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A hooray for Poisson approximation

Rudolf Gr̈ubel1

1Institut für Mathematische Stochastik, Universität Hannover, Postfach 60 09, D-30060 Hannover, Germany

We give several examples for Poisson approximation of quantities of interest in the analysis of algorithms: the dis-
tribution of node depth in a binary search tree, the distribution of the number of losers in an election algorithm and
the discounted profile of a binary search tree. A simple and well-known upper bound for the total variation distance
between the distribution of a sum of independent Bernoulli variables and the Poisson distribution with the same mean
turns out to be very useful in all three cases.
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1 Introduction
One of the truly classical topics of applied probability is the ‘law of small numbers’, the approximation
of the distributionL(Sn) of the numberSn of successes inn repetitions with success probabilityp by the
Poisson distributionPo(λ) with meanλ = np (= ESn). A standard reference in this area is the book
‘Poisson Approximation’ by Barbour et al. (1992), which contains the following result,

dTV

(
n

?
i=1

Ber(pi) , Po
( n∑

i=1

pi

))
≤

∑n
i=1 p

2
i∑n

i=1 pi
. (1)

Here we wroteBer(p) for the Bernoulli distribution with parameterp, so thatL(X) = Ber(p) means
P (X = 1) = p = 1− P (X = 0), anddTV for the total variation distance of probability measures,

dTV(µ, ν) := sup
B

∣∣µ(B)− ν(B)
∣∣,

which forµ, ν concentrated on some countable setA can be written as

dTV(µ, ν) =
1
2

∑
k∈A

∣∣µ({k})− ν({k})
∣∣.

Finally, ‘?’ denotes convolution. This is the distributional form; in the language of random variables,
whereSn = I1 + · · · + In with independent indicator variablesI1, . . . , In andYn is Poisson distributed
with the same mean asSn, (1) becomes

sup
A⊂N0

∣∣P (Sn ∈ A)− P (Yn ∈ A)
∣∣ ≤

∑n
i=1 P (Ii = 1)2∑n
i=1 P (Ii = 1)

.

Of course, Poisson approximation is a familiar topic in the analysis of algorithms, see e.g. p.198ff in
Sedgewick and Flajolet (1996). Below we give three examples where direct use can be made of (1). The
first of these is known as ‘unsuccessful searching’ in a binary search tree; see Section 2.4 in Mahmoud
(1992). A variant of this problem, where we ask for the insertion depth of an item with a specified label,
has recently received a more detailed look. In the second example we consider distributed leader election;
see Section 7.8 in Sedgewick and Flajolet (1996). We show that (1) leads to a simple proof of a two-
dimensional distributional limit theorem, including a rate result. The third example is more elaborate, it
deals with the profile of binary search trees where we hope that our approach might provide a new angle.
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2 Node depth in binary search trees
A random binary tree results if we apply the BST algorithm to a random permutation of the set{1, . . . , n};
see Section 2.1 in Mahmoud (1992) or Section 5.5 in Sedgewick and Flajolet (1996) for an explanation
of the algorithm. LetXn denote the insertion depth of the last item, to avoid distracting trivialities we
assume thatn ≥ 2. It is well known that

L(Xn) =
n

?
i=2

Ber(2/i),

Devroye (1988) gave a beautiful proof, based on the relation to records. Let

Hn :=
n∑

i=1

1
i
, H(2)

n :=
n∑

i=1

1
i2
,

be the harmonic numbers of the first and second kind. The following is now an immediate consequence
of (1), as has already been noted by Dobrow and Smythe (1996):

dTV
(
L(Xn), Po(2Hn − 2)

)
≤ 2(H(2)

n − 1)
Hn − 1

≤ π2 − 6
3(log n− 1)

.

Together with the familiar asymptotics for Poisson distributions this can be used to obtain other results
such as asymptotic normality ofXn, including Berry-Esśeen style bounds. Based on an analysis of subtree
dependence, Grübel and Stefanoski (2005) recently obtained an analogous result for the insertion depth
Xnl of the item with labell,

dTV
(
L(Xnl) , Po(EXnl)

)
≤ 28 + π2

log n
for l = 1, . . . , n,

they also discuss mixed Poisson approximation in connection with the Wasserstein distance as an alterna-
tive to the total variation distance.

