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General Case

Let (Bt) be a continuous centered Gaussian process on a complete
probability space with sigma-algebra generated by the process, suppose
that its covariance R(t, s), s, t ∈ [0,T ] may be expressed as

R(t, s) =

∫ min(s,t)

0
K (t, r)K (s, r)dr ,

where K is square integrable and

sup
t∈[0,T ]

∫ t

0
K (t, s)2ds <∞.

Furthermore, assume that there exists a Wiener process (Wt) such that

Bt =

∫ t

0
K (t, s)dWs , t ∈ [0,T ].



General Case

Assume further

(K1) For all s ∈ (0,T ], K (·, s) has a bounded variation on (s,T ] and∫ T

0
|K|((s,T ], s)2ds <∞.

Set

(K ∗ϕ) (s) = ϕ(s)K (T , s) +

∫ T

s
(ϕ(t)− ϕ(s))K(dt, s). (1)

for ϕ ∈ E , the space of V -valued deterministic step functions.



General case

For x , y ∈ V define

〈x1[0,t], y1[0,s]〉H := 〈x , y〉VR(t, s), (t, s) ∈ [0,T ]2. (2)

The inner product 〈·, ·〉H can be extended (by linearity) to E and
(E , 〈·, ·〉H) forms a pre-Hilbert space. The completion of E with respect to
the above scalar product is denoted by H. Stochastic integral w.r.t. β is
defined in the standard way on E and extended to H. We have

‖ϕ‖2
H = ‖K ∗ϕ‖2

L2([0,T ],V ).

and

β(ϕ) =

∫ T

0
(K ∗ϕ) (t)dWt , P− a.s.. (3)



General case

(K2) For some α ∈
(
0, 1

2

)
, the kernel K satisfies the following:

For all s ∈ (0,T ) the function K (·, s) : (s,T ]→ R is differentiable in
the interval (s,T ) and both K (t, s) and the derivatives ∂K

∂t (t, s) are
continuous at every t ∈ (s,T ).

There exist a konstant c > 0 such that∣∣∣∣∂K∂t (t, s)

∣∣∣∣ ≤ c(t − s)α−1
(s
t

)−α
, (4)

∫ t

s
K (t, r)2dr ≤ c(t − s)2α+1

for 0 ≤ s < t ≤ T .



General case

Theorem

Let (K1) be satisfied. Consider the seminorm

‖ϕ‖2
HR

:=

∫ T

0
|ϕ(s)|2V K (s+, s)2ds +

∫ T

0

(∫ T

s
|ϕ(t)|V |K|(dt, s)

)2

ds,

(5)
defined on E . Denote by HR the completion of E with respect to ‖ · ‖HR

.
Then HR is continuously embedded in H.

1 There exists a finite constant c1 > 0 such that

‖ϕ‖H ≤ c1‖ϕ‖bB([0,T ];V )

for all ϕ ∈ bB ([0,T ];V ).



General case

Theorem

Suppose further (for simplicity)that K (s+, s) = 0 for all 0 < s < T. If
(K2) is satisfied then there exists a finite constant c3(α) > 0 such that

‖ϕ‖H ≤ c3(α)‖ϕ‖
L

2
1+2α ([0,T ];V )

for each ϕ ∈ L
2

1+2α ([0,T ];V ).



Cylindrical Process

Let (K1) be satisfied. Let (Ω,F ,P) be a probability space, U be a real
separable Hilbert space equipped with an inner product 〈·, ·〉U and T > 0.
Given an ONB basis (en) of the space U we define the cylindrical Gaussian
Volterra process (with covariance kernel K ) as a formal sum

Bt =
∞∑
n=1

βn(t)en,

where (βn(t)) is a sequence of pairwise independent one-dimensional
Gaussian Volterra processes with the same covariance kernel. The series
does not converge in the space U but may be understood as usual as a
family of random linear functionals (or may be shown to be convergent in
any Hilbert space U1 such that the embedding U ↪→ U1 is
Hilbert-Schmidt).



