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General Case

Let (B;) be a continuous centered Gaussian process on a complete
probability space with sigma-algebra generated by the process, suppose
that its covariance R(t,s), s,t € [0, T] may be expressed as

min(s,t)
R(t,s) :/ K(t,r)K(s, r)dr,
0

where K is square integrable and

t
sup / K(t,s)?ds < oc.
te[0,T] J0

Furthermore, assume that there exists a Wiener process (W;) such that

t
B; :/ K(t,s)dWs, te][0,T].
0



General Case

Assume further
(K1) For all s € (0, T], K(+,s) has a bounded variation on (s, T] and

/ IKI((s, T], 5)2ds < oo.
0

Set
T
(K*¢) (s) = @(s)K(T,s) +/ (¢(t) — ¢(s)) K(dt, s). (1)

for ¢ € &£, the space of V-valued deterministic step functions.



General case

For x,y € V define
<X1[O,t]ay1[0,s]>7'l = <X7y>VR(t7 5)7 (ta 5) € [07 T]2 (2)

The inner product (-, )3 can be extended (by linearity) to £ and

(&, (-, ")) forms a pre-Hilbert space. The completion of £ with respect to
the above scalar product is denoted by . Stochastic integral w.r.t. 3 is
defined in the standard way on £ and extended to H. We have

el = IK* 2l Z2q0,m,v)-

and
/(K* t)dWy, P—as.. (3)



General case

(K2) For some a € (0, %) the kernel K satisfies the following:

@ For all s € (0, T) the function K(-,s) : (s, T] — R is differentiable in
the interval (s, T) and both K(t,s) and the derivatives %—’t{(t, s) are
continuous at every t € (s, T).

@ There exist a konstant ¢ > 0 such that
0K
—(t
s

<c(t—s)vt (;>_a, (4)

t
/ K(t,r)?dr < c(t — s)?**!

for0<s<t<T.



General case

Let (K1) be satisfied. Consider the seminorm

Il = | " lo(E)B, K(s*,9)%ds + / ' ( / ' rso<t)|vvcr(dt,s>)2ds,

(5)
defined on £. Denote by Hr the completion of £ with respect to || - ||3-
Then Hg is continuously embedded in H.

@ There exists a finite constant ¢; > 0 such that

el < ellellbpo, v

for all ¢ € bB ([0, T]; V).




General case

Theorem

Suppose further (for simplicity)that K(s*,s) =0 forall0 <s < T. If
(K?2) is satisfied then there exists a finite constant c3(«) > 0 such that

Il < es(@ell, 2 7109

for each ¢ € R=r ([0, T]; V).




Cylindrical Process

Let (K1) be satisfied. Let (2, F,P) be a probability space, U be a real
separable Hilbert space equipped with an inner product (-,-)y and T > 0.
Given an ONB basis (e) of the space U we define the cylindrical Gaussian
Volterra process (with covariance kernel K) as a formal sum

Be = Ba(t)en,
n=1

where (8,(t)) is a sequence of pairwise independent one-dimensional
Gaussian Volterra processes with the same covariance kernel. The series
does not converge in the space U but may be understood as usual as a
family of random linear functionals (or may be shown to be convergent in
any Hilbert space U; such that the embedding U — U is
Hilbert-Schmidt).



Stochastic integral

Let G : [0, T] — L(U, V) be an operator-valued function such that
G(-)en € H for n € N, and B be a standard cylindrical Gaussian Volterra
process in U.

Define

T o T
/ G dB" ::Z/ Ge, df3n
0 =170

provided the infinite series converges in L2(Q, V).



Linear equations

dX; = AX¢dt+@dB:, t>0 (6)
Xo = x, P —a.s.
where A : Dom(A) — V, Dom(A) C V, an infinitesimal generator of a
strongly continuous semigroup (5(t),t > 0) on V, ® € L(U, V) and
xe V.

Xe = S(t)x + /t S(t—s)PdBs =: S(t)x+ Z(t), P—as. (7)
0

for t > 0.