3 Selecting a loser
To motivate our second application we consider the following situation, somewhat related to the author’s
professional life: A maths department has to select a chairperson from its professors. These simultane-
ously throw coins; those that obtain ‘head’ may leave; those with ‘tails’ continue into the next round. A
tie results if all remaining candidates throw ‘head’. What is the probability that this happens, if the depart-
ment hasn professors and the coins show ‘head’ with probabilityp? This problem, of somewhat playful
appearance, has attracted a surprising multitude of researchers. It is also a good example for the variety
of tools that can be brought to bear, see Kirschenhofer and Prodinger (1996) for an analytic approach
and Bruss and Grübel (2003) for an approach based on the Sukhatme-Rényi representation of exponential
order statistics, a familiar tool in mathematical statistics.

We consider the joint distribution of the number of rounds and the number of losers. To be precise we
start with a sequence(Xn)n∈N of independent random variables withL(Xi) = Geo(p), i.e.

P (Xi = k) = qk−1p for all i, k ∈ N,

and put
Mn := max{X1, . . . , Xn}, Wn := #{1 ≤ i ≤ n : Xi = Mn}.

The event that the maximum of the firstn variables is equal tok and that exactlyj of these have this value
is equivalent to the event thatj of the variablesX1, . . . , Xn are equal tok and the othern− j values are
at mostk − 1, hence

P (Mn = k,Wn = j) =
(
n

j

)
(pqk−1)j(1− qk−1)n−j , k ∈ N, j = 1, . . . , k.

If interest is in one of the marginal variables only, then the natural next step is to sum out the other index.
Looking at the joint distribution, however, we recognize an almost binomial pattern. Guided by Poisson
approximation we therefore introduce the distributionsQn, n ∈ N, onA = {(0, 0)} ∪ N× N by

Qn(0, 0) := e−n, Qn(k, j) :=
(npqk−1)j

j!
e−nqk−1

, k, j ∈ N ,
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where we have writtenQn(k, j) instead ofQn

(
{(k, j)}

)
; checking

∑
(k,j)∈AQn(k, j) = 1 is easy. Writ-

ing Bin(n, p) for the binomial distribution with parametersn andp we then obtain, for arbitraryk ∈ N,

n∑
j=1

∣∣P (Mn = k,Wn = j)−Qn(k, j)
∣∣ =

n∑
j=1

pj

∣∣∣∣(nj
)
qj(k−1)(1− qk−1)n−j − e−nqk−1 (nqk−1)j

j!

∣∣∣∣
≤

n∑
j=1

∣∣∣∣(nj
)
qj(k−1)(1− qk−1)n−j − e−nqk−1 (nqk−1)j

j!

∣∣∣∣(2)

≤ dTV
(
Bin(n, qk−1) , Po(nqk−1)

)
≤ qk−1 ,

with (1) used in the last step. Forε > 0 fixed let

K(n) :=
{
k ∈ N : −(1− ε) logq n ≤ k ≤ −2 logq n

}
.

Then, for alln ∈ N,

dTV
(
L(Mn,Wn), Qn

)
≤ P

(
Mn /∈ K(n)

)
+ Qn

(
{(k, j) ∈ A : k /∈ K(n)}

)
+

∑
k∈K(n)

qk−1 . (3)

Standard procedures give the rateO(n−1) for the first two terms, the third is of orderO(n−1+ε). Hence
we have the following result.

Theorem 1 WithMn,Wn andQn as defined above andn→∞,

dTV
(
L(Mn,Wn), Qn

)
= o(n−γ) for all γ < 1.

The theorem implies that(Mn − b− logq nc,Wn) converges in distribution, with limit law̃Qη given by

Q̃η(k, j) :=
pjqj(k−η−1)

j!
e−qk−η−1

, k ∈ Z, j ∈ N ,

along subsequences(nl)l∈N that satisfyliml→∞(− logq nl − b− logq nlc) = η. It may be interesting
to note that, in the language of the motivating example, the dependence between the number of rounds
required and the number of losers does not vanish asymptotically as the number of participants grows to
infinity.