Stochastic integral

Let G : [0,T ]→ L(U,V ) be an operator-valued function such that
G (·)en ∈ H for n ∈ N, and B be a standard cylindrical Gaussian Volterra
process in U.
Define ∫ T

0
G dBH :=

∞∑
n=1

∫ T

0
Gen dβn

provided the infinite series converges in L2(Ω,V ).



Linear equations

{
dXt = AXt dt + ΦdBt , t ≥ 0
X0 = x , P− a.s.

(6)

where A : Dom(A)→ V , Dom(A) ⊂ V , an infinitesimal generator of a
strongly continuous semigroup (S(t), t ≥ 0) on V , Φ ∈ L(U,V ) and
x ∈ V .

Xt = S(t)x +

∫ t

0
S(t − s)ΦdBs =: S(t)x + Z (t), P− a.s. (7)

for t ≥ 0.



Linear equations

(A1) For all T > 0, K satisfies (K1) on [0,T ] and induces a non-atomic
measure K. Moreover, Φ ∈ L2(U,V )

(A2) For all T > 0, K satisfies (K2) on [0,T ] and for all s ∈ (0,T ], S(s)Φ
is a Hilbert-Schmidt operator such that

‖S(·)Φ‖L2(U,V ) ∈ L
2

1+2α (0,T ). (8)



Linear equations

Proposition

If at least one of the conditions (A1) and (A2) holds, then the process
Z = (Zt , t ≥ 0), is well defined V -valued Gaussian process and its sample
paths are P-almost surely in L2([0,T ];V ) for all T > 0.



Linear equations

Proposition

Assume that for all T > 0, K satisfies (K2) on [0,T ] and for all
s ∈ [0,T ], S(s)Φ is a Hilbert-Schmidt operator such that

t → t−β‖S(t)Φ‖L2(U,V ) ∈ L
2

1+2α (0,T ). (9)

for some β > 0. Then the process Z has a Hölder continuous version in V .



Linear equations

Corollary (Sufficient condition for (A2))

If for all T > 0 there exist finite constants c > 0 and 0 ≤ γ < 1
2 + α such

that
‖S(t)Φ‖L2(U,V ) ≤ ct−γ , t ∈ (0,T ]

then there exists a Hölder continuous version of the process Z in V .



FBM

Definition

Let H be an element of (0, 1) (the Hurst parameter). A continuous
centered Gaussian process βH(t), t ∈ R, defined on a probability space
(Ω,F ,P) is called fractional Brownian motion if

EβH(t)βH(s) =
1

2
(|t|2H + |s|2H − |t − s|2H), t, s ∈ R. (10)



FBM

Let KH(t, s) for 0 ≤ s ≤ t ≤ T be the kernel function

KH(t, s) = cH(t − s)H−
1
2 + cH

(
1
2 − H

) ∫ t

s
(u − s)H−

3
2

(
1−

(
s
u

) 1
2
−H
)
du

where cH =

[
2HΓ(H+ 1

2 )Γ( 3
2
−H)

Γ(2−2H)

] 1
2

and Γ(·) is the gamma function.

The operator K∗H is given by

K∗Hϕ(t) := ϕ(t)KH(T , t) +

∫ T

t
(ϕ(s)− ϕ(t))

∂KH

∂s
(s, t)ds

for ϕ ∈ E .



Example (Parabolic)

Consider the initial boundary value problem for stochastic parabolic
equation

∂u

∂t
(t, x) = Lu(t, x) + ξ(t, x), (t, x) ∈ R+ × D,

u(0, x) = u0(x), x ∈ D,

u(t, x) = 0, t ∈ R+, x ∈ ∂D,

(11)

where D ⊂ Rd is a bounded domain with a smooth boundary, L is a second
order uniformly elliptic operator on D and η is a noise process that is the
formal time derivative of a space dependent fractional Brownian motion.

rewrite the parabolic system as an infinite dimensional stochastic
differential equation:

U = L2(D), V = L2(D), Φ = Id ; we get (A1) with ρ = d/4, so
Z ∈ Cβ([0,T ],Dδ

A) for δ + β + d
4 < H.



