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1 Introduction

Risk management is an important component of the investment process. It requires quan-

titative measures of risk that provide a metric for the comparison of financial positions.

In this expository note we give an overview of risk measures. In particular, we contrast

different risk measures with respect to their sensitivity to potentially large losses due to

market wide shocks. Sources of such shocks include severe currency devaluations, credit

default clusters, liquidity crises, market crashes, natural disasters and terrorist attacks.

The distribution of profit and loss is very complex. It contains an infinite amount of

information by specifying the probability of a profit or loss of any given size. A mean-

ingful comparison of distributions requires therefore to focus on specific properties of

distributions, e.g. their risk. While distributions are sophisticated objects, risk measures,

in contrast, constitute an attempt to summarize the risk of a profit and loss distribution

in a single number. The goal is to reduce the complexity of the problem of risk manage-

ment. Apparently, a single number provides only very limited information about a profit

and loss distribution. Thus, risk measures need to be designed in such a way that they

capture the relevant features of distributions. The choice of risk measures with desirable

properties will be discussed in this article.

Risk management concerns the lower tail of this distribution – events that cause ex-

cessive losses. Therefore, we are led to focus on risk measures that summarize the features

of the lower tail of the profit and loss distribution. Besides being sensitive to excessive

losses, a good risk measure should have some more virtues. First, it should measure risk

on a monetary scale: the notion of risk entails the amount of capital we need to set aside

in order to make a position acceptable from a risk management perspective. Second, a

risk measure should penalize concentrations and encourage diversification. Third, a risk

measure should support dynamically consistent risk measurements over multiple horizons.

While these requirements are very natural, many risk measures that are implemented

throughout the industry and sanctioned by the supervisory authorities fall short of some

of them. A case in point is the ubiquitous value at risk, which does not account for the

size of the losses exceeding the value at risk. Equally bothersome, value at risk may even

penalize diversification. Average value at risk, which is also known as expected shortfall,

does somewhat better – however not perfectly. Less well known but superior is utility-

based shortfall risk.

Utility-based shortfall risk is specified by a loss function ` and a loss threshold. If X is

the value of a position at a future horizon, then utility-based shortfall risk is the smallest

amount of cash m such that the expected value of the weighted shortfall `(−(X + m))

does not exceed the loss threshold. Compare this definition with value at risk, which is

the smallest amount of cash m such that the probability of X + m falling below 0 does

not exceed a threshold. Both utility-based shortfall risk and value at risk can be seen as a

capital requirement. The well-known methods for estimating and simulating value at risk

can also be applied to utility-based shortfall risk.
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The remainder of this note is organized as follows. Section 2 reviews the definition of

basic risk measures. Section 3 considers utility-based shortfall risk. It shows that utility-

based shortfall risk can be very sensitive to event risk, depending on the choice of the

loss function `. Section 4 reviews some extreme value distributions. Section 5 numerically

compares value at risk, average value at risk and utility-based shortfall risk when positions

follow extreme value distributions.

2 Risk Measures

Consider a financial position such as a bond, a stock or a portfolio of securities. The value

of the position at a future horizon, or the change of this value relative to the current

value, is uncertain and described by a random variable X.1 A risk measure assigns to X

a number that expresses the risk of the position. Value at risk is one such measure. It is

the smallest amount of cash that must be added to X such that the probability of a loss

does not exceed λ ∈ (0, 1). In mathematical terms,

VaRλ(X) = inf
{
m ∈ R : P [m + X < 0] ≤ λ

}
.

Unfortunately, value at risk has several deficiencies. It does not take account of the size

of the losses that exceed the value at risk. Further, it does not always encourage diversi-

fication. The following examples illustrate these points.

Example 2.1. Consider two positions X1 and X2 given by

X1 =

{
1 with probability 99%

−1 with probability 1%

X2 =

{
1 with probability 99%

−1010 with probability 1%

Both positions have a 1% value at risk equal to −1. While X2 has much higher downside

risk than X1, the value at risk does not distinguish these two positions.

Example 2.2. Consider the two positions X1 and X2 given by

Xi =

{
1 with probability 50%

−1 with probability 50%

Here VaR50%(Xi) = −1. If X1 and X2 are independent, then we can calculate the value

at risk of the diversified position X that is given by

X =
X1 + X2

2
=


1 with probability 25%

0 with probability 50%

−1 with probability 25%

1We fix an atomless probability space (Ω,F , P ) that describes the uncertainty of investors.
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We get VaR50%(X) = 0. Thus, the value at risk suggests the diversified position X is

riskier than any individual position. In other words, value at risk does not account for

diversification effects.