The total variation distance does not increase if we apply a function to the random variables in question;
formally,

dTV
(
L(φ(X)) , L(φ(Y ))

)
≤ dTV

(
L(X) , L(Y )

)
.

Hence Theorem 1 immediately yields an asymptotic distributional approximation for the multiplicityWn

of the maximum. Such a result has been obtained in Bruss and Grübel (2003), who used a variant of the
total variation distance incorporating the weight functionj 7→ γj , γ < 1/p. In this context it may be
interesting to note that we have been rather generous when simply droppingpj in (2) above. Bruss and
Grübel (2003) obtained the rateO(n−1). The present simple argument, based on (1) and witho(n−γ) for
all γ < 1 only, comes close. It should be noted that the joint distribution provides additional information
and could for example be used to relate the well-known small periodic fluctuations of the distributions of
Mn andWn to each other. Finally, (3) can be used to obtain (non-asymptotic) upper bounds for the total
variation distance betweenL(Mn,Wn) andQn.

4 The BST profile
As in Section 2 we consider the random binary treeTn obtained by applying the BST algorithm to a
uniformly distributed random permutation of{1, . . . , n}. Let Unk be the number of external nodes at
levelk of Tn (the root node has level 0 and is the only external node of the empty treeT0). The stochastic
dynamics of the sequence of random sequences(Unk)k∈N0 , n ∈ N0, can be described with the help of an
infinite urn model: We think ofUnk as the number of balls in urnk at timen. Initially, with n = 0, there
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is one ball in urn 0, all other urns are empty. At timen we choose one of the (then necessarilyn + 1)
balls uniformly at random, remove it from its urn, which has labelk, say, and add two balls to the urn with
numberk + 1. It is easy to see that thediscounted profile

Ψ(Tn) =
(
Ψk(Tn)

)
k∈N0

, Ψk(Tn) := 2−kUnk for all k ∈ N0,

then constitutes a random probability measure onN0.
Profiles of random binary trees, both in their various flavours, have been investigated by various re-

searchers. From the many interesting papers on this subject we mention only two, since they were partic-
ularly stimulating for the point of view adopted below. Aldous and Shields (1988) considered a variant
where a ball from urnk is chosen with probability proportional toc−k for some fixed constantc > 1.
They obtained a law of large numbers and a central limit theorem in the sense of a Gaussian diffusion
approximation for the discounted profile. Roughly,Ψ(Tn) keeps its shape and a fluctuation phenomenon
(as in Section 3) occurs asn→∞. Chauvin et al. (2001) considered the ‘raw’ profilek 7→ Unk/(n+ 1)
and, among other results, showed that this random probability mass function can be approximated locally
by the density of a normal distribution with mean and variance both equal to2 log n, hence the profile
flattens out asn→∞. There is no periodicity at this level of detail, but see also the comments at the end
of this section.
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(b) u 7→ Xn(u)
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Fig. 1: A binary tree and its ‘silhouette’

For our present point of view there are two particularly noteworthy aspects of the approximation ob-
tained by Chauvin et al. (2001): First, the fact that mean and variance are identical for the approximating
normal density function may be a hint to Poisson approximation (as we pointed out in Section 2, normal
approximation can be a corollary to Poisson approximation). Secondly, the label ‘almost sure central limit
theorem’ chosen by Chauvin et al. (2001) for their result reads ‘Glivenko-Cantelli’, when seen in a differ-
ent light. To explain this, letXn(u), 0 ≤ u < 1, be the level of the external node ofTn along the path
obtained from the binary expansion(u1, u2, u3, . . .) of u, where we interpretuk = 0 as a move to the left
in thekth step and 1 as a move to the right. Figure 1 shows a tree together with its ‘silhouette’u 7→ Xn(u).
We can think of the valuesXn(u), n fixed andu varying over the unit interval, as a ‘sample’ (of admittedly
unusual size) from the distribution of the height along one specific path. Of course, the sample values are
not independent, but if dependence is not too strong, then we would expect that averaging over the whole
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sample should asymptotically reproduce the underlying distribution. Now, it is clear from the above urn
description that we have

L
(
Xn(u)