Boundary and Pointwise Noise

∂u

∂t
(t, ξ) = ∆u(t, ξ), (t, ξ) ∈ D ⊂ Rn,

u(0, ξ) = x(ξ),

∂u

∂ν
(t, ξ) = ηH(t, ξ), (t, ξ) ∈ ∂D

(Neumann type boundary noise), or

u(t, ξ) = ηH(t, ξ), (t, ξ) ∈ ∂D

(Dirichlet type boundary noise).



Boundary and Pointwise Noise

Modelled as

Z x(t) = S(t)x +

∫ t

0
S(t − r)ΦdBH(r), t ≥ 0,

where Φ = (A− β̂I )N, N is the Neumann (or Dirichlet) map, the state
space is V = L2(D), and BH is a cylindrical fBm on a separable Hilbert
space U ⊂ L2(∂D).

Conditions for existence and time Hölder continuity of the solution :

d = 1: 1
4 < H (Neumann) and 3

4 < H (Dirichlet).

d ≥ 2: 1
2 + 1

4 (d − 1) < H (Neumann).



Boundary and Pointwise Noise

∂u

∂t
(t, ξ) = ∆u(t, ξ) + δzη

H
t , (t, ξ) ∈ D

u(0, ξ) = x(ξ),

∂u

∂ν
(t, ξ) = 0, (t, ξ) ∈ ∂D

(pointwise noise, δz - Dirac distribution at z ∈ D).

Modelled as

Z x(t) = S(t)x +

∫ t

0
S(t − r)ΦdβH(r), t ≥ 0,

in V = L2(D), where Φ is a distribution, i.e. Φ ∈ (Dδ
A)∗ for δ > d

4 . We

have a (Hölder) continuous solution for δ < H, i.e. for d
4 < H.



Equations with Multiplicative Noise

Consider the equation with finite-dimensional (fBm)

dX (t) = A(t)X (t)dt +
m∑

k=1

BkX (t)dβHk (t) (12)

X (0) = x0

where (A(t)) generates a strongly continuous family of operators
(U0(t, s)), t ≥ s,

∂

∂s
U0(t, s) = −U0(t, s)A(s) (13)

∂

∂t
U0(t, s) = A(t)U0(t, s) (14)



Equations with Multiplicative Noise

(H1) The family of closed operators (A(t), t ∈ [0,T ]) defined on a
common domain D := Dom(A(t)) for t ∈ [0,T ] generates a strongly
continuous evolution operator (U0(t, s), 0 ≤ s ≤ t ≤ T ) on V .

(H2) The collection of linear operators (B1, . . . ,Bm) generate mutually
commuting strongly continuous groups (S1(s), . . . ,Sm(s), s ∈ R) wich
commute with A(t) on D for each t ∈ [0,T ]. For i , j ∈ {1, . . . ,m},
Dom(BiBj) ⊃ D, Dom(A∗(t)) = D∗ is independent of t and
D∗ ⊂

⋂m
i ,j=1 Dom(B∗i B

∗
j ) where ∗ denotes the topological adjoint.

(H3) The family of linear operators (Ã(t), t ∈ [0,T ]) where
Ã(t) = A(t)− Ht2H−1

∑m
j=1 B

2
j , Dom(Ã(t)) = D for each t ∈ [0,T ],

generates a strongly continuous evolution operator on V ,
(U(t, s), 0 ≤ s ≤ t ≤ T ).