Linear equations

@ Forall T >0, K satisfies (K1) on [0, T] and induces a non-atomic
measure K. Moreover, & € Lo(U, V)

@ Forall T >0, K satisfies (K2) on [0, T] and for all s € (0, T], S(s)®
is a Hilbert-Schmidt operator such that

2
ISPl 2o(u,v) € LT725(0, T). (8)



Linear equations

Proposition

If at least one of the conditions (A1) and (A2) holds, then the process
Z = (Z;,t>0), is well defined V-valued Gaussian process and its sample
paths are P-almost surely in L2([0, T]; V) for all T > 0.




Linear equations

Proposition
Assume that for all T > 0, K satisfies (K2) on [0, T] and for all
s € [0, T], S(s)® is a Hilbert-Schmidt operator such that

_2
t = t7P)|S(8)Pl|yu,v) € LF==(0, T). (9)

for some 3 > 0. Then the process Z has a Holder continuous version in V.

v




Linear equations

Corollary (Sufficient condition for (A2))

If for all T > 0 there exist finite constants ¢ > 0 and 0 < v < % + « such
that

1S()Pllcou,vy S ct™”, t€(0,T]

then there exists a Holder continuous version of the process Z in V.




Definition

Let H be an element of (0,1) (the Hurst parameter). A continuous

centered Gaussian process ,BH(t), t € R, defined on a probability space

(Q, F,P) is called fractional Brownian motion if

1
ES"(1)"(s) = §(|f\2H + s — |t =), t seR.

(10)

v




Let Ky(t,s) for 0 < s <t < T be the kernel function

Ki(t,s) = cu(t — s)""2 + o (3 — H) /t(u _s)H-3 (1 - (5)%*’) du

1yr(2_
where cy = 2Hr(¢;;i)2r,§)2 H)] and I'(+) is the gamma function.

The operator K, is given by

)
o) = o()Ku(T,6) + / (p() — o(£)) 222 (s, s

for p € £.



Example (Parabolic)

Consider the initial boundary value problem for stochastic parabolic
equation

%(t,x) = Lu(t,x) +&(t,x), (t,x) € Ry xD,
u(0,x) = uw(x), xe€ D, (11)
u(t,x)=0, teR4, xedD,

where D ¢ R? is a bounded domain with a smooth boundary, L is a second
order uniformly elliptic operator on D and 7 is a noise process that is the
formal time derivative of a space dependent fractional Brownian motion.

@ rewrite the parabolic system as an infinite dimensional stochastic
differential equation:
U= L?(D), V = L?(D), ® = Id; we get (A1) with p = d/4, so
ZeCh([0,T],D3) for 6+ 8+ 94 < H.



Boundary and Pointwise Noise

2= dulte), (e eDCE
u(0,£) = x(§),
(. 6) = nf(.6). (£.6) €D
81/ Y - 77 ) ) )
(Neumann type boundary noise), or
u(t,€) =n"(t,), (t,€) €D

(Dirichlet type boundary noise).



Boundary and Pointwise Noise

Modelled as

Z(t) = S(t)x + /Ot S(t — r)edBH(r), t>0,

where ® = (A — BI)N, N is the Neumann (or Dirichlet) map, the state
space is V = L%(D), and B" is a cylindrical fBm on a separable Hilbert
space U C L?(0D).

Conditions for existence and time Holder continuity of the solution :
o d=1: < H (Neumann) and 3 < H (Dirichlet).
o d>2: 3+ 1(d—1) < H (Neumann).



Boundary and Pointwise Noise

@(t,f) = Au(t,f) +5z771’“1’7 (taf) eD

ot
u(0,€) = x(),

ou
5(1.“,5) =0, (t,&) €aD

(pointwise noise, ¢, - Dirac distribution at z € D).

Modelled as

Zx(t) = S(t)x + /OtS(t —rodsf(r), t>o,

in V = L2(D), where ® is a distribution, i.e. ® € (D3)* for § > 4. We
have a (Holder) continuous solution for 6 < H, i.e. for % < H.



Equations with Multiplicative Noise

Consider the equation with finite-dimensional (fBm)

dX(t) = A(t)X(t)dt + zm: BiX(t)dBy (t) (12)
k=1
X(0) = xo

where (A(t)) generates a strongly continuous family of operators
(Uo(t,s)), t>s,

(;95 Uo(t,s) = —Uo(t,s)A(s) (13)

D Uo(t,5) = A (2. 5) (14)



Equations with Multiplicative Noise

(H1)

(H2)

(H3)

The family of closed operators (A(t), t € [0, T]) defined on a
common domain D := Dom(A(t)) for t € [0, T] generates a strongly
continuous evolution operator (Up(t,s), 0 <s<t<T)on V.