)
=

n

?
i=1

Ber(1/i) for all u ∈ [0, 1),

and (1) provides a bound for the distance of this underlying distribution to the Poisson distribution with
meanHn ∼ log n. Writing δk : N0 → {0, 1} for the Kronecker delta function,δk(k) = 1, δk(i) = 0 for
i 6= k, we have the following basic connection between the discounted profile and the silhouette process:

Ψk(Tn) =
∫ 1

0

δk
(
Xn(u)

)
du for all k, n ∈ N0. (4)

The integral in (4) corresponds to the averaging over the sample in an empirical process framework. In
summary, we expect that the random probability distributionΨ(Tn) is close to the deterministic probabil-
ity distribution Po(log n) with high probability forn large. Note thatk 7→ Ψk(Tn) can also be regarded
as the probability mass function of the distribution ofXn, if we interpretu 7→ Xn(u) as a random vari-
able on the standard probability space, i.e. the unit interval endowed with its Borelσ-field and the uniform
distribution.

We now regard probability distributions onN0, random or not, as sequences. Apart from a factor 2,
the l1-distance‖p − q‖1 =

∑∞
k=0 |pk − qk| of two such sequencesp = (pk)k∈N0 , q = (qk)k∈N0 is then

equal to the total variation distance of the associated probability measures. Instead ofl1 and total variation
distance we use below the (Hilbert) space

l2(N0) =
{
a = (ak)k∈N0 ∈ RN0 : ‖a‖2 <∞

}
, with ‖a‖2

2 :=
∞∑

k=0

a2
k .

Within this framework the theorem below confirms the above conjecture. We require the following prop-
erties of the norms and distances of Poisson distributions.

Lemma 1 (a)
lim

λ→∞
λ1/2 ‖Po(λ)‖2

2 =
1

2π1/2
.

(b) There exist finite constantsλ0 andC such that, for allλ ≥ λ0 and allη > 0,

‖Po(λ)− Po(η)‖2
2 ≤ C

(
1 + (λ− η)2

)
λ−3/2.

Proof. Using the modified Bessel function

I0(z) :=
∞∑

k=0

1
k! k!

(z
2

)2k

we can write the squaredl2-norm of the Poisson distribution with parameterλ as

‖Po(λ)‖2
2 = e−2λ

∞∑
k=0

λ2k

k! k!
= e−2λI0(2λ).

It is known that

e−tI0(t) =
1√
2πt

+ O
(
t−3/2

)
(5)

ast→∞, see e.g. Formula 9.7.1 in Abramowitz and Stegun (1964). Part (a) now follows easily.
For the proof of (b) we first note that

‖Po(λ)− Po(η)‖2
2 ≤ ‖Po(λ)‖2

2 + ‖Po(η)‖2
2 =

∞∑
k=0

Pok(λ)2 +
∞∑

k=0

Pok(η)2 ≤ 2,

so that it is enough to prove the statement for values ofη satisfying the condition|λ − η| ≤ λ/2. Using
the modified Bessel function as in the proof of (a) we obtain

‖Po(λ)− Po(η)‖2
2 =

∞∑
k=0

(
e−λλ

k

k!
− e−η η

k

k!

)2

= e−2λI0(2λ) + e−2ηI0(2η) − 2e−λ−ηI0
(
2
√
λη

)
.
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With R(t) := e−tI0(t)− 1/
√

2πt this can be rewritten as

‖Po(λ)− Po(η)‖2
2 = R(2λ) +R(2η)− 2e−η−λ+2

√
λη R

(
2
√
λη

)
(6)

+
1

2
√
π

(
1√
λ

+
1
√
η
− 2

4
√
λη
e−η−λ+2

√
λη

)
. (7)

Using (5),0 ≤ exp(−η − λ + 2
√
λη) = exp(−(

√
λ − √

η)2) ≤ 1 andη ≥ λ/2 we obtain the required
rateO(λ−3/2) for the terms on the right hand side of (6). The term in big brackets in (7) can be estimated
from above byR1(λ, η) +R2(λ, η), with