Equations with Multiplicative Noise

A B([0,T ])⊗F measurable stochastic process (X (t), t ∈ [0,T ]) is said to
be

(i) a strong solution of (12) if X (t) ∈ D a.s. P and

X (t) = x0 +

∫ t

0
A(s)X (s)ds +

m∑
j=1

∫ t

0
BjX (s)dβHj (s) a.s. (15)

for t ∈ [0,T ].
(ii) a weak solution of (12) if for each z ∈ D∗

< X (t), z > =< x0, z > +

∫ t

0
< X (s),A∗(s)z > ds (16)

+
m∑
j=1

∫ t

0
< X (s),B∗j z > dβHj (s) a.s. (17)

for t ∈ [0,T ] and



Equations with Multiplicative Noise

(iii) a mild solution of (12) if

X (t) = U0(t, 0)x0 +
m∑
j=1

∫ t

0
U0(t, s)BjX (s)dβHj (s) a.s. (18)

for t ∈ [0,T ],

where the stochastic integrals in (15)–(18) are defined in the Skorokhod
sense.



Equations with Multiplicative Noise

Theorem

Assume that H > 1
2 and (H1)–(H3) are satisfied. There is a weak solution

of (12). If x0 ∈ D, then there is a strong solution of (12). If Bj ∈ L(V ) for
j ∈ {1, . . . ,m}, then there is a mild solution of (12) which is unique in the
space DomδH ∩ L2(Ω; H̃), where δH denotes the divergence operator based
on βH . In each case the solution (X (t), t ∈ [0,T ]) is given as follows

X (t) =
m∏
j=1

Sj(β
H
j (t))U(t, 0)x0 (19)

for t ∈ [0,T ].

For H < 1
2 there exists a weak solution given by formula (19) in the

”‘parabolic”’ case (by approximations, using Cheredito-Nulart result on
closedness of the extension of Skorokhod integral operator).



Equations with Multiplicative Noise - Existence and
Uniqueness

Proof: Existence in the ”‘strong”’ case: By fractional Ito formula, the
other cases by approximations of the initial value (Malliavin derivatives in
the Ito formula may be easily calculated).

Uniqueness (for simplicity, from now on m = 1, βH1 =: βH , Bj =: B,
S1 =: S).

Xt = U0(t, 0)x +

∫ t

0
U0(t, r)BXrdβ

H
r ,

Yt = U0(t, 0)x +

∫ t

0
U0(t, r)BYrdβ

H
r ,

Define the process Z = {Zt , t ∈ [0,T ]} as

Zt = Xt − Yt , t ∈ [0,T ].



Equations with Multiplicative Noise - Existence and
Uniqueness

Let

Xt =
+∞∑
n=0

Xn(t), Yt =
+∞∑
n=0

Yn(t), t ∈ [0,T ],

be the respective Wiener chaos decompositions. Show (by induction)
Zn = Xn − Yn = 0. We have Z0 = 0 hence

+∞∑
n=1

Zn(t) =
+∞∑
n=0

∫ t

0
U0(t, s)BZn(s)dβHs .

Since Z0 ∈ H0 then

H1 3
∫ t

0
U0(t, s)BZ0(s)dβHs = 0, t ∈ [0,T ],

and consequently

Z1(t) =

∫ t

0
U0(t, s)BZ0(s)dβHs = 0

for any t ∈ [0,T ] because Z1 ∈ H1.



Equations with Multiplicative Noise - Existence and
Uniqueness

Suppose Zn = 0 for some fixed n ∈ N. By commutativity∫ t

0
U0(t, s)BZn(s)dβHs =

∫ t

0

∫ tn−1

0
. . .

∫ t1

0
U0(t, s)BnZ0(s)dβHs dβ

H
t1
. . . dβHtn−1

is zero for any t ∈ [0,T ] and the expression belongs to Hn+1. Moreover,
Zn+1 ∈ Hn+1 thus

Zn+1(t) =

∫ t

0

∫ tn−1

0
. . .

∫ t1

0
U0(t, s)BnZ0(s)dβHs dβ

H
t1
. . . dβHtn−1

= 0

for t ∈ [0,T ].