The examples point to several properties that a reasonable risk measure should have:

it should quantify risk on a monetary scale, be sensitive to large losses, and encourage

diversification. This normative reasoning leads to an axiomatic approach developed by

Artzner, Delbaen, Eber & Heath (1999), in which a risk measure is defined as a function

on a space D of positions that has certain properties.2

Definition 2.3. A real-valued function M on the position space D is called a distribution-

invariant risk measure if it satisfies the following conditions for all X1, X2 ∈ D:

• Inverse Monotonicity: If X1 ≤ X2, then M(X1) ≥ M(X2).

• Translation Property: If m ∈ R, then M(X1 + m) = M(X1)−m.

• Distribution Invariance: If X1 and X2 have the same probability distribution, then

M(X1) = M(X2).

The first property says that the risk of a position decreases if its value increases.

The second property requires that risk is measured on a monetary scale: if an amount m

of cash is added to a position, then the risk of the combined position is reduced by m.

The third property says that the risk of a position depends only on the distribution of its

value. This property is illustrated in the following example.

Example 2.4. Suppose that the state of the economy is described by the random variable

S =

{
g with probability 50%

b with probability 50%

g denotes the good state of the economy, and b the bad state.

Consider the two positions Xp and Xa defined by

Xp = 1, Xa = −1 if S = g

Xp = −1, Xa = 1 if S = b,

so Xp behaves procyclical and Xa behaves anticyclical. While Xp and Xa pay different

amounts in any given state, they have the same distribution. If M is distribution-invariant,

then M(Xp) = M(Xa). In this case risk depends on individual distributions but not

on the dependence structure of the position and the rest of the world: individual risk

measurements give no information on this dependence.

2We assume that D is a vector space of integrable random variables that contains the constants.
Examples include the space of bounded positions L∞ and the space of positions with finite variance L2.
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Value at risk is a distribution-invariant risk measure. However, it does not always

encourage diversification as we have seen in Example 2.1 above. In order to discuss alter-

native risk measures, we consider a set of additional properties.

• Convexity: If two positions X1, X2 ∈ D are combined, then the risk of the diversified

position αX1 + (1−α)X2 does not exceed the weighted sum of the individual risks:

M(αX1 + (1− α)X2) ≤ αM(X1) + (1− α)M(X2), α ∈ [0, 1].

This property formalizes the idea that diversification reduces risk.

• Invariance under randomization: If two positions X1, X2 ∈ D are acceptable, i.e. if

M(X1) ≤ 0 and M(X2) ≤ 0, then the randomized position X given by3

X =

{
X1 with probability α

X2 with probability 1− α
α ∈ (0, 1)

is also acceptable. From a normative perspective, the uncertainty associated with

randomization should not matter. After tossing a coin, an investor gets either the

acceptable X1 or the acceptable X2. Thus X should also be accepted. Similarly, if

the individual positions are not acceptable with respect to M , if i.e. M(X1) > 0

and M(X2) > 0, then X should also not be acceptable.

• Positive homogeneity: If a position X ∈ D is increased by a positive factor, then

the risk increases by the same factor:

M(λX) = λM(X), λ ≥ 0.

This property is economically less meaningful since it neglects the asymmetry be-

tween gains and losses. Increasing the size of a position by a factor λ may increase

the risk by a factor larger than λ if the costs of bearing losses grow faster than their

size. For example, the larger a position, the more costly it typically becomes to liq-

uidate it. From an investor’s perspective, these additional costs should be measured

appropriately. From a regulatory perspective, high costs of large losses may lead to

instability of the financial system by triggering losses at other institutions.

Example 2.5. • The main idea behind the notion of convexity was already discussed

in Example 2.2.

• The intuition behind invariance under randomization can be illustrated as follows.

Suppose a family plans to buy a car within a week. The family agrees on a specific

model, but is indifferent about the color of the car, say wether to buy a red or a

blue car. A dealer provides them with the information that he can get the model at

3The choice should be made independently of X1 and X2.
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a good price within five days, but does unfortunately not know which color will be

available. In such a situation it makes sense to assume that the family does not care

and will find the proposed deal acceptable. Conversely, if the family does neither

wish to buy a red nor a blue car, they would not accept to buy a car which is either

red or blue but whose color is not known in advance.