R1(λ, η) :=
1√
λη

(
λ1/4 − η1/4

)2
, R2(λ, η) :=

2
4
√
λη

(
1− e−(

√
λ−√η)2

)
and the proof will be complete once we have shown that, with suitable constantsC1, C2 andλ0,

λ3/2Ri(η, λ) ≤ Ci (λ− η)2 for all λ > λ0, λ/2 ≤ η ≤ 2λ andi = 1, 2. (8)

Indeed: Using the elementary inequalities∣∣(1 + x)1/4 − 1
∣∣ ≤ |x|,

∣∣(1 + x)1/2 − 1
∣∣ ≤ |x| for x ≥ −1/2, 1− e−x ≤ x for x ≥ 0,

we obtain withλ0 := 1 andη ≥ λ/2

λ3/2R1(η, λ) =
(λ
η

)1/2

λ
(
1−

(
1 +

η − λ

λ

)1/4)2

≤
√

2λ
(η − λ)2

λ2
≤

√
2(η − λ)2,

λ3/2R2(η, λ) ≤ 2λ
(λ
η

)1/4(
1− e−(

√
λ−√η)2

)
≤ 25/4λ

(√
λ−√

η
)2 ≤ 25/4λ2

(
1−

(
1 +

η − λ

λ

)1/2)2

≤ 25/4(η − λ)2,

which proves (8). 2

We also need bounds for the tails of various random variables; the standard approach via moment gen-
erating functions and Markov’s inequality is enough for our purposes. For sums of independent indicator
variables we will use the following variant, which is Theorem 2.8 in Janson et al. (2000).

Lemma 2 Suppose thatL(X) = ?n
i=1 Ber(pi) and letλ :=

∑n
i=1 pi. Then, withφ(x) := (1+x) log(1+

x)− x,

P
(
X ≥ (1 + α)λ

)
≤ exp

(
−λφ(α)

)
, P

(
X ≤ (1− α)λ

)
≤ exp

(
−λφ(−α)

)
for all α > 0.

As a typical application we consider the timeVl(u) at which the node with distancel from the root
along some specific pathu first becomes an external node in the sequence(Tn)n∈N. Using

P
(
Vl(u) ≥ k

)
= P

(
Xk(u) ≤ l

)
(9)

andL
(
Xk(u)

)
= ?

k
i=1 Ber(1/i) we obtain from Lemma 2 that, forl = l(n) = O(log log n) and

k = k(n) ≥ nκ for someκ > 0,

P
(
Vl(n)(u) ≥ k(n)

)
= O

(
(log n)−γ

)
for all γ > 0. (10)

A sequence of probability mass functions with supremum tending to 0 will converge to 0 inl2-norm.
Part (a) of Lemma 1 shows that this happens with rate(log n)−1/4 for Po(log n) asn → ∞, hence the
approximation in the following theorem makes sense.

Theorem 2 With (Tn)n∈N andΨ as above,

E
∥∥Ψ(Tn)− Po(log n)

∥∥2

2
= O

(
(log n)−3/2

)
as n→∞.
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Proof. We use Pythagoras’ theorem to split the squaredl2-distance into a squared bias term and a
variance term:

E
∥∥Ψ(Tn)− Po(log n)

∥∥2

2
=

∞∑
k=0

(
EΨk(Tn)− Po(log n)({k})

)2 +
∞∑

k=0

E
(
Ψk(Tn)− EΨk(Tn)

)2
.

Using (4) and Fubini’s Theorem we see that the expected profile is the mass function associated with
L(Xn(0)) = ?n

i=1 Ber(1/i). Hence (1) implies, withHn as in Section 2,∥∥EΨ(Tn)− Po(Hn)
∥∥

1
= O

(
(log n)−1

)
.

Since
∑∞

k=0 a
2
k ≤

(∑∞
k=0 |ak|

)2
this in turn yields the rateO

(
(log n)−1

)
for the l2-distance between

EΨ(Tn) and Po(Hn). Lemma 1 (b) provides the rateO
(
(log n)−3/4

)
for the l2-distance between

Po(Hn) and Po(log n). The desired rate for the squared bias term now follows with the triangle in-
equality.

We split the sum in the second (variance) term into the rangek /∈ A(n) andk ∈ A(n), with

A(n) :=
{
k ∈ N0 : (log n)/2 ≤ k ≤ 2 log n}.