Examples

Let
dXt = AXtdt + bXtdβ

H
t , t > 0,

X0 = x ,
(20)

where A : Dom(A) ⊂ V → V is the generator of a strongly continuous
semigroup {SA(t), t ≥ 0} and b ∈ R \ {0}. Then

Xt = exp
{
bβHt −

1

2
b2t2H

}
SA(t)x , 0 ≤ s ≤ t < +∞,

and since there exist some constants M > 0, ω ∈ R such that

‖SA(t)‖L(V ) ≤ Meωt , t ≥ 0,

we have that

|Xt |V ≤ M exp
{
bβHt −

1

2
b2t2H + ωt

}
|x |V → 0 (21)

a.s. as t →∞ (the solution is pathwise stabilized by noise)



Examples

However, for any p > 0, taking for simplicity V = R, A = ω, x 6= 0

E|Xt |p = |x |p exp
{
pωt − 1

2
b2pt2H + pbBH

t

}
, t ≥ 0, p > 1,

hence for each ε > 0 there exists C̃ε > 0 such that

E
[
|Xt |pV

]
= |x |p exp

{
ĉt2H + pωt

}
≥ C̃ε exp{(ĉ − ε)t2H}, t ≥ 0,

where ĉ = 1
2b

2(p2 − p), so for p > 1 the p-th moment of the solution is
destabilized by noise.



Examples

∂u

∂t
(t, ξ) = L(t, ξ)u(t, ξ) + b

dβH

dt
u (22)

u(0, ξ) = x0(ξ)

for (t, ξ) ∈ [0,T ]×O(∂u
∂ξ

)α
(t, ξ) = 0, (t, ξ) ∈ [0,T ]× ∂O, α ∈ {1, . . . , k − 1}

where k ∈ N, O ⊂ Rd is a bounded domain of class C k , b ∈ R \ {0} and

L(t, ξ) :=
∑
|α|≤2k

aα(t, ξ)Dα (23)

is a strongly elliptic operator on O, uniformly in (t, ξ) ∈ [0,T ]×O and
aα(t, ·) ∈ C 2k(O) for each t ∈ [0,T ].



Examples

The equation (22) is rewritten in the form

dX (t) = A(t)X (t)dt + BX (t)dβH(t) (24)

X (0) = x0 ∈ V

for t ∈ [0,T ], where V = L2(O), (A(t)u)(ξ) = L(t, ξ)u(t, ξ),
Dom(A(t)) = D = H2k(O) ∩ Hk

0 (O) and B = bI ∈ L(V ). It is assumed
that

sup
ξ∈O
|aα(t, ξ)− aα(s, ξ)| ≤ M|t − s|γ (25)



Examples

∂u

∂t
(t, ξ) = a

∂2u

∂ξ2
(t, ξ) + b

∂u

∂ξ
(t, ξ)

dβH

dt
(t) (26)

[S(t)x0](ξ) = x0(ξ + bt) (27)

The ellipticity condition (H3) is satisfied if a > Ht2H−1b2. The solution
may be expressed

(S∆x)(ξ) =

∫
R

(4πt)−1/2exp
[
− 1

4t
(ξ − η)2

]2
x(η)dη (28)

X (t) = S(βH(t))S∆

(
at − 1

2
b2t2H

)
x0. (29)

So the problem is ”well posed” for 0 ≤ t ≤ T , where T =
(

2a
b2

)1/(2H−1)
.



Examples

∂u

∂t
= −∂

4u

∂ξ4
− αu +

∂u

∂ξ

dβH(t)

dt
(30)

u(0, ξ) = x0(ξ) = sin ξ

Ã(t) = L− tH2H−1B2 = − ∂4

∂ξ4
− αI − tH2H−1 ∂

2

∂ξ2
(31)

The solution has the form

X (t) = S(βH(t))U(t, 0)x0. (32)



Examples

Setting [U(t, 0)x0](ξ) = ϕ(t)sin ξ we obtain

ϕ̇(t) sin ξ = −ϕ(t) sin ξ − αϕ(t) sin ξ + Ht2H−1ϕ(t) sin ξ

ϕ(0) = 1.

and hence

X (t) = sin (ξ + βH(t)) exp
[
− (1 + α)t +

1

2
t2H
]
. (33)

It follows that

lim
t→∞

|X (t)| =∞, a.s.

so the noise destabilizes the equation.



