Set-Valued Risk Measures and Systemic Risk

ZACH FEINSTEIN

Operations Research and Financial Engineering,
Princeton University

Joint work with Birgit Rudloff (Princeton University)
and Stefan Weber (Leibniz Universität Hannover)

Leibniz Universität Hannover
May 28, 2014
1. Overview

2. Financial networks

3. Systemic risk measures
 - Eisenberg-Noe network model

4. Computation

5. Orthant risk measures
Idea: Capital requirements for financial firms to control the risk to the outside economy
1. Overview

- Idea: Capital requirements for financial firms to control the risk to the outside economy
- Model the financial system via a network of obligations
- Introduce (random) stresses into the system and find payment structure
- System is “acceptable” as measure of net payments to the outside economy (1 dimensional), but capital requirements separated by institution
2. Financial networks

Figure: Independent financial firms
Figure: Network with single systemically important firm
2. Financial networks

Figure: Network with no clear systemically important firm
2. Financial networks

Figure: Network with node for “real” economy
3. Systemic risk measures

- n financial firms
3. Systemic risk measures

- n financial firms
- Equity and loss (E&L) function: $e : \mathbb{R}_+^n \rightarrow \mathbb{R}^{n+1} \cup \{-\infty\}$
- Pre-image: Vector of bank endowments before network effects
- Image: Vector of bank equity after network effects
3. Systemic risk measures

- n financial firms
- Equity and loss (E&L) function: $e : \mathbb{R}_+^n \rightarrow \mathbb{R}^{n+1} \cup \{-\infty\}$
- Pre-image: Vector of bank endowments before network effects
- Image: Vector of bank equity after network effects
- e_0 is the equity value of the outside economy from the financial system
3. Systemic risk measures

- \(n \) financial firms
- Equity and loss (E&L) function: \(e : \mathbb{R}^n_+ \rightarrow \mathbb{R}^{n+1} \cup \{-\infty\} \)
- Pre-image: Vector of bank endowments before network effects
- Image: Vector of bank equity after network effects
- \(e_0 \) is the equity value of the outside economy from the financial system
- Assume:
 - \(e \) is nondecreasing
 - \(e(y) = -\infty \) for all \(y \notin \mathbb{R}^n_+ \)
 - \(e_0 \) is bounded from above
 - \(e_0(y) \geq 0 \) for all \(y \in \mathbb{R}^n_+ \)
3. Systemic risk measures

Systemic Risk Measures

\[R^{sys}_A : L^0(\mathbb{R}^n) \rightarrow \mathcal{P}(\mathbb{R}^n; \mathbb{R}_+^n) = \{ D \subseteq \mathbb{R}^n \mid D = D + \mathbb{R}_+^n \} \] is a **systemic risk measure** if for some acceptance set \(A \subseteq L^\infty(\mathbb{R}) \) of a scalar risk measure:

\[R^{sys}_A(X) = \{ k \in \mathbb{R}^n \mid e_0(k + X) \in A \}. \]
3. Systemic risk measures

Systemic Risk Measures

\[R_{A}^{sys} : L^{0}(\mathbb{R}^{n}) \rightarrow \mathcal{P}(\mathbb{R}^{n}; \mathbb{R}^{n}_{+}) = \{ D \subseteq \mathbb{R}^{n} \mid D = D + \mathbb{R}^{n}_{+} \} \]

is a **systemic risk measure** if for some acceptance set \(A \subseteq L^{\infty}(\mathbb{R}) \) of a scalar risk measure:

\[R_{A}^{sys}(X) = \{ k \in \mathbb{R}^{n} \mid e_{0}(k + X) \in A \}. \]

Equivalently:

\[R_{A}^{sys}(X) = \{ k \in \mathbb{R}^{n} \mid k + X \in \mathcal{A}^{e} \} \]

\[\mathcal{A}^{e} = e_{0}^{-1}[A] := \{ Y \in L^{0}(\mathbb{R}^{n}_{+}) \mid e_{0}(Y) \in A \} \]
Assume: \(e_0 \) is concave and continuous
\(\mathcal{A} \) is convex, closed, and law-invariant
Assume: e_0 is concave and continuous
\mathcal{A} is convex, closed, and law-invariant

Properties: Let $X, Y \in L^0(\mathbb{R}^n)$, $k \in \mathbb{R}^n$, and $\alpha \in [0, 1]$