For the first sum we use∑
k/∈A(n)

E
(
Ψk(Tn)− EΨk(Tn)

)2 ≤ 2
∑

k/∈A(n)

EΨk(Tn) = 2P
(
Xn(0) /∈ A(n)

)
.

As Xn(0) is the sum of independent Bernoulli random variables we can use Lemma 2 to obtain the
required rate forP

(
Xn(0) /∈ A(n)

)
. For the rangek ∈ A(n) we write

var
(
Ψk(Tn)

)
= E

(∫ 1

0

(
δk

(
Xn(u)

)
− Eδk

(
Xn(u)

))
du ·

∫ 1

0

(
δk

(
Xn(s)

)
− Eδk

(
Xn(s)

))
ds

)
=

∫ 1

0

∫ 1

0

cov
(
δk

(
Xn(u)

)
, δk

(
Xn(s)

))
du ds. (11)

Let α(u, s) denote the level of the last common ancestor of the pathsu ands. Formally,

α(u, s) := max
{
k ∈ N0 : j2−k ≤ u, s < (j + 1)2−k for somej ∈ {0, . . . , 2k − 1}

}
. (12)

We split the range of the double integral in (11) intoB(n) andB(n)c, with

B(n) :=
{
(u, s) ∈ [0, 1)2 : α(u, s) ≥ 4 log log n

}
.

As a subset of the unit squareB(n) consists of the set of all pairs that have the same elements in their
binary representation up to (at least) positiond4 log log ne. Hence the area ofB(n) is of the order
O((log n)−4 log 2), which suffices for this part of the integral as the integrand is bounded by 1 in abso-
lute value and the number of terms in the sum overk ∈ A(n) is bounded by2 log n.

We now fix k ∈ A(n) and (u, s) /∈ B(n). For n large enough we have thatl := α(u, s) is small
in comparison withk. Let the random variableV denote the first time that(u1, u2, . . . , ul) becomes an
external node (the dependence ofV onu ands will not be displayed in the notation). For our fourth split
we use the conditional covariance formula

cov
(
δk

(
Xn(u)

)
, δk

(
Xn(s)

))
= E

(
cov

[
δk

(
Xn(u)

)
, δk

(
Xn(s)

)∣∣V ])
+ cov

(
E

[
δk

(
Xn(u)

)∣∣V ]
, E

[
δk

(
Xn(s)

)∣∣V ])
,

so that the proof of the theorem will be complete once we have shown that

∑
k∈A(n)

∫ 1

0

∫ 1

0

1B(n)c(u, s)E
(

cov
[
δk

(
Xn(u)

)
, δk

(
Xn(s)

)∣∣V ])
du ds = O

(
(log n)−3/2

)
(13)
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and ∑
k∈A(n)

∫ 1

0

∫ 1

0

1B(n)c(u, s) cov
(
E

[
δk

(
Xn(u)

)∣∣V ]
, E

[
δk

(
Xn(s)

)∣∣V ])
du ds = O

(
(log n)−3/2

)
.

(14)
For (13) the idea is that the random variablesδk

(
Xn(u)

)
and δk

(
Xn(s)

)
or, equivalently, the two

events{Xn(u) = k} and{Xn(s) = k}, are almost independent ask is large in comparison tol. The
following computation is crucial for the success of our approach; in essence, it replaces the Poissonization-
Depoissonization steps that are often used in connection with binary trees. The Poissonization makes
subtrees independent—our calculation, using once again Poisson approximation for the distribution of the
sum of independent indicator variables, proceeds in a more direct manner.