General Case

Theorem

Assume (K1) and let F ∈ C 1,2([0,T ]× R) has at most exponential growth
in the second variable, uniform in t. Then F (t,Bt) belongs to D1,2 and we
have

F (t,Bt) = F (0, 0) +

∫ t

0
DtF (s,Bs)ds +

∫ t

0
DxF (s,Bs)dBs

+
1

2

∫ t

0
D2
xF (s,Bs)dR(s),

where R(s) := R(s, s) (under (K1) R has bounded variation).



General Case

The natural candidate for the evolution system U(t, s) would be the one
corresponding to the equation

y(t) = y0 +

∫ t

0
A(s)y(s)ds −

∫ t

0
B2y(s)dR(s), t ∈ [0,T ].

If we additionaly assume that R ∈ C 1([0,T ]) all results stated above (in
the regular case) remain true with t2H replaced by R(t) and Ht2H−1 by
R ′(t).



Random Evolution System

Consider
dYt = AYtdt + BYtdβ

H
t , t > s,

Ys = x ,
(34)

assume that (Ã(t)) generates the ”‘parabolic”’ strongly evolution system
{U(t, s), 0 ≤ s ≤ t ≤ T} on V .

(U(t, s)(V ) ⊂ D,

‖U(t, s)‖L(V ) ≤ CU , (35)∥∥∥ ∂
∂t

U(t, s)
∥∥∥
L(V )

= ‖Ã(t)U(t, s)‖L(V ) ≤
CU

t − s
,

‖Ã(t)U(t, s)(Ã(s)− ω̄I )−1‖L(V ) ≤ CU

for some constant CU > 0 and any 0 ≤ s < t ≤ T .



Random Evolution System

What is the random evolution system defined by the equation (34)? It
may be verified that the equation has a weak solution
{UY (t, s)x , s ≤ t ≤ T} given by a formula

UY (t, s)x = S(BH
t − BH

s )U(t − s, 0)x , s ≤ t ≤ T , (36)

for any initial value x ∈ V . Note that UY (t, s) is not the same as

ŪY (t, s) = S(BH
t − BH

s )U(t, s).



Random Evolution System

In one-dimensional case, A = a, B = b we have

ŪY (t, s) = S(BH
t − BH

s )U(t, s) = exp

{
b(BH

t − BH
s )− 1

2
b2
(
t2H − s2H

)}
,

(37)
while

UY (t, s) == exp

{
b(BH

t − BH
s )− 1

2
b2
(
t − s)2H

)}
, 0 ≤ s ≤ t ≤ T .

(38)
UY (t, s) does not posses the composition (cocycle) property (the equation
does not define RDS) while ŪY (t, s) does.



Affine equation

Theorem

Let F : [0,T ]× V → V be a measurable function satisfying

(i)F there exists a function L̄ ∈ L1([0,T ]) such that

‖F (t, x)− F (t, y)‖V ≤ L̄(t)‖x − y‖V , x , y ∈ V , t ∈ [0,T ].

(ii)F for some function K̄ ∈ L1([0,T ])

‖F (t, 0)‖V ≤ K̄ (t), t ∈ [0,T ].

Then the equation

y(t) = UY (t, 0)x +

∫ t

0
UY (t, r)F

(
r , y(r)

)
dr (39)

has a unique solution in the space C([0,T ];V ) for a.e. ω ∈ Ω and any
initial value x ∈ V .



Affine equation

In the Wiener case H = 1/2 the solution to the equation (39) is the
so-called mild solution to the equation

dXt = AXtdt + F (t,Xt)dt + BXtdWt ,
X0 = x ∈ V .

and is known to coincide with the weak solution. What can we say in the
general case?