• Positive homogeneity implies that if a position is acceptable then also any multiple of

the position is acceptable. Here, acceptability means that a position has non positive

risk. Let us demonstrate that this assumption is usually not reasonable. Suppose

that a manager would like to invest in portfolio which might lose $1, 000, 000 with

a probability of 5%. Since the upside is very promising, he is willing to accept this

risk. Although unpleasant, a loss of $1, 000, 000 would not cause a serious problem.

Suppose now that the manger considers to invest 1000 times as much in the same

investment opportunity. If we assume that the manager’s actions do not influence

the price or the chances of the outcome, his potential gains would also multiply by

the large factor of 1000. However, he might loose $1 billion with a probability of 5%

which might be prohibitively large. A positively homogeneous risk measure would

nevertheless classify the position as acceptable.

Value at risk is invariant under randomization and positively homogeneous, but not

convex in general.4 An alternative to value at risk is average value at risk, which is also

known as expected shortfall. For a level λ ∈ (0, 1), it is defined as

AVaRλ(X) =
1

λ

∫ λ

0

VaRα(X)dα.

Average value at risk can be used as a building block for a much larger class of distribution-

invariant risk measures via robust representation, see Föllmer & Schied (2004), Kusuoka

(2001) and Kunze (2003). Average value at risk is a distribution-invariant risk measure

that is convex and positively homogeneous. However, it is not invariant under randomiza-

tion. In Section 3 below, we discuss utility-based shortfall risk, a less well-known alternative

to (average) value at risk. Utility-based shortfall risk has many desirable properties, in-

cluding convexity and invariance under randomization. If chosen appropriately, it is more

sensitive to the risk of large losses than average value at risk as we show in Section 5.

4Convexity relies on the domain of the risk measure. If the domain contains the space of bounded
positions, then value at risk is never convex. If we consider instead a vector space of positions of the
same type, then value at risk is a convex risk measure on this space, see Embrechts, McNeil & Strautman
(2002). Examples include vector spaces of Gaussian, or more general, elliptical distributions. However,
it is well-known that these families often fail to adequately describe the profit and loss distribution of
financial positions.
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3 Utility-based Shortfall Risk

To define utility-based shortfall risk, consider a convex loss function ` : R → R, i.e. a

function that is increasing and not constant. Let z be a point in the interior of the range

of `. The space of positions D is chosen such that for X ∈ D the expectation E[`(−X)]

is well-defined and finite. A position is acceptable if the expected value of `(X) does not

exceed z. The corresponding set A of positions with non positive risk, or acceptance set,

is given by5

A =
{
X ∈ D : E[`(−X)] ≤ z

}
.

The acceptance set A induces the risk measure utility-based shortfall risk M as the smallest

amount of cash that must be added to the position X to make it acceptable:

M(X) = inf
{
m ∈ R : X + m ∈ A

}
.

We summarize the properties of utility-based shortfall risk.

(1) It is convex and therefore encourages diversification.

(2) It is invariant under randomization. The same is true for value at risk, but not

for average value at risk, which is not a utility-based risk measure. More generally,

it can be shown that utility-based shortfall risk measures are essentially the only

distribution-invariant convex risk measures that are invariant under randomization.

Thus, utility-based shortfall risk measures are the only distribution-invariant convex

risk measures that should be used for the dynamic measurement of risk over time,

see Weber (2006). This is an important advantage of utility-based shortfall risk.

(3) It is positively homogeneous if and only if the loss function is of the form

`(x) = z − αx− + βx+, β ≥ α ≥ 0

where x− denotes the negative part of x and x+ denotes the positive part.

The loss function controls the sensitivity of utility-based shortfall risk to large losses.

Example 3.1 (Entropic risk measure). For `(x) = exp(αx) with α > 0 we get6

M(X) =
1

α
(log E[exp(−αX)]− log z).

Example 3.2 (One sided loss function). Examples include `(x) = xα ·1[0,∞)(x) for α ≥ 1

and `(x) = exp(αx) · 1[0,∞)(x) for α > 0. Here, 1H denotes the indicator function of

the event H. The associated risk measures focus on downside risk only and thus neglect

tradeoffs between gains and losses.

5An alternative definition of A starts with the Bernoulli utility function u given by u(x) = −`(−x).
Then U(X) = E[u(X)] defines a von Neumann-Morgenstern utility. A position X is acceptable if U(X) ≥
−z. This explains the terminology “utility-based.”

6In the context of extreme value distributions exponential moments may not exist, see Remark 4.6.
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Consider the positions X1 and X2 analyzed in Example 2.1. The 1% value at risk

does not detect that X2 has a significantly lower downside than X1. If M is USBR with

loss function `(x) = x2 · 1[0,∞)(x) and loss threshold z = 1%, we obtain M(X1) = 0 and

M(X2) = 1010−1. This shows that utility-based shortfall risk is sensitive to extreme risks

for a suitable loss functions. This property is further investigated in Section 5 below.