Under the condition thatV = m the event{Xn(u) = k} ∩ {Xn(s) = k} can be described as follows:
Of then −m steps following the entrance into the last common ancestor ofu ands, exactly2(k − l) go
in directionu or s, and of these, exactlyk − l proceed in the direction given byu. Writing U andS for
the number of steps among those with time labelV + 1, . . . , n taken from the ancestor in directionu or s
respectively, it is clear that we have

L(U |V ) = L(S|V ) =
n

?
i=V +1

Ber(1/i), L(U + S|V ) =
n

?
i=V +1

Ber(2/i)

andL(U |U + S, V ) = Bin(U + S, 1/2). Hence

P
(
Xn(u) = k,Xn(s) = k

∣∣V = m
)

= P
(
U = k − l, U + S = 2(k − l)

∣∣V = m
)

= P
(
U = k − l

∣∣U + S = 2(k − l)
)
P

(
U + S = 2(k − l)

∣∣V = m
)

=
(

2(k − l)
k − l

)
2−2(k−l)

n

?
i=m+1

Ber(2/i)({2(k − l)}).

Similarly, we have

P
(
Xn(u) = k

∣∣V = m
)

= P
(
U = k − l

∣∣V = m
)

=
n

?
i=m+1

Ber(1/i)({k − l}),

and forP (Xn(s) = k|V = m) we obtain the same expression. Using the relation

Bin(2j, 1/2)({j}) Po(2λ)({2j}) =
(
Po(λ)({j})

)2

and some more notation,

∆j(m,n, k) :=
∣∣∣ n

?
i=m+1

Ber
(j
i

)
({k}) − Po

( n∑
i=m+1

j

i

)
({k})

∣∣∣ for j = 1, 2,

we obtain∣∣∣ cov
[
δk

(
Xn(u)

)
, δk

(
Xn(s)

)∣∣V = m
]∣∣∣

=
∣∣∣P (

Xn(u) = k,Xn(s) = k
∣∣V = m

)
− P

(
Xn(u) = k

∣∣V = m
)
P

(
Xn(s) = k

∣∣V = m
)∣∣∣

≤
(

2(k − l)
k − l

)
2−2(k−l) ∆2(m,n, 2(k − l)) + 2Po

( n∑
m+1

1
i

)
({k − l}) ∆1(m,n, k − l) + ∆1(m,n, k − l)2.

Summing overk ≥ (log n)/2, using(
2n
n

)
2−2n ≤ (πn)−1/2, sup

k∈N0

Po(λ)({k}) = O
(
λ−1/2

)
asλ→∞

(see Proposition A.2.7 in Barbour et al. (1992) for the second statement) and (1) twice we arrive at∑
k∈A(n)

∣∣∣ cov
[
δk

(
Xn(u)

)
, δk

(
Xn(s)

)∣∣V = m
]∣∣∣ = O

(
(log n)−3/2

)
, (15)
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uniformly inm ≤
√
n andl ≤ d4 log log ne. To obtain (13) we now split the integral associated with the

expected value into{V ≤
√
n} and{V >

√
n}. For the first part, the required bound follows because of

(15). For the second part we use (10), the fact that the size ofA(n) is O(log n) and the bound 1 for the
covariance of the indicator variables to obtainO

(
(log n)−3/2

)
for this part too.

For the proof of (14) we first note that, onα(u, s) = l with α as in (12),

E
[
δk

(
Xn(u)

)∣∣V = m
]

= P
(
Xn(u) = k

∣∣V = m
)

= ψ(k, l,m, n),

wherek 7→ ψ(k, l,m, n) is the mass function associated withδl??
n
i=m+1 Ber(1/i). ForE[δk(Xn(s))|V =

m] we obtain the same expression. Hence, using the fact that for real random variablesξ, var(ξ) ≤
E(ξ − a)2 for all a ∈ R, we obtain that

cov
(
E

[
δk

(
Xn(u)

)∣∣V ]
, E

[
δk

(
Xn(s)

)∣∣V ])
= var

(
ψ(k, l, V, n)

)
≤ E

(
ψ(k, l, V, n)− Pok(log n)

)2
.

Conditionally onV = m, the sum of this last expression overk ∈ A(n) is therefore bounded by the
squaredl2-distance betweenψ(·, l,m, n) and Po(log n). From (1) we get

‖ψ(·, l,m, n)− Po(l +Hn −Hm)‖1 ≤ 2l + π2/3
l +Hn −Hm

.