Affine equation

Theorem

Let the assumptions of Theorem 4 hold and {Xt , t ∈ [0,T ]} be the
solution to the equation mild.rce such that there exists a constant
CX < +∞

max

{
sup

t∈[0,T ]
E‖Xt‖4

V , sup
t∈[0,T ]

sup
v∈[0,T ]

E‖DH
v Xt‖4

V

}
≤ CX . (40)

In addition, let F be Fréchet differentiable with respect to the space
variable for any time t ∈ [0,T ]. Suppose that there exists a function
C ∈ L4([0,T ]) such that

max{‖F (t, x)‖V , ‖F ′x(t, x)‖} ≤ C (t), t ∈ [0,T ], (41)

holds. Then {Xt , t ∈ [0,T ]} is a solution to the integral equation



Affine equation

Theorem

Xt = x +

∫ t

0
AXrdr +

∫ t

0
F (r ,Xr )dr +

∫ t

0
BXrdβ

H
r

+

∫ t

0
αH

∫ T

0

∫ t

r
|v − w |2H−2BUY (v , r)F ′x(r ,Xr )DH

wXrdvdwdr

in a weak sense, i.e. for any y ∈ D∗, t ∈ [0,T ],

〈Xt , y〉V = 〈x , y〉V +

∫ t

0
〈Xr ,A

∗y〉V dr

+

∫ t

0
〈F (r ,Xr ), y〉V dr +

∫ t

0
〈Xr ,B

∗y〉V dβHr

+

∫ t

0
αH

∫ T

0

∫ t

r
|v − w |2H−2

〈
UY (v , r)F ′x(r ,Xr )DH

wXr ,B
∗y
〉
V
dvdwdr ¶- a.s.



Affine equation

Consider a one-dimensional equation

dXt = aXtdt + bXtdβ
H
t , X0 = 1, (42)

a, b ∈ R are nonzero constants. In the previous notation,

dXt = F (t,Xt)dt + BXtdβ
H
t , X0 = 1,

where F (t, x) = ax , A = 0 and B = bI . Recall that

ŪY (t, s) = S(βHt − βHs )U(t, s) = exp

{
b(βHt − βHs )− 1

2
b2
(
t2H − s2H

)}
.

Then

Xt = ŪY (t, 0) +

∫ t

0
ŪY (t, r)F (r ,Xr )dr (43)



Affine equation

Theorem

Let the assumptions of Theorem 4 be satisfied and F : [0,T ]→ V be
a measurable function independent of a space variable such that
‖F‖V ∈ L2([0,T ]). Then the solution {XM

t , t ∈ [0,T ]} to the affine
equation (39) obtained in Theorem 4 having the form

XM
t = UY (t, 0)x +

∫ t

0
UY (t, r)F (r)dr (44)

is a weak solution to the equation

dXt =
(
AXt + F (t)

)
dt + BXtdβ

H
t ,

X0 = x ∈ V .
(45)



Affine equation

Corollary

For each p ≥ 1 there exists a constant cp > 0 depending only on p such
that

E
[
‖Xt‖pV

]
≤ cpM exp

{(p2 − p)b2

2
t2H + pωt

}
‖x‖pV

+ Mtp−1

∫ t

0
exp

{(p2 − p)b2

2
(t − s)2H (46)

+ pω(t − s)
}
‖F (s)‖pV ds, t ≥ 0. (47)

In particular, if F (t) ≡ F does not depend on t ≥ 0, for each ε > 0 there
exists Cε > 0 such that

E
[
‖Xt‖pV

]
≤ Cε exp{(ĉ + ε)t2H}, t ≥ 0, (48)

holds with ĉ = 1/2b2(p2 − p).
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Cylindrical fractional Brownian motion

Let (Ω,F ,P) be a complete probability space,
U = (U, 〈·, ·〉U , | · |U) be a separable Hilbert space.
A cylindrical process

〈
BH , ·

〉
: Ω× R× U → R on (Ω,F ,P) is called a

standard cylindrical fractional Brownian motion with Hurst parameter
H ∈ (0, 1) if

1 For each x ∈ U \ {0}, 1
|x |U

〈
BH(·), x

〉
is a standard scalar fractional

Brownian motion with Hurst parameter H.
2 For α, β ∈ R and x , y ∈ U,〈

BH(t), αx + βy
〉

= α
〈
BH(t), x

〉
+ β

〈
BH(t), y

〉
a.s. P.