Example 3.3. The following example demonstrates that UBSR often provides more

useful information about large losses of a portfolio than VaR and AVaR. Consider

0 < x1 < x2,

and let

X =


1 with probability 99%

−x1 with probability 0.005%

−x2 with probability 0.005%

If x1 = x2 = 1, we recover X1 from Example 2.1. As in Example 2.1,

VaR0.01(X) = −1

for any choice of x1 and x2. Moreover, it can be shown that

AVaR0.01(X) =
x1 + x2

2
.

Average value at risk is thus insensitive to changes of the values of the variables x1 and

x2 as long as the sum of these remains constant. For example, the average value at risk

is the same in either case x1 = x2 = 1 or x1 = 0.3, x2 = 1.7. The extreme downside risk

of the second position is significantly higher than the downside risk of the first position,

but this is neither measured by VaR nor AVaR.

The situation is completely different for UBSR. Consider for example l1(x) = c ·
x1{x≥0} and l2(x) = c · x21{x≥0} as in Example 3.2 with c = 0.01−1. For the first loss

function we obtain

L1(0) := E(l1(−X)) =
x1 + x2

2

which is exactly equal to AVaR. The second loss function leads to

L2(0) := E(l2(−X)) =
x2

1 + x2
2

2
.

Note that for x1 = x2 = 1 we calculate L2(0) = 1, while for x1 = 0.3 and x2 = 1.7 we

obtain L2(0) = 2.98 which clearly reflects the larger downside risk.

Apart from these desirable properties, utility-based shortfall risk also has advantages

in the implementation. We can adapt the well-known methods for the estimation and
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simulation of value at risk, see Glasserman (2004). These methods rely on the fact that

the VaRλ(X) of a position X ∈ D is the λ-quantile of the random variable X. The quantile

is an inverse to the cumulative distribution function

F (x) = P [X ≤ x] (x ∈ R)

of X. Since F may not be injective, we define a right-continuous inverse by the upper

quantile function

q(α) = inf{x : P (X ≤ x) > α} = sup{x : P [X < x] ≤ α} (α ∈ (0, 1)).

The value at risk at level α is given by

VaRα(X) = −q(α). (1)

The quantile function q is essentially the inverse of the distribution function F . A good

strategy for the estimation of VaRα(X) is to determine the value of the distribution

function F (xi) = P [X ≤ xi] = E[1{X≤xi}] at a sequence of suitable points x1, x2, x3, · · · ∈
R in a neighborhood of the (unknown) quantile q(α). Choosing these points recursively

may accelerate the computation. The calculation of the values F (xi) = E[1{X≤xi}] usually

requires Monte Carlo simulation. Variance reduction techniques can be used to reduce

computation time.

Value at risk is essentially given by the inverse of the distribution function. Utility-

based shortfall risk admits a similar representation. Let ` be a convex loss function, z

be an interior point of its range, and UBSR`
z(X) be the associated risk measure. In this

context, the distribution function is replaced by the function L given by

L(x) = E[`(−X − x)] (x ∈ R),

which is decreasing in x. Since ` is convex and increasing, the interior of its range equals

(a,∞) for some a ∈ R ∪ {−∞}. For any y ∈ (a,∞), the equation L(x) = y has a unique

solution. This defines the inverse L−1 of L on (a,∞). Then

UBSR`
z(X) = L−1(z) = inf{x : E[`(−X − x)] ≤ z}.

This shows that for a given loss function ` and threshold z, the UBSR`
z(X) of the position

X is the smallest level x such that the expected, `-weighted shortfall −X − x is less than

z. For the estimation of UBSR`
z(X) we consider the value of the function

L(xi) = E[`(−X − xi)] (2)

for a suitable, recursively chosen sequence x1, x2, x3, · · · ∈ R. The standard variance re-

duction techniques known from the estimation of value at risk can also be used in this

context. This allows a reduction in computing time in the Monte Carlo simulation of (2),

see Dunkel & Weber (2007).

Finally we show that L can be expressed in terms of AVaR in the case of a quadratic

loss function `. In the following we will always write X for the financial position itself,

while we use Y = −X for the financial loss.
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Example 3.4. Suppose the loss Y = −X of a position X has a continuous distribution

function F = P (Y ≤ x). With a loss function of the form `(x) = f(x)1{x>0} we obtain

that L(x) = E[f(Y − x)1{Y >x}]. If a quadratic loss function is considered, i.e. f(x) = x2,

an interesting connection to AVaR appears. First,

L(x) = E(Y 21{Y >x})− 2xE(Y 1{Y >x}) + x2(1− F (x)).