The collection of linear operators (B, ..., Bm) generate mutually
commuting strongly continuous groups (S1(s), ..., Sm(s),s € R) wich
commute with A(t) on D for each t € [0, T]. For i,j € {1,...,m},
Dom(B;B;) D D, Dom(A*(t)) = D* is independent of t and

D* C ﬂ,f:'j:l Dom(B; B') where x denotes the topological adjoint.
The family of linear operators (A(t), t € [0, T]) where

A(t) = A(t) — HE2H=1 37 | B2, Dom(A(t)) = D for each t € [0, T],
generates a strongly continuous evolution operator on V/,
(U(t,s),0<s<t<T).



Equations with Multiplicative Noise

A B([0, T]) ® F measurable stochastic process (X(t), t € [0, T]) is said to
be

(i) a strong solution of (12) if X(t) € D a.s. P and
X(t) =x0 + /Ot A(s)X(s)ds +J§;/gt BjX(s)dBJH(s) a.s. (15)

for t € [0, T].
(ii) a weak solution of (12) if for each z € D*

< X(t),z>=<xp,z > +/t<X(s),A*(s)z> ds (16)
0
+ Z/t <X(s),Biz>dpl'(s) as. (17
j=170

for t € [0, T] and



Equations with Multiplicative Noise

(iii) a mild solution of (12) if
X(t) = Up(t,0)x0 + Z/Ot Uo(t, s)BjX(s)dﬂJH(s) as.  (18)
j=1
for t € [0, T,

where the stochastic integrals in (15)—(18) are defined in the Skorokhod
sense.



Equations with Multiplicative Noise

Theorem

Assume that H > % and (H1)—(H3) are satisfied. There is a weak solution
of (12). If xo € D, then there is a strong solution of (12). If B; € L(V) for
J € {1,...,m}, then there is a mild solution of (12) which is unique in the
space Domédy N L?(Q; #H), where 5y denotes the divergence operator based
on 3. In each case the solution (X(t), t € [0, T]) is given as follows

X(t) = [T S8 (£)u(t, 0)x0 (19)

Jj=1

for t € [0, T].

For H < 1 there exists a weak solution given by formula (19) in the
"‘parabolic”’ case (by approximations, using Cheredito-Nulart result on
closedness of the extension of Skorokhod integral operator).




Equations with Multiplicative Noise - Existence and

Uniqueness

Proof: Existence in the "'strong”’ case: By fractional Ito formula, the
other cases by approximations of the initial value (Malliavin derivatives in
the Ito formula may be easily calculated).

Uniqueness (for simplicity, from now on m = 1, B{" =: gH, B; =: B,
51 = 5)

t
X: = Up(t, 0)x+/ Uo(t, r)BX,dpB",
0
t
Y: = U(t, 0)x+/ Uo(t, r)BY,dp",
0

Define the process Z = {Z;,t € [0, T|} as

Zt:Xt— Yt, t e [O, T]



Equations with Multiplicative Noise - Existence and

Uniqueness

Let
+oo +o0
Xe=) Xa(t), Ye=>_ Ya(t), t€[0,T],
n=0 n=0

be the respective Wiener chaos decompositions. Show (by induction)
Z,=X,—Y,=0. We have Zy = 0 hence

+Z Zo(t) = +Z/Ot Uo(t, 5)BZ(s)d M.
Since Zy € Hog th(r;1 "
Hi > /t Uo(t,s)BZo(s)dB! =0, te o, T],
and consequently i

Zi(t) = /Ot Uo(t, s)BZo(s)dB" = 0

fAr anv F = [0 T1 becatice 7. = M.



Equations with Multiplicative Noise - Existence and

Uniqueness

Suppose Z, = 0 for some fixed n € N. By commutativity

/0 Uo(t,s)BZ,,(s)dﬁ:’:/o /0"1.../01Uo(t,s)B"zo(s)dﬁg’dﬂg...dﬁ{j

is zero for any t € [0, T] and the expression belongs to H ;1. Moreover,
Zn+1 S Hn+1 thus

t th—1 53
Zn+1(t):/0/0 /0 Un(t,5)B"Zo(s)dpHdB! ... dH =0

for t € [0, T].