As in the proof of (13) we may assume thatV ≤
√
n, so that we have the upper bound

∑
k∈A(n)

∫ 1

0

∫ 1

0

1B(n)c(u, s) 1l(α(u, s))E
(
ψ(k, l, V, n)− Pok(l+Hn −HV )

)2
du ds ≤ C l2 (log n)−2,

where here and in the followingC denotes a generic constant. Lemma 1 (b) provides∑
k∈A(n)

(
Pok(l +Hn −HV )− Pok(log n)

)2 ≤ C
(
1 +

(
l + 1 + log(1 + V )

)2)(log n)−3/2.

Note thatV depends onu ands, but not onn. The proof of (14) will therefore be complete if we can show
that ∫ 1

0

∫ 1

0

1{l}(α(u, s))E
(
log(1 + V )

)2
du ds ≤ C l2 (16)

and ∫ 1

0

∫ 1

0

α(u, s)2 du ds < ∞. (17)

Using (9) we obtain that, again onα(u, s) = l,

E
(
log(1 + V )2

)
= 2

∫ ∞

0

t P (log(1 + V ) ≥ t) dt ≤ 2
∞∑

k=0

(k + 1)P (ξk ≤ l
)

where the random variableξk has distribution?ak

i=1 Ber(1/i) with ak := deke − 1. The sum overk ≤ 2l
is bounded by(2l + 1)2. On{k > 2l} we use Lemma 2 to obtain

P (ξk ≤ l) ≤ P
(
ξk ≤ 2(Eξk)/3

)
≤ exp

(
−(k − 1)φ(−1/3)

)
,

which provides an upper bound for this part of the sum that does not depend onl. Taken together, this
proves (16).

Finally, for the proof of (17), we regardα as random: The double integral
∫ 1

0

∫ 1

0
. . . du ds means that

we selectu and s uniformly from the unit interval, and we have to show that the second moment of
l := α(u, s) is bounded. This is, however, immediate from the fact that in this interpretationl has a
geometric distribution with parameter1/2. 2

Similar to (3) we can write∥∥Ψ(Tn)− Po(log n)
∥∥

1
≤

∑
k∈A(n)

∣∣Ψk(Tn)− Pok(log n)
∣∣ +

∑
k/∈A(n)

Ψk(Tn) +
∑

k/∈A(n)

Pok(log n)
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for any subsetA(n) of N0. By the Cauchy-Schwarz inequality,∑
k∈A(n)

∣∣Ψk(Tn)− Pok(log n)
∣∣ ≤

∣∣A(n)
∣∣1/2 ∥∥Ψ(Tn)− Po(log n)

∥∥
2
.

Taking expectations and using(Eξ)2 ≤ E(ξ2) we obtain

E
∥∥Ψ(Tn)−Po(log n)

∥∥
1
≤

∣∣A(n)
∣∣1/2

(
E

∥∥Ψ(Tn)−Po(log n)
∥∥2

2

)1/2

+P
(
ξ1,n /∈ A(n)

)
+P

(
ξ2,n /∈ A(n)

)
,

whereL(ξ1,n) = ?
n
i=1 Ber(1/i) andL(ξ2,n) = Po(log n). With A(n) := {k ∈ N0 : |k − log n| ≤

(log n)β}, β > 1/2, and the appropriate tail inequalities we therefore obtain from Theorem 2 the following
result on the expected total variation distance between the random probability measureΨ(Tn) and the
(non-random) Poisson distribution with meanlog n.

Corollary 1 E
(
dTV

(
Ψ(Tn), Po(log n)

)
= o

(
(log n)−γ

)
for all γ < 1/2.

In their recent investigation of BST profiles Drmota and Hwang (2004) found several phase transi-
tions for the behaviour of the variance of the number of nodes at a particular level. Their analytic tech-
niques, which are completely different from our approach, result in a variety of asymptotic expressions
for var(Unk) (in our notation) and can therefore be used to replace some of the probabilistic arguments in
the proof of Theorem 2.

In our approach, results such as Theorem 2 are essentially interpreted as a (functional version of the) law
of large numbers. Distributional limit results can be regarded as the logical next step; see e.g. the recent
paper by Fuchs et al. (2004). Interestingly, on the level of limit distributions, for example in connection
with the distribution ofUn,kn

/EUn,kn
with kn − log n = O(1), periodicities reappear.
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