The second term is related to average value at risk. Note that VaRα(X) = F−1(1 − α)

since F is the distribution function of Y = −X. Second,

E(Y 1{Y >x}) =

∫ 1

F (x)

F−1(z)dz =

∫ F̄ (x)

0

VaRα(X)dα = F̄ (x)AVaRF̄ (x)(X),

where we set F̄ (x) := 1− F (x). Summarizing,

L(x) = E[X21{X<−x}]− 2xF̄ (x) AVaRF̄ (x)(X) + x2F̄ (x),

which incorporates the average value at risk and also the expected second moment of X

subject to shortfall. In special cases the above expressions can be computed explicitly. For

example, if F is an extreme value distribution the above expressions can be computed

explicitly, compare Examples 4.3 to 4.5. Extreme value distributions will be discussed in

the next section.

4 Extreme Value Distributions

We would like to compare the sensitivity of the risk measures discussed above with respect

to extreme fluctuations in the value of a financial position. This calls for profit and loss

distributions that are realistic models for extreme events. Such distributions are often

heavy tailed : intuitively, they assign a relatively high probability to excessive losses.

In Figure 1 we compare the densities of heavy and light tailed distributions. The

log-plot in the right panel highlights the difference in the tails. In Section 5 below we

compare the sensitivity of risk measures for heavy tailed profit and loss distributions. The

purpose of the current section is to review some of the most important distributions.

The analysis of distributions that account for excessive fluctuations is at the core

of extreme value theory. These distributions are typically heavy-tailed.7 A systematic

discussion is in Embrechts, Klüppelberg & Mikosch (1997). McNeil et al. (2005) focus on

risk management applications.

7Heavy tailed distributions also arise through mixing. For example, the distribution of a light tailed
normal random variable whose variance is a suitable independent random variable rather than being a
constant, is heavy tailed. The Student t and the generalized hyperbolic distributions can be obtained this
way. There are numerous other examples, see McNeil, Frey & Embrechts (2005, Section 7.3.3).
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Figure 1: The densities of normal, Student t and generalized hyperbolic distributions with equal mean

and variance. The right plot is on a log-scale and shows the differences in the tails.

Generalized Extreme Value Distributions. While the normal distribution arises in

connection with sums of random variables, a large class of extreme value distributions

arises in connection with their maxima. Let (Yi) be a sequence of random variables and

consider the running maximum

Mn = max
i≤n

Yi.

We are interested in the distribution of Mn if n becomes large. If the Yi’s are independent

and identically distributed with cumulative distribution function F (x) = P [Y1 ≤ x], then

the distribution function of Mn is the n-fold product F n:

P [Mn ≤ x] = P [Y1 ≤ x, . . . , Yn ≤ x] =
(
F (x)

)n
. (3)

This is hardly a useful observation on large samples since limn→∞ F n(x) = 0 for any x ∈ R
with F (x) < 1. Instead of considering the distribution of Mn directly, it is more insightful

to investigate a rescaled running maximum. This is illustrated by the following example.

Example 4.1. Let the (Yi) be independent, Exp(λ) distributed random variables. Con-

sider the distribution of the rescaled running maximum Mn − log n. We get

P [Mn − log n ≤ x] =
(
F (x + log n)

)n
=

(
1− 1

n
e−x

)n −→ exp
(
− e−x

)
,

for n → ∞. In other words, if F is exponential, then the asymptotic distribution of the

rescaled maximum is a Gumbel distribution.

This example suggests to consider the rescaled running maximum. The Fisher-Tippett

theorem states that for suitable constants cn > 0 and dn ∈ R, the distribution of the

rescaled maximum c−1
n (Mn−dn) of the iid sequence (Yi) converges to one of three standard
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Figure 2: Plot of the distribution function (left) and density (right) of the generalized extreme value

distribution (GEV). For ξ < 0, ξ = 0 and ξ > 0 the GEV distribution is the Weibull, Gumbel and

Fréchet distribution, respectively. The parameters are ξ = −1, 0, 1 (left) and ξ = −0.8, 0, 1 (right).

extreme value distributions as n → ∞. These are the Weibull, Gumbel and Fréchet

distributions; they are special cases of the generalized extreme value distribution (GEV)

with cumulative distribution function Hξ given by

Hξ(x) =

{
exp

(
− (1 + ξx)−1/ξ

)
, ξ 6= 0

exp
(
− e−x

)
, ξ = 0

for x ∈ R and shape parameter ξ ∈ R such that 1 + ξx > 0.

