∈N and (Σj)j∈N be sequences of mappings σj ,Σj :
Ω × Hβ → Hβ. Suppose there exist sequences (Ln)n∈N ⊂ R+ and (κj)j∈N ⊂ R+

with ∑
j∈N

(κj)2 <∞(A.5)

such that P–almost surely for all j, n ∈ N and h1, h2 ∈ Hβ with ‖h1‖β , ‖h2‖β ≤ n
we have

‖σj(h1)− σj(h2)‖β ≤ Lnκj‖h1 − h2‖β ,(A.6)

‖Σj(h1)− Σj(h2)‖β ≤ Lnκj‖h1 − h2‖β ,(A.7)

and for all j ∈ N and h ∈ Hβ we have

‖σj(h)‖β ≤ κj
√

1 + ‖h‖β ,(A.8)

‖Σj(h)‖β ≤ κj
√

1 + ‖h‖β .(A.9)

Then, for all h ∈ Hβ we have P–almost surely∑
j∈N
‖σj(h)Σj(h)‖β <∞,(A.10)

and the mapping

α1 : Ω×Hβ → Hβ , α1(h) :=
∑
j∈N

σj(h)Σj(h)

is locally Lipschitz and satisfies the linear growth condition.
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Proof. Let h ∈ Hβ be arbitrary. By Lemma A.7 and (A.8), (A.9), (A.5) we have
P–almost surely∑

j∈N
‖σj(h)Σj(h)‖β ≤ ‖m‖

∑
j∈N
‖σj(h)‖β‖Σj(h)‖β

≤ ‖m‖
(∑
j∈N

(κj)2

)
(1 + ‖h‖β) <∞,

showing that (A.10) is satisfied, and by the triangle inequality we obtain P–almost
surely

‖α1(h)‖β =

∥∥∥∥∑
j∈N

σj(h)Σj(h)

∥∥∥∥
β

≤
∑
j∈N
‖σj(h)Σj(h)‖β ,

proving that α1 satisfies the linear growth condition. Now, let n ∈ N and h1, h2 ∈ Hβ

with ‖h1‖β , ‖h2‖β ≤ n be arbitrary. By Lemma A.7 and (A.6)–(A.9) we obtain P–
almost surely

‖α1(h1)− α1(h2)‖β ≤
∑
j∈N
‖σj(h1)Σj(h1)− σj(h2)Σj(h2)‖β

≤
∑
j∈N
‖σj(h1)(Σj(h1)− Σj(h2))‖β +

∑
j∈N
‖(σj(h1)− σj(h2))Σj(h2)‖β

≤ ‖m‖
∑
j∈N
‖σj(h1)‖β‖Σj(h1)− Σj(h2)‖β + ‖m‖

∑
j∈N
‖σj(h1)− σj(h2)‖β‖Σj(h2)‖β

≤ 2‖m‖Ln
(∑
j∈N

(κj)2

)√
1 + n‖h1 − h2‖β ,

showing that α1 is locally Lipschitz. �

A.11. Proposition. Let γ,Γ : Ω×Hβ ×B → H be measurable mappings. Suppose
there exist a sequence (Ln)n∈N ⊂ R+ and a bounded, measurable mapping ρ : B →
R+ with ∫

B

ρ(x)2F (dx) <∞(A.11)

such that P–almost surely for all x ∈ B, n ∈ N and h1, h2 ∈ Hβ with ‖h1‖β , ‖h2‖β ≤
n we have

‖γ(h1, x)− γ(h2, x)‖β ≤ Lnρ(x)‖h1 − h2‖β ,(A.12)
‖Γ(h1, x)− Γ(h2, x)‖β ≤ Lnρ(x)‖h1 − h2‖β ,(A.13)

and for all x ∈ B and h ∈ Hβ we have

‖γ(h, x)‖β ≤ ln∗
(
ρ(x)

√
1 + ‖h‖β

)
,(A.14)

‖Γ(h, x)‖β ≤ ln∗
(
ρ(x)

√
1 + ‖h‖β

)
.(A.15)

Then, for all h ∈ Hβ we have P–almost surely∫
B

‖γ(h, x)(eΓ(h,x) − 1)‖βF (dx) <∞,(A.16)

and the mapping

α2 : Ω×Hβ → Hβ , α2(h) :=

∫
B

γ(h, x)(eΓ(h,x) − 1)F (dx)

is locally Lipschitz and satisfies the linear growth condition.
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Proof. By Lemma A.9 and estimates (A.13), (A.15), we have P–almost surely for
all x ∈ B, n ∈ N and h1, h2 ∈ Hβ with ‖h1‖β , ‖h2‖β ≤ n the estimate