Let
dX; = AXedt+ bX.dBH, t>0,

Xo = X, (20)

where A : Dom(A) C V — V is the generator of a strongly continuous
semigroup {Sa(t),t >0} and b € R\ {0}. Then

X: = exp {bﬁf — %b2t2H}SA(t)x, 0<s<t<+00,
and since there exist some constants M > 0,w € R such that
15a(t)llz(vy) < Me®t, t >0,
we have that
| X:|v < Mexp {bﬁf — %bZt”’ +wt}|x\v -0 (21)

a.s. as t — oo (the solution is pathwise stabilized by noise)



However, for any p > 0, taking for simplicity V =R, A=w, x #0
E|X:|P = |x|P exp {pwt — %b2pt2H + pbBtH}, t>0,p>1,
hence for each € > 0 there exists C, > 0 such that
E[|X:[5] = |x|Pexp { &t + pwt} > Coexp{(¢ — €)t*"'}, t >0,

where & = 2b2(p? — p), so for p > 1 the p-th moment of the solution is
destabilized by noise.



ou dpH

a(t’f) = L(taﬁ)U(t,f) +b p u (22)
U(O,f) = XO(f)
for (t,£) € [0, T] x O
(Z,)a(t,ﬁ) =0, (t,6)€[0,T]x00, ac{l,....k—1}

where k € N, O C RY is a bounded domain of class CX, b € R\ {0} and

L(t?g) = Z aa(t7£)Da (23)

la|<2k

is a strongly elliptic operator on O, uniformly in (t,£) € [0, T] x O and
au(t,-) € C?K(O) for each t € [0, T].



The equation (22) is rewritten in the form

dX(t) = A(t)X(t)dt + BX(t)dB"(t) (24)
X(O) =xp eV

for t € [0, T], where V = L2(0), (A(t)u)(&) = L(t,&)u(t,€),
Dom(A(t)) = D = H?K(0) N H¥(O) and B = bl € L(V). It is assumed
that

sup [aa(t,§) — aa(s,§)| < M[t — s (25)
33



ou 8%u 8u dBH
(6.6 = 2 (6.6 4 b (1.0 T (0 (26)
[S(t)x0](§) = x0(& + bt) (27)

The ellipticity condition (H3) is satisfied if a > Ht?H=1b2. The solution
may be expressed

(50309 = [ (@mt) exp [~ (e =] x(myen (28)
X(t) = S(3*(1))Sa (at - %b2t2H)xo. (29)

1/(2H- 1)
So the problem is "well posed” for 0 <t < T, where T = (b )



ou ou dBf(t)
E 87&4 —au—+ aié_ dr (30)

u(0,8) = xo(§) =sin¢

At)=L—tH*""1B% = P al — tH*H1 o (31)
ot g2

The solution has the form

X(t) = S(8"(£)U(t, 0)xo. (32)



Setting [U(t,0)x0](&) = ¢(t)sin & we obtain

(t)sin€ = —p(t)sin& — ap(t)sin& + H2H1p(t) sin &
¢(0) = 1.

and hence
X(t) =sin (€ + 81(t)) exp [—(1+a)t+%t2H] (33)

It follows that

lim | X(t)| = oo, a.s.

t—o0

so the noise destabilizes the equation.



General Case

Theorem

Assume (K1) and let F € C12([0, T] x R) has at most exponential growth

in the second variable, uniform in t. Then F(t,B;) belongs to D*? and we
have

t

t
F(t, Be) = F(0,0) + / D:F(s, Bs)ds + / D, F(s, B,)dB,
0 0

1 t
+5 / D2F (s, Bs)dR(s),
0

where R(s) := R(s,s) (under (K1) R has bounded variation).




General Case

The natural candidate for the evolution system U(t,s) would be the one
corresponding to the equation

0=+ [ A(s)y(s)ds — / "By(s)dR(s), te 0. T].

If we additionaly assume that R € C*([0, T]) all results stated above (in

the regular case) remain true with t2 replaced by R(t) and Ht?H=1 by
R'(t).



Random Evolution System

Consider
dY; = AYidt+ BY.dBl, t > s, (38)
Ys = X

assume that (A(t)) generates the " ‘parabolic”’ strongly evolution system
{U(t,s),0<s<t<T}on V.