If the Yi’s have common distribution function F and the limit distribution of the

rescaled maximum is Hξ, then we say that F lies in the maximum domain of attraction

of Hξ. We consider the standard extreme value distributions; see Figure 2 for graphs.

(1) For ξ < 0 we obtain the Weibull distribution. Since it has a fixed right endpoint, it

is less relevant for our purposes.

(2) For ξ = 0 we obtain the Gumbel distribution. Its domain of attraction includes the

exponential, normal, lognormal, hyperbolic and generalized hyperbolic distributions.

(3) For ξ > 0 we obtain the Fréchet distribution. Its domain of attraction includes

the Pareto, inverse gamma, Student t, loggamma and the F distributions. These

distributions have a heavier, so-called power tail. For m ≥ 1/ξ, their mth moment

does not exist.

Example 4.2. The inverse of the GEV takes an easy form which leads to immediate

expression for VaR. Assume that the loss Y of a financial position X = −X has a GEV

with parameter ξ 6= 0, i.e. F (x) = P (Y ≤ x) = Hξ(x). Hence, we obtain by (1) that

VaRα(X) = F−1(1− α) =
1

ξ

[(
− log(1− α)

)−ξ − 1
]
.
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For the average value at risk this function has to be integrated, which is more complicated.

If we consider exceedences over a large threshold instead of maxima the calculations

become much simpler, as shown in the following.

Generalized Pareto Distributions. Another important class of distributions in ex-

treme value theory captures the peaks that exceed a certain large threshold level. Let Y be

a random variable. We fix a threshold u and consider the excess variable Yu = (Y −u)+. We

are interested in the distribution of Yu conditional on the event that Y itself exceeds the

threshold level. The conditional distribution of Yu is approximately a generalized Pareto

distribution (GPD) when the threshold u is raised. This result is actually very closely con-

nected to the Fisher-Tippet theorem. If the distribution of Y lies in the maximum domain

of attraction of Hξ for some shape parameter ξ ∈ R, then ξ is also the shape parameter

in the limiting GPD. The Pickands-Balkema-de Haan theorem states this relation.8

The class of generalized Pareto distributions constitutes a two parametric family.

Letting ξ ∈ R and β > 0, the generalized Pareto distribution function is given by

Gξ,β(x) =

{
1−

(
1 + ξx

β

)−1/ξ
ξ 6= 0,

1− exp
(
− x

β

)
ξ = 0,

where x ∈ [0,∞) for ξ ≥ 0 and x ∈ [0,−β/ξ] for ξ < 0.

As shown in Figure 3, the parameters ξ and β control the shape and the scale of the

distribution:

(1) For ξ = 0 the GPD is the exponential distribution.

(2) For ξ > 0 it is the Pareto distribution. As in the case of a Fréchet distribution, the

mth moment does not exist for m ≥ 1/ξ.

(3) For ξ < 0 it is the Pareto Type II distribution. The latter is less significant for

financial applications since it has a fixed right endpoint.

We will now consider risk measures of generalized Pareto distributions. For the GPD

both value at risk and average value at risk are given explicitly in terms of the parameters.

Example 4.3. Assume the loss Y1 of a financial position X1 = −Y1 is distributed accord-

ing to the distribution function Gξ,β, ξ 6= 0. The distribution function is easily inverted

and we get, again using (1),

VaRα(X1) =
β

ξ

(
α−ξ − 1

)
.

8 The Pickands-Balkema-de Haan theorem states that there exists a function β(u) > 0 s.t.

lim
u→xF

sup
0≤x≤xF−u

∣∣P (Yu ≤ x|Y > u)−Gξ,β(u)(x)
∣∣ = 0,

if and only if the distribution of Y is in the maximum domain of attraction of Hξ. Here Yu = (Y − u)+

and xF is the right endpoint of F (possibly +∞). See, for example, McNeil et al. (2005).
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Figure 3: Plot of the distribution function (left) and densities (mid, right) of the generalized Pareto

distribution (GPD). For ξ < 0, ξ = 0 and ξ > 0 this distribution is the Pareto, exponential and Pareto

type II distribution, respectively. The parameters are ξ = −1, 0, 1, β = 1 (left) ξ = −0.8, 0, 0.5, β = 1
(mid) and ξ = 0, β = 1, 3, 6 (right).