〈
BH(t), x

〉
has the interpretation of the evaluation of the functional

BH(t) at x ,
For H = 1

2 it is standard cylindrical Wiener process in U.



Cylindrical FBM

We can associate (BH(t), t ∈ R) with a standard cylindrical Wiener

process (W (t), t ∈ R) in U formally by BH(t) = KH

(
Ẇ (t)

)
. For

x ∈ U \ {0}, let βHx (t) = 〈BH(t), x〉. It is elementary to verify from (??)
that there is a scalar Wiener process (wx(t), t ∈ R) such that

βHx (t) =

∫ t

0
KH(t, s) dwx(s) (49)

for t ∈ R.
Furthermore, if V = R, then wx(t) = βHx

(
(K∗H)−1 1[0,t)

)
where K∗H is

given by (16). Thus we have a formal series

W (t) =
∞∑
n=1

wn(t)en. (50)



Stochastic integral

Let (en, n ∈ N) be a complete orthonormal basis in U.
Let G : [0,T ]→ L(U,V ) be an operator-valued function such that
G (·)en ∈ H for n ∈ N, and BH be a standard cylindrical fractional
Brownian motion in U.
Define ∫ T

0
G dBH :=

∞∑
n=1

∫ T

0
Gen dβ

H
n

provided the infinite series converges in L2(Ω,V ).
Note that by condition 2 in the definition above the scalar processes
βHn (t) :=

〈
BH(t), en

〉
, t ∈ R, n ∈ N are independent.



Linear equations

Consider the linear equation

dZ x(t) = AZ x(t) dt + Φ dBH(t),

Z (0) = x ,
(51)

where (BH(t), t ≥ 0) is a standard cylindrical fractional Brownian motion
with Hurst parameter H ∈ (0, 1) in U and U is a separable Hilbert space,
A : Dom(A)→ V , Dom(A) ⊂ V , A is the infinitesimal generator of a
strongly continuous semigroup (S(t), t ≥ 0) on V , Φ ∈ L(U,V ) and
x ∈ V is generally random. Let Q = ΦΦ∗ ∈ L(V ).



Linear equations

A solution (Z x(t), t ≥ 0) to (51) is considered in the mild form

Z x(t) = S(t)x + Z (t), t ≥ 0, (52)

where (Z (t), t ≥ 0) is the convolution integral

Z (t) =

∫ t

0
S(t − u)Φ dBH(u). (53)

If (S(t), t ≥ 0) is analytic, then there is a β̂ ∈ R such that the operator
β̂I − A is uniformly positive on V .
For each δ ≥ 0, let us define (Vδ, | · |δ) a Banach space, where

Vδ = Dom
(

(β̂I − A)δ
)

with the graph norm topology such that

|x |δ =
∣∣∣(β̂I − A)δx

∣∣∣
V
.

The space Vδ does not depend on β̂ because the norms are equivalent for
different values of β̂ satisfying the above condition.



Assumptions

Let (S(t), t ≥ 0) be an analytic semigroup such that

|S(t)Φ|γ ≤ ct−ρ (A1)

for t ∈ [0,T ], c ≥ 0 and ρ ∈ [0,H).



Regularity

Theorem

If (A1) is satisfied, then (Z (t), t ∈ [0,T ]) is a well-defined Vδ-valued
process in Cβ([0,T ],Vδ), a.s.-P for β + δ + γ < H, β ≥ 0, δ ≥ 0.

Analyticity not necessary for H > 1/2.

Conjecture: Consider the general case Bt =
∑
βn(t) where βn are

continuous centered Gaussian processes defined by (the same) kernel K
satisfying (K1). Then the stochastic convolution integral exists and as a
process has a version with sample paths in L2(0,T ;V ) a.s. provided (A1)
is satisfied with ρ = 0. If moreover we have for some H > 1/2

∂K

∂t
(t, s) ≤ (s/t)1/2−H(t − s)H−3/2

the same holds true under weaker condition ρ < H.