- **Translative:** $R^\text{sys}_\mathcal{A}(X + k) = R^\text{sys}_\mathcal{A}(X) - k$
- **Monotone:** $R^\text{sys}_\mathcal{A}(X) \supseteq R^\text{sys}_\mathcal{A}(Y)$ if $X \geq Y$ a.s.
3. Systemic risk measures

Assume: e_0 is concave and continuous
\[\mathcal{A} \text{ is convex, closed, and law-invariant} \]

Properties: Let $X, Y \in L^0(\mathbb{R}^n)$, $k \in \mathbb{R}^n$, and $\alpha \in [0, 1]$

- **Translative:** $R^\text{sys}_A (X + k) = R^\text{sys}_A (X) - k$
- **Monotone:** $R^\text{sys}_A (X) \supseteq R^\text{sys}_A (Y)$ if $X \geq Y$ a.s.
- **Quasi-convex:** $R^\text{sys}_A (\alpha X + (1 - \alpha)Y) \supseteq R^\text{sys}_A (X) \cap R^\text{sys}_A (Y)$
Assume: e_0 is concave and continuous
\mathcal{A} is convex, closed, and law-invariant

Properties: Let $X, Y \in L^0(\mathbb{R}^n)$, $k \in \mathbb{R}^n$, and $\alpha \in [0, 1]$

- **Translative:** $R^{sys}_A(X + k) = R^{sys}_A(X) - k$
- **Monotone:** $R^{sys}_A(X) \supseteq R^{sys}_A(Y)$ if $X \geq Y$ a.s.
- **Quasi-convex:** $R^{sys}_A(\alpha X + (1 - \alpha)Y) \supseteq R^{sys}_A(X) \cap R^{sys}_A(Y)$
- **Closed-valued:** $R^{sys}_A(X)$ is closed
Assume: e_0 is concave and continuous
\[A \text{ is convex, closed, and law-invariant} \]

Properties: Let $X, Y \in L^0(\mathbb{R}^n)$, $k \in \mathbb{R}^n$, and $\alpha \in [0, 1]$

- **Translative**: $R^\text{sys}_A(X + k) = R^\text{sys}_A(X) - k$
- **Monotone**: $R^\text{sys}_A(X) \supseteq R^\text{sys}_A(Y)$ if $X \geq Y$ a.s.
- **Quasi-convex**: $R^\text{sys}_A(\alpha X + (1 - \alpha)Y) \supseteq R^\text{sys}_A(X) \cap R^\text{sys}_A(Y)$
- **Closed-valued**: $R^\text{sys}_A(X)$ is closed
- **Law-invariant**: $R^\text{sys}_A(X) = R^\text{sys}_A(Y)$ if $X \overset{d}{=} Y$
3.1 Systemic risk measures: Eisenberg-Noe network model

\[\bar{p}_{1,2}, \bar{p}_{1,3}, \bar{p}_{3,1}, \bar{p}_{4,5}, \bar{p}_{4,6}, \bar{p}_{5,1}, \bar{p}_{5,4}, \bar{p}_{6,3}, \bar{p}_{6,4}, \bar{p}_{3,2} \]
3.1 Systemic risk measures: Eisenberg-Noe network model
3.1 Systemic risk measures: Eisenberg-Noe network model

- n financial firms + outside economy:
- Firm i has endowment x_i
- Liability of firm i to j is given by $\bar{p}_{ij} \geq 0$
- Liability of firm i to outside economy is given by $b_i \geq 0$
3.1 Systemic risk measures: Eisenberg-Noe network model

- n financial firms + outside economy:
- Firm i has endowment x_i
- Liability of firm i to j is given by $\bar{p}_{ij} \geq 0$
- Liability of firm i to outside economy is given by $b_i \geq 0$
- Total liabilities for firm i given by $\bar{p}_i = b_i + \sum_{j \neq i} \bar{p}_{ij}$
- Relative liabilities for firm i to j is given by $a_{ij} = \frac{\bar{p}_{ij}}{\bar{p}_i}$
Realized clearing payment given endowments x is provided by the fixed point problem:

$$p_i(x) = \bar{p}_i \land \left(\sum_{j=1}^{n} a_{ji} \cdot p_j(x) + x_i \right)$$
3.1 Systemic risk measures:
Eisenberg-Noe network model