Next, consider the loss Y2 = −X2. Assume the probability that Y2 exceeds a high threshold

u is positive. Suppose P [Y2 > u + x|Y2 > u] = Gξ,β(x) for x ≥ 0. For λ < P [Y2 > u] we

get

VaRα(X2) = u +
β

ξ

(( α

P [Y2 > u]

)−ξ

− 1

)
.

Example 4.4. Again, consider the loss Y1 ∼ Gξ,β, ξ 6= 0 and assume that ξ < 1, such

that the 1st moment exists. The AVaR of X1 = −Y1 is given by

AVaRα(X1) =
VaRα(X1)

1− ξ
+

β

1− ξ
.

If Y2 is distributed as in the previous example with λ < P [Y2 > u], we obtain a similar

formula, where β is replaced by β − ξu, i.e.

AVaRλ(X2) =
VaRλ(Y2)

1− ξ
+

β − ξu

1− ξ
.

Example 4.5. We can easily compute the UBSR for a quadratic loss function as intro-

duced in Example 3.4. Again consider Y1 ∼ Gξ,β, ξ 6= 0; to guarantee existence of 2nd

moments assume ξ < 1
2
. With c := β/ξ,

E[X2
11{X1<−x}] =

∫ F̄ (x)

0

(
F−1(1− z)

)
dz

=

∫ F̄ (x)

0

[
c(z−ξ − 1)

]2

dz

=
c2F̄ (x)1−2ξ

1− 2ξ
− 2cF̄ (x)AVaRF̄ (x)(X1)− c2F̄ (x),

14



where we used F̄ (x) = 1− F (x). With the formula for L(x) from Example 3.4 we finally

arrive at

L(x) =
c2F̄ (x)1−2ξ

(1− 2ξ)
− 2(c + x)F̄ (x)AVaRF̄ (x)(X1) + F̄ (x)

(
x2 − c2).

Remark 4.6. (Existence of moments) As seen in the above examples, UBSR relies on

the existence of several moments. For `(x) = xα · 1[0,∞)(x) the existence of UBSR in the

case of a GEV, respectively GPD, distribution is always guaranteed if ξ ≤ 0. For ξ > 0,

however, we need that ξ ≤ 1
α
.

In the case of the entropic risk measure, i.e. `(x) = eαx, all moments need to exist,

such that this measure does not exist for ξ > 0.

Also for a Student t-distribution with ν degrees of freedom, the mth moments do not

exist for m ≥ ν. That is, the entropic risk measure will never exist, just for the limiting

case ν = ∞, which is the normal distribution. For the loss function `(x) = xα · 1[0,∞)(x)

existence follows for α < ν.

5 Sensitivity of Risk Measures

We compare the sensitivity of the convex risk measures average value at risk and utility-

based shortfall risk with respect to extreme events in the context of the heavy tailed

distributions discussed above.

We construct a benchmark distribution for the loss Y of a position by mixing a

Student t distribution with a normal distribution.

Benchmark distribution. Let Y1 be a Student t distributed scaled by 1
2

and 2 degrees

of freedom and Y2 be normally distributed with mean µ and variance 0.4. Let W be a

random variable independent of Y1 and Y2 with P (W = 1) = w and P (W = 0) = 1− w.

Set

Y = (1−W )Y1 + WY2.

µ is chosen to be very large: we use the normal random variable to model a rare extreme

event. For w = 0.04 this means e.g. that with probability 96 % we are in the Student t

case and with probability 4 % some extreme event occurs, scattered around µ.

The distribution of the financial loss Y models event risk through a hump in the tail,

whose location is governed by the mean µ of the normal distribution; see the left panel

of Figure 4. The higher µ or σ, the more mass is allocated to the tail of the distribution9

and the more excessive is the fluctuation of Y , holding the other parameters fixed.

9More precisely: If we increase only σ, more mass is allocated to the right of µ + δ for some δ > 0.
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Figure 4: Utility-based shortfall risk with respect to a two-hump distribution. Left panel: density

of a convex combination of Student t and normal distributions (µ = 5, σ = 0.25, 0.5, 1). Right

panel: utility-based shortfall risk as a function of the threshold z for varying standard deviations

σ = 0.5, . . . , 2.5. Note that these distributions all have similar VaR0.05 (5.1) and AVaR0.05 (5.6 to

6.2).