(Ut s)(V) € D.

U, 5)leqwy < Co. (39
[eue.s)] = AUy < 22,
AU S)AS) ~ ) ) < Co

for some constant Cy >0 andany 0 <s<t<T.



Random Evolution System

What is the random evolution system defined by the equation (34)7 It
may be verified that the equation has a weak solution
{Uy(t,s)x,s <t < T} given by a formula

Uy(t,s)x = S(BF — BEYU(t —5,0)x, s<t<T, (36)
for any initial value x € V. Note that Uy(t,s) is not the same as

Uy(t,s) = S(BF — BMYu(t,s).



Random Evolution System

In one-dimensional case, A = a, B = b we have

Uy(t,s) = S(BF — BIYU(t,s) = exp {b(Bﬁ — B - %bz(ﬁ” ~ 52H)} ,
(37)
while
Uy (t,s) == exp {b(BtH — BH) - %b2(t - 5)2H)} ,0<s<t<T.
(38)

Uy (t,s) does not posses the composition (cocycle) property (the equation
does not define RDS) while Uy (t,s) does.



Affine equation

Let F: [0, T] x V — V be a measurable function satisfying
(i)p there exists a function L € L1([0, T]) such that

IF(t,x) = F(t.0)llv < L&) Ix = yllv, x,y € V, t [0, T].
(i) for some function K € L([0, T])
|F(t,0)||v < K(t), te]o,T].

Then the equation

y(t) = Uy(t,0)x + /Ot Uy (t, r)F(r,y(r))dr (39)

has a unique solution in the space C([0, T]; V) for a.e. w € Q and any
initial value x € V.




Affine equation

In the Wiener case H = 1/2 the solution to the equation (39) is the
so-called mild solution to the equation

dX; = AXedt+ F(t, X;)dt + BX:dW,
Xo = xeV.

and is known to coincide with the weak solution. What can we say in the
general case?



Affine equation

Theorem

Let the assumptions of Theorem 4 hold and {X;, t € [0, T|} be the
solution to the equation mild.rce such that there exists a constant
Cx < +0

max{ sup E|X¢|[}, sup sup ]EHD","XJW} < Cx.
te[0,T] t€l0,T] vel0,T]

In addition, let F be Fréchet differentiable with respect to the space
variable for any time t € [0, T|. Suppose that there exists a function
C € L*([0, T]) such that

max{||F(t,x)|lv, | F(t,x)[I} < C(t), t € [0, T],

holds. Then {X;,t € [0, T|} is a solution to the integral equation

(40)

(41)




Affine equation

t t t
Xt:x-l-/ AX,dr-i—/ F(r,X,)dr-l-/ BX,dsH
0 0 0

t T t
+/ aH/ / lv — w|?H=2BUy (v, r)FL(r, X,) DX X, dvdwdr
0 0 r
in a weak sense, i.e. for any y € D*, t € [0, T],
t
Koy = v+ [ (X Ay
0
t t
+ [Ee X+ [ 08 v
+ [ / [ 1= WP Uy v L XD B

v




Affine equation

Consider a one-dimensional equation
dX; = aXpdt + bX;dBl, Xo =1, (42)
a, b € R are nonzero constants. In the previous notation,
dX: = F(t, Xe)dt + BX,dBl, Xo =1,

where F(t,x) = ax, A= 0 and B = bl. Recall that

Uy (t,5) = S(B = BT)U(t,5) = exp {b(ﬁt” - Bl - %bz(tz” - s2”)} :

Then .
X; = Uy(t,o)+/ Uy (t, r)F(r,X,)dr (43)
0



Affine equation

Theorem

Let the assumptions of Theorem 4 be satisfied and F : [0, T] — V be
a measurable function independent of a space variable such that
IFllv € L2([0, T]). Then the solution {XM,t € [0, T]} to the affine
equation (39) obtained in Theorem 4 having the form

XtM = Uy(t,0)x + /Ot Uy (t, r)F(r)dr (44)

is a weak solution to the equation

dX: = (AX;+ F(t))dt+ BX.dpL,
Xo = xeV.