- Realized clearing payment given endowments x is provided by the fixed point problem:

$$p_i(x) = \bar{p}_i \land \left(\sum_{j=1}^{n} a_{ji} \cdot p_j(x) + x_i \right)$$

- Realized sum of debt and equity minus promised payments

$$e_i(x) := x_i + \sum_{j=1}^{n} a_{ji} \cdot p_j(x) - \bar{p}_i$$

is the value of firm i (if positive) or losses from default (if negative)
3.1 Systemic risk measures: Eisenberg-Noe network model

- Net payment to outside economy given by:

\[
e_0(x) := \sum_i \frac{b_i}{\bar{p}_i} \cdot p_i(x)
\]

- E&L function \(e \) is concave, nondecreasing, and Lipschitz continuous
3.1 Systemic risk measures:
Eisenberg-Noe network model

- Net payment to outside economy given by:

\[e_0(x) := \sum_i \frac{b_i}{\bar{p}_i} \cdot p_i(x) \]

- E&L function \(e \) is concave, nondecreasing, and Lipschitz continuous
- \(e_0 \) is concave, nondecreasing, and Lipschitz continuous
4. Computation

- To compute: approximate expectations by Monte Carlo simulation
- Approximate via smart grid search for boundary of set
- Idea: draw a grid over area of interest (e.g. box around $C(X)$), and find the grid points in the set
- Possible improvement with parallel computing
Sample Acceptance Sets:

- *Average value at risk*: for $\lambda \in (0, 1)$

$$
\mathcal{A}^\lambda = \{ Z \in L^\infty(\mathbb{R}) \mid \inf_{r \in \mathbb{R}} (\mathbb{E} [(r - Z)^+] - r \lambda) \leq 0 \}
$$
4. Computation

Sample Acceptance Sets:

- **Average value at risk:** for $\lambda \in (0, 1)$

$$\mathcal{A}^\lambda = \{ Z \in L^\infty(\mathbb{R}) \mid \inf_{r \in \mathbb{R}} (\mathbb{E}[(r - Z)^+] - r \lambda) \leq 0 \}$$

- **Utility-based shortfall risk:** for convex loss function $\ell : \mathbb{R} \rightarrow \mathbb{R}$ and threshold $z \in \mathbb{R}$

$$\mathcal{A}^{\ell,z} = \{ Z \in L^\infty(\mathbb{R}) \mid \mathbb{E}[\ell(-Z)] \leq z \}$$
4. Computation

Sample Acceptance Sets:

- **Average value at risk**: for $\lambda \in (0, 1)$

 \[
 \mathcal{A}^\lambda = \{ Z \in L^\infty(\mathbb{R}) \mid \inf_{r \in \mathbb{R}} (\mathbb{E} [(r - Z)^+] - r\lambda) \leq 0 \}
 \]

- **Utility-based shortfall risk**: for convex loss function $\ell : \mathbb{R} \to \mathbb{R}$ and threshold $z \in \mathbb{R}$

 \[
 \mathcal{A}^{\ell,z} = \{ Z \in L^\infty(\mathbb{R}) \mid \mathbb{E} [\ell(-Z)] \leq z \}
 \]

- **Optimized certainty equivalents**: for concave utility $u : \mathbb{R} \to \mathbb{R} \cup \{-\infty\}$

 \[
 \mathcal{A}^u = \{ Z \in L^\infty(\mathbb{R}) \mid \sup_{\eta \in \mathbb{R}} (\eta + \mathbb{E} [u(Z - \eta)]) \geq 0 \}
 \]
Figure: Grid search
4. Computation

Figure: Grid search

$k = (0, 0)$
4. Computation

$k = (0, 0)$

$e_0(X + k) \in \mathcal{A}$?

Figure: Grid search
4. Computation

Figure: Grid search
Figure: Grid search
4. Computation

Figure: Grid search
4. Computation

Figure: Grid search
Figure: Grid search
4. Computation

Figure: Grid search
4. Computation

Figure: Centrally connected network

Figure: Completely connected network
4. Computation

Figure: Centrally connected (×2) vs. completely connected
Figure: Centrally connected vs. completely connected
Figure: Centrally connected vs. completely connected
Figure: Centrally connected: independent vs. comonotonic
5. Orthant risk measures

- Systemic risk measure $R^{sys}_A(X)$ provides the set of all capital allocations k making $k + X$ acceptable.
5. Orthant risk measures