Sensitivity of risk measures. We consider now VaR, AVaR and UBSR for varying

values of µ to illustrate their sensitivity with respect to extreme events. Remember that

a larger µ corresponds to additional event risk. In our numerical case study, we choose

the loss function of utility-based shortfall risk as `(x) = xα1[0,∞)(x). In the left panel of

Figure 5 we plot the risk measures for varying exponents α ∈ {1, 3
2
, 2} and a threshold

z = 0.3 as functions of µ. The value at risk is mainly governed by the t-distribution, while

all other risk measures start to depend linearly on µ after µ reaches a certain level. As

expected, except for value at risk all risk measures are able to capture this event risk.

As shown in right panel of Figure 5, the conclusion is different if we fix µ and vary σ,

the volatility of the peak. From a risk management perspective, this is a more dangerous

situation. The increasing variance indicates that the values will be substantially larger. We

consider w = 0.04. Note that in this case, value at risk even decreases. Only utility-based

shortfall risk captures this extreme risk properly. For different exponents α utility-based

shortfall risk behaves qualitatively different. For α = 1 it is similar to average value at

risk. In general, the larger α the more sensitive is utility-based shortfall risk with respect

to extreme risks. For varying threshold level z and fixed exponent α, the right panel of

Figure 4 shows utility-based shortfall risk as a function of σ.

Since the loss function can be freely chosen, utility-based shortfall risk offers a great

deal of flexibility. Both loss function and threshold level z can be tailored to the specific

needs of any financial institution or regulating authority. The example above illustrated

that utility-based shortfall risk is a powerful tool for the measurement of event risk.

This virtue of value at risk is indeed not limited to the specific example we considered.

We will finally investigate the measurement of extreme events for further profit and loss
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Figure 5: Left: VaR0.05,AVaR0.05 and utility-based shortfall risk (α ∈ {1, 3
2 , 2}, z = 0.3) as functions

of µ when the distribution of loss Y is given by a convex combination (w = 0.04) of a Student t

and normal distribution with mean µ. Right: The same risk measures as functions of σ when Y is

normally distributed with mean 0 and variance σ.

distributions.

Example 5.1. In the left panel of Figure 6, we consider the risk measures with respect

to a GPD, where β = 1 and we vary ξ. The tail becomes heavier with increasing ξ. Value

at risk and average value at risk hardly show the rapidly increasing probability of large

values, while utility-based shortfall risk is clearly able to detect this. The exponent α

expresses a measure of the sensitivity of utility-based shortfall risk. For α = 1 it is similar

to average value at risk.

An analysis of risk measures evaluated for GEV distributions shows similar results.

The reason is that both distributions, GEV and GPD, have indeed the same tail behavior.

If we vary ξ and consider value at risk, average value at risk and utility-based shortfall

risk of a GEV distribution Hξ, again utility-based shortfall risk is capable to detect the

risk stemming from the heavy tails, while this is not the case for value at risk and average

value at risk. This resembles the results for a GPD G1,ξ, since ξ is the common shape

parameter for both distributions Hξ and G1,ξ.

Example 5.2. To shed a different light on the sensitivity to heavy tails, we compare all

risk measures with respect to a t-distribution with n degrees of freedom. The t-distribution

has heavy tails for small n and converges to a normal distribution with light tails for

n → ∞. To focus on the tail effects, we rescale the t-distribution such that the value

at risk remains constant for different n. For utility-based shortfall risk we use the loss

function `(x) = cxα1{x>0} and, to make the results comparable, we chose c such that it

matches the value at risk in a benchmark situation, i.e. a t6-distribution. The results are

shown in the right panel of Figure 6. Again, value at risk does not and average value at
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Figure 6: Left: VaR0.05, AVaR0.05 and utility-based shortfall risk for varying exponents α ∈ {1, 1.5, 2}
as functions of ξ, where the loss Y has a GPD-distribution with β = 1 and ξ. The threshold for

utility-based shortfall risk is z = 0.3. Right: As functions of n, where Y has a t-distribution with n

degrees of freedom. The t-distribution is rescaled for each n such that the VaR remains constant.

For utility-based shortfall risk, z = 0.3 and `(x) = cxα1{x>0}, where c is chosen such that for n = 6
the utility-based shortfall risk equals the VaR.

risk does hardly indicate the heaviness of the tail. In contrast, utility-based shortfall risk

is lower for light tails but increases sharply if the tails get heavier.

All numerical examples indicate that utility-based shortfall risk takes adequate ac-

count of event risk if the loss function is of the form `(x) = cxα1{x>0} with α > 1. In

our examples α = 1.5 seems indeed to be a good choice, since in this case the utility-

based shortfall risk is less conservative than value at risk and average value at risk in the

light-tailed case and still sufficiently sensitive to heavy tails.
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