Affine equation

Corollary

For each p > 1 there exists a constant ¢, > 0 depending only on p such
that

2 b2
E[[X:]%] < cpMexp {(”2”)#” + pwt}nxupv

+ M /O texp{('o_2p)b(t—s)2H (46)

+ puo(t = 5) HIF(s)lIf s, ¢ > 0. (47)

In particular, if F(t) = F does not depend on t > 0, for each € > 0 there
exists C. > 0 such that

E[IX:]5] < Goxp{(e + 92}, £ 20, (48)

holds with ¢ = 1/2b%(p? — p).
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Cylindrical fractional Brownian motion

Let (22, F,P) be a complete probability space,
U= (U,(-,-)y,||u) be a separable Hilbert space.
A cylindrical process (B",-) : @ x Rx U — Ron (Q,F,P) is called a
standard cylindrical fractional Brownian motion with Hurst parameter
H e (0,1) if

@ For each x € U\ {0}, T (-),x) is a standard scalar fractional

Brownian motion with Llurst parameter H.
Q@ Fora,€Rand x,y € U,

<BH(t),ax + ,8y> = a <BH(t),X> +5 <BH(t),y> as. P.

<BH x> has the interpretation of the evaluation of the functional
B (t) at x,
@ For H= % it is standard cylindrical Wiener process in U.



Cylindrical FBM

We can associate (B"(t), t € R) with a standard cylindrical Wiener
process (W(t), t € R) in U formally by BY(t) = Ky (W(t)> For

x € U\ {0}, let BY(t) = (BH(t),x). It is elementary to verify from (??)
that there is a scalar Wiener process (wy(t), t € R) such that

s = [ Kt ) dws(s) (49)

for t € R.
Furthermore, if V = R, then w,(t) = 3/ ((IC}*_,)_1 1[O,t)) where K}, is
given by (16). Thus we have a formal series

W(t)=> wa(t)en. (50)
n=1



Stochastic integral

Let (e, n € N) be a complete orthonormal basis in U.

Let G : [0, T] — L(U, V) be an operator-valued function such that
G(-)e, € H for n € N, and B be a standard cylindrical fractional
Brownian motion in U.

Define
T © T
/ G dB" ::Z/ Ge, dpH
0 —170

provided the infinite series converges in L2(£, V).
Note that by condition 2 in the definition above the scalar processes
Bi(t) := (BH(t),en),t € R, n € N are independent.



Linear equations

Consider the linear equation

dz*(t) = AZ*(t) dt + ® dB"(t), (51)
Z(0) = x,
where (BH(t), t > 0) is a standard cylindrical fractional Brownian motion
with Hurst parameter H € (0,1) in U and U is a separable Hilbert space,
A:Dom(A) — V, Dom(A) C V, A is the infinitesimal generator of a
strongly continuous semigroup (S(t),t >0)on V, ® € £(U, V) and

x € V is generally random. Let Q = ®®* € L(V).



Linear equations

A solution (Z*(t),t > 0) to (51) is considered in the mild form
Zx(t) = S(t)x+ Z(t), t>0, (52)

where (Z(t),t > 0) is the convolution integral

Z(t) = /Ot S(t — u)® dB" (u). (53)

If (S(t), t > 0) is analytic, then there is a 3 € R such that the operator
Bl — A is uniformly positive on V.
For each § > 0, let us define (Vs, |- |s) a Banach space, where

Vs = Dom ((BI — A)5> with the graph norm topology such that

— |31 — Ay ‘ .
IxIs = [(B1 = AY’x|
The space Vj does not depend on B because the norms are equivalent for
different values of 3 satisfying the above condition,



Let (S(t),t > 0) be an analytic semigroup such that
S(e)l, < ct (A1)

for t € [0, T], c>0and p € [0, H).



Regularity

If (A1) is satisfied, then (Z(t),t € [0, T]) is a well-defined V;-valued
process in C5([0, T], Vs),a.s.-P for 3+ 8+~ < H,3 > 0,6 > 0.

@ Analyticity not necessary for H > 1/2.

Conjecture: Consider the general case By = ) 3,(t) where 3, are
continuous centered Gaussian processes defined by (the same) kernel K
satisfying (K1). Then the stochastic convolution integral exists and as a
process has a version with sample paths in L2(0, T; V) a.s. provided (A1)
is satisfied with p = 0. If moreover we have for some H > 1/2

oK

ot (t,S) < (S/t)1/2_H(t N S)H—3/2

the same holds true under weaker condition p < H.