‖eΓ(h1,x) − eΓ(h2,x)‖β
≤ Kβ(1 + ‖Γ(h2, x)‖β) exp(Cβ max{‖Γ(h1, x)‖β , ‖Γ(h2, x)‖β})
× ‖Γ(h1, x)− Γ(h2, x)‖β

≤ Kβ

(
1 + ln∗

(
‖ρ‖∞

√
1 + ‖h2‖β

))
× exp

(
Cβ max

{
ln∗
(
‖ρ‖∞

√
1 + ‖h1‖β

)
, ln∗

(
‖ρ‖∞

√
1 + ‖h2‖β

)})
× Lnρ(x)‖h1 − h2‖β .

Hence, there exists a sequence (Kn)n∈N ⊂ R+ such that P–almost surely for all
x ∈ B, n ∈ N and h1, h2 ∈ Hβ with ‖h1‖β , ‖h2‖β ≤ n we have

‖eΓ(h1,x) − eΓ(h2,x)‖β ≤ Knρ(x)‖h1 − h2‖β .(A.17)

By (A.14) and the inequality

ln∗ x ≤ x for all x ∈ R+,

we have P–almost surely

‖γ(h, x)‖β ≤ ρ(x)
√

1 + ‖h‖β for all h ∈ Hβ and x ∈ B.(A.18)

Moreover, by Lemma A.9 and assumption (A.15), we obtain P–almost surely for all
x ∈ B and h ∈ Hβ the estimate

(A.19)
‖eΓ(h,x) − 1‖β ≤ Kβ‖Γ(h, x)‖β exp(Cβ‖Γ(h, x)‖β)

= Kβ exp∗(‖Γ(h, x)‖β) ≤ Kβρ(x)
√

1 + ‖h‖β .

Now, let h ∈ Hβ be arbitrary. By Lemma A.7, estimates (A.18), (A.19) and the
integrability condition (A.11) we have P–almost surely∫

B

‖γ(h, x)(eΓ(h,x) − 1)‖βF (dx) ≤ ‖m‖
∫
B

‖γ(h, x)‖β‖eΓ(h,x) − 1‖βF (dx)

≤ ‖m‖Kβ

(∫
B

ρ(x)2F (dx)

)
(1 + ‖h‖β) <∞,

showing that (A.16) is satisfied, and by the triangle inequality we obtain P–almost
surely

‖α2(h)‖β =

∥∥∥∥∫
B

γ(h, x)(eΓ(h,x) − 1)F (dx)

∥∥∥∥
β

≤
∫
B

‖γ(h, x)(eΓ(h,x) − 1)‖βF (dx),

proving that α2 satisfies the linear growth condition. Now, let n ∈ N and h1, h2 ∈ Hβ

with ‖h1‖β , ‖h2‖β ≤ n be arbitrary. By Lemma A.7 and estimates (A.12), (A.17),
(A.18) (A.19) we obtain P–almost surely

‖α2(h1)− α2(h2)‖β ≤
∫
B

‖γ(h1, x)(eΓ(h1,x) − 1)− γ(h2, x)(eΓ(h2,x) − 1)‖βF (dx)

≤ ‖m‖
∫
B

‖γ(h1, x)‖β‖eΓ(h1,x) − eΓ(h2,x)‖βF (dx)

+ ‖m‖
∫
B

‖γ(h1, x)− γ(h2, x)‖β‖eΓ(h2,x) − 1‖βF (dx)

≤ ‖m‖
√

1 + n(Kn + LnKβ)

(∫
B

ρ(x)2F (dx)

)
‖h1 − h2‖β ,

showing that α2 is locally Lipschitz. �
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A.12. Proposition. Suppose there exist a sequence (Ln)n∈N ⊂ R+ and measurable
mappings τ : Bc → R+, ζ : Bc → [1,∞) with∫

Bc
(1 ∨ τ(x))ζ(x)(1 ∨ ln∗∗(ζ(x)))F (dx) <∞(A.20)

such that P–almost surely for all x ∈ Bc, n ∈ N and h1, h2 ∈ Hβ with ‖h1‖β , ‖h2‖β ≤
n we have