- Systemic risk measure \(R_{\mathcal{A}}^{sys}(X) \) provides the set of all capital allocations \(k \) making \(k + X \) acceptable.
- In practice, want allocation \(k^* \) to be a minimizer of the set

\[
k^* \in \text{Min } R_{\mathcal{A}}^{sys}(X) := \{ k \in \mathbb{R}^n : (k - \mathbb{R}_+^n) \cap R_{\mathcal{A}}^{sys}(X) = \{ k \} \}
\]

- Capital requirements for each firm \(k_i \geq k_i^* \).
5. Orthant risk measures

- Systemic risk measure $R_{\mathcal{A}}^{sys}(X)$ provides the set of all capital allocations k making $k + X$ acceptable.
- In practice, want allocation k^* to be a minimizer of the set
 \[k^* \in \text{Min } R_{\mathcal{A}}^{sys}(X) := \{ k \in \mathbb{R}^n : (k - \mathbb{R}_+) \cap R_{\mathcal{A}}^{sys}(X) = \{k\} \} \]
- Capital requirements for each firm $k_i \geq k_i^*$, i.e. capital requirements are $k^* + \mathbb{R}_+$.
Orthant risk measure

$k_{sys}^{A} : L^0(\mathbb{R}^n) \rightarrow \mathbb{R}^n$ is an orthant risk measure associated with the systemic risk measure R_{sys}^A if for all $X, Y \in L^0(\mathbb{R}^n)$, $k \in \mathbb{R}^n$, and $\alpha \in [0, 1]$:

- **Minimal valued:** $k_{sys}^{A} (X) \in \text{Min} R_{sys}^A (X)$
- **Translative:** $k_{sys}^{A} (X + k) = k_{sys}^{A} (X) - k$
- **Monotone:** $k_{sys}^{A} (X) + \mathbb{R}^n_+ \ni k_{sys}^{A} (Y)$ if $X \geq Y$ a.s.
- **Quasi-convex:**

 \[k_{sys}^{A} (\alpha X + (1 - \alpha)Y) + \mathbb{R}^n_+ \ni k_{sys}^{A} (X) \lor k_{sys}^{A} (Y) \]

- **Law-invariant:** $k_{sys}^{A} (X) = k_{sys}^{A} (Y)$ if $X \overset{d}{=} Y$
5. Orthant risk measures

- Fix $w \in \text{int}(\bigcap_Z \text{recc} \left(R_A^{sys}(Z) \right)^+) \ (\text{typically } w \in \mathbb{R}^{n}_{++})$

$$
k^{sys}_A(X) = \arg \min \left\{ \sum_{i=1}^{n} w_i \cdot k_i \mid k \in R_A^{sys}(X) \right\}
$$

defines a orthant risk measure

- Options:
 - $w = (1, ..., 1)$: minimize system-wide addition of capital
5. Orthant risk measures

- Fix $w \in \text{int}(\bigcap_Z \text{recc} \left(R^s_{\mathcal{A}}(Z) \right)^{+})$ (typically $w \in \mathbb{R}^{n}_{++}$)

$$k^s_{\mathcal{A}}(X) = \arg \min \left\{ \sum_{i=1}^{n} w_i \cdot k_i \mid k \in R^s_{\mathcal{A}}(X) \right\}$$

defines an orthant risk measure

- Options:
 - $w = (1, \ldots, 1)$: minimize system-wide addition of capital
 - $w_i = 1/\bar{p}_i$: minimize total capital weighted by obligation
5. Orthant risk measures

- Fix \(w \in \text{int}(\bigcap \mathbb{Z} \text{recc} (R^s_{\mathcal{A}}(Z))^+) \) (typically \(w \in \mathbb{R}^n_+ \))

\[
\kappa^s_{\mathcal{A}}(X) = \arg \min \left\{ \sum_{i=1}^{n} w_i \cdot k_i \mid k \in R^s_{\mathcal{A}}(X) \right\}
\]

defines a orthant risk measure

- Options:
 - \(w = (1, ..., 1) \): minimize system-wide addition of capital
 - \(w_i = 1/\bar{p}_i \): minimize total capital weighted by obligation
 - \(w_i = \max(1/AV@R_{0.5\%}(X_i + \sum_{j \neq i} \bar{p}_j \cdot a_{ji} - \bar{p}_i), \epsilon) \): minimize total capital weighted by individual risk (neglecting counterparty risk)
Thank you