‖γ(h1, x)− γ(h2, x)‖β ≤ Lnτ(x)‖h1 − h2‖β ,(A.21)
‖Γ(h1, x)− Γ(h2, x)‖β ≤ Lnτ(x)‖h1 − h2‖β ,(A.22)

and for all x ∈ B and h ∈ Hβ we have

‖γ(h, x)‖β ≤ ln∗∗(ζ(x)),(A.23)

‖Γ(h, x)‖β ≤ ln∗∗(ζ(x)).(A.24)

Then, for all h ∈ Hβ we have P–almost surely∫
Bc
‖γ(h, x)eΓ(h,x)‖βF (dx) <∞,(A.25)

and the mapping

α3 : Ω×Hβ → Hβ , α3(h) :=

∫
Bc
γ(h, x)eΓ(h,x)F (dx)

is locally Lipschitz and satisfies the linear growth condition.

Proof. By Lemma A.9 and estimates (A.24), (A.22) we have P–almost surely for
all x ∈ Bc, n ∈ N and h1, h2 ∈ Hβ with ‖h1‖β , ‖h2‖β ≤ n the estimate

(A.26)

‖eΓ(h1,x) − eΓ(h2,x)‖β
≤ Kβ(1 + ‖Γ(h2, x)‖β) exp(Cβ max{‖Γ(h1, x)‖β , ‖Γ(h2, x)‖β})
× ‖Γ(h1, x)− Γ(h2, x)‖β
≤ Kβ exp∗∗(max{‖Γ(h1, x)‖β , ‖Γ(h2, x)‖β})‖Γ(h1, x)− Γ(h2, x)‖β
≤ Kβζ(x)Lnτ(x)‖h1 − h2‖β .

Moreover, by Lemma A.9 and assumption (A.24), we obtain P–almost surely for all
x ∈ Bc and h ∈ Hβ the estimate
(A.27)
‖eΓ(h,x)‖β ≤ (1 + ‖Γ(h, x)‖β) exp(Cβ‖Γ(h, x)‖β) = exp∗∗(‖Γ(h, x)‖β) ≤ ζ(x).

Now, let h ∈ Hβ be arbitrary. By Lemma A.7, estimates (A.23), (A.27) and the
integrability condition (A.20), we have P–almost surely∫

Bc
‖γ(h, x)eΓ(h,x)‖βF (dx) ≤ ‖m‖

∫
B

‖γ(h, x)‖β‖eΓ(h,x)‖βF (dx)

≤ ‖m‖
∫
B

ζ(x) ln∗∗(ζ(x))F (dx) <∞,

showing that (A.25) is satisfied, and by the triangle inequality we obtain P–almost
surely

‖α3(h)‖β =

∥∥∥∥ ∫
Bc
γ(h, x)eΓ(h,x)F (dx)

∥∥∥∥
β

≤
∫
Bc
‖γ(h, x)eΓ(h,x)‖βF (dx),

proving that α3 satisfies the linear growth condition. Now, let n ∈ N and h1, h2 ∈ Hβ

with ‖h1‖β , ‖h2‖β ≤ n be arbitrary. By Lemma A.7 and estimates (A.21), (A.23),
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(A.26), (A.27) we obtain P–almost surely

‖α3(h1)− α3(h2)‖β ≤
∫
Bc
‖γ(h1, x)eΓ(h1,x) − γ(h2, x)eΓ(h2,x)‖βF (dx)

≤ ‖m‖
∫
Bc
‖γ(h1, x)‖β‖eΓ(h1,x) − eΓ(h2,x)‖βF (dx)

+ ‖m‖
∫
Bc
‖γ(h1, x)− γ(h2, x)‖β‖eΓ(h2,x)‖βF (dx)

≤ ‖m‖Ln
(∫

Bc
τ(x)ζ(x)

(
1 +Kβ ln∗∗(ζ(x))

)
F (dx)

)
‖h1 − h2‖β ,

which by (A.20) shows that α3 is locally Lipschitz. �

Now, we suppose that the regularity conditions for σ, θ and γ, φ from Section 5
are fulfilled and that the drift α is given by (5.16). Combining the previous results
shows that (α, σ, γ|B) are locally Lipschitz and satisfy the linear growth condition.
Consequently, applying Theorem A.3 constitutes the proof of Theorem 5.1.
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