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ON THE MEDIAN-OF-K VERSION

OF HOARE’S SELECTION ALGORITHM

Rudolf Grübel
1

Abstract. In Hoare’s (1961) original version of the algorithm Find

the partitioning element in the central divide-and-conquer step is cho-
sen uniformly at random from the set S in question. Here we consider
a variant where this element is the median of a sample of size 2k + 1
from S. We investigate convergence in distribution of the number of
comparisons required and obtain a simple explicit result for the limiting
average performance of the median-of-three version.

AMS Subject Classification. 68Q25, 68P10.

1. Introduction

Given a set S ⊂ R with n elements the central step in Hoare’s (1961) selection
algorithm Find is a reduction to a similar selection problem with a strictly smaller
set S′ ⊂ S. This reduction is based on the selection of a partitioning element
x from S (according to some rule to be specified); let m be the size of S− :=

{y ∈ S : y < x}. If the lth smallest element of S is to be determined then the
algorithm proceeds with (S, l) replaced by (S′, l′) where S′ := S− and l′ := l if
m ≥ l and S′ := S \ (S− ∪ {x}) and l′ := l − 1 −m if m < l − 1; obviously the
required value is x if m = l− 1. In Hoare’s [9] original rule Partition x is chosen
uniformly at random from S. Following a similar proposal for the closely related
sorting algorithm Quicksort (Hoare [9]) we consider in this paper a variant of
Find where 2k + 1 elements are selected uniformly at random from S and the
partitioning element x is taken to be the median of these.

The performance of such algorithms is essentially determined by the number
of comparisons that have to be carried out, which is a random quantity in the
above setup. Much of the early literature concentrates on the expected value of
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these random variables, i.e. on the average performance of the algorithm. While
Find and Quicksort are close to each other from an algorithmic point of view,
their probabilistic behaviour is totally different. In particular, for Quicksort

the average performance is easily obtained, and the resulting computation is per-
haps the one part of computer science most likely to appear in a lecture course
on probability. For Find, the same problem is considerably more difficult; see
Problem 32, rated M40, in Knuth ([11], p. 136) or the amusing discussion in
Rawlins ([15], pp. 194-201). For both algorithms it turns out that there is a wide
gap between average and worst case performance, which motivates a closer anal-
ysis. Tail bounds for the distribution of the number of comparisons can be used
to judge the practical relevance of the worst case; such bounds for Find were first
obtained by Devroye [4]. Grübel and Rösler [7] proved convergence in distribution
of the (standardized) number of comparisons if the rank l = ln of the required
element varies with the size n of the basic set in such a way that n−1ln tends to a
limit; this was based on the idea of considering the selection problem as indexed
by l and then investigating the resulting stochastic processes. Grübel [8] simplified
the proof of convergence of the one-dimensional distributions (which is the main
case of interest). Kodaj and Mori [12] obtained a similar result with different
techniques, they also obtained results on the rate of convergence. Grübel [8] also
contains a (non-asymptotic) bound on the tails of the distribution which improves
upon Devroye’s earlier result.

The results mentioned in the previous paragraph all refer to the classical
variant based on Partition. It is well known that a more sophisticated choice
of the partitioning element can improve the average or worst case performance of
Quicksort and Find; see e.g. Sedgewick and Flajolet ([16], p. 21). Indeed, in a
seminal paper Blum et al. [3] showed that the number of comparisons required if
their rule Pick is employed is at most 5.4305 ·n; other authors have subsequently
improved the constant in this linear bound. The existence of a deterministic worst
case upper bound that grows only linearly in the size n of the input set is a con-
siderable theoretical achievement, but Pick seems to be too complicated to enter
the world of computational recipes. Floyd and Rivest (1975) constructed an algo-
rithm with better average performance than the original Find. In this paper we
consider the following selection rule, which is very simple to implement: 2k + 1
elements, the presample, are selected uniformly at random from the respective set,
the partitioning element is then chosen to be the median of these values. Histori-
cally this was the first attempt to improve upon Partition. A detailed analysis
of the number of comparisons for k = 1 is given in Anderson and Brown [1], who
mention a renewed interest in median-of-three selection.

Our main results are limit theorems where the size n of the basic set S tends
to infinity. In the following section we first consider the case of fixed k and then
let k = kn tend to infinity with n. Proofs are collected in Section 3. In Section 4
we discuss the results and give some numerical examples. We write L(X) for the
distribution of the random variable X and 1A for the indicator function of the
set A.
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2. Results

The selection strategies considered in this paper are distributionally invariant
under permutations of the object under consideration, so we may regard Find

as operating on sets. The distribution of the number of comparisons depends

on the underlying set S only through its size #S. Let C
(k)
n,l be the (random)

number of comparisons required by Find({1, . . . , n}, l) if, in each recursion step,
the partitioning element is the median of 2k + 1 elements chosen uniformly at
random from the set in question. The rule Partition used in the classical version
of Find can be regarded as the special case k = 0 of this procedure. Note that
for k > 0 we will have an overhead due to the determination of the presample

medians. Our main aim is to show convergence in distribution of n−1C
(k)
n,ln

if ln
varies with n such that n−1ln tends to a limit, say t, and to obtain information
about the limit distribution. This distribution depends on t which means that a
whole family {Qt : 0 ≤ t ≤ 1} of probability measures on the (Borel subsets of the)
non-negative real halfline R+ arises. It turns out that the selection rule determines
a probability distribution µ on the unit interval [0, 1], and that {Qt : 0 ≤ t ≤ 1}
depends on this µ in a particular manner.

Theorem 1. To any probability distribution µ on [0, 1] which is not concentrated
on {0, 1} there corresponds a unique family {Qt : 0 ≤ t ≤ 1} of probability dis-
tributions on R+ with the following properties: (a) sup0≤t≤1

∫
x2 Qt(dx) < ∞;

(b) if {Xt : 0 ≤ t ≤ 1} is a family of random variables with L(Xt) = Qt for all

t ∈ [0, 1] and if ξ is another random variable, independent of the X-family and
with distribution µ, then, for all t ∈ [0, 1],

L

(
1 + 1(t,1](ξ) · ξ ·X

(
t

ξ

)
+ 1[0,t](ξ) · (1− ξ) ·X

(
t− ξ

1− ξ

))
= Qt.

As in the theorem we write X(t) instead of Xt whenever typographically more
convenient. We call {Qt : 0 ≤ t ≤ 1} the µ-split. The µ-splits needed in connection
with Find are built from a particular family: the beta distribution of the first kind
with parameters α > 0, β > 0, Beta(α, β) for short, is given by its density function

f(x |α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, 0 < x < 1.

We consider convergence with respect to one of the Wasserstein (or Mallows)
metrics: for any two probability measures µ, ν on R+ with finite second moments
we define d2(µ, ν) by

d2(µ, ν)2 := inf
{
E(X − Y )2 : L(X) = µ, L(Y ) = ν

}
·

Some properties of d2 are given in Bickel and Freedman [2]; in particular,
d2-convergence is equivalent to weak convergence and convergence of the second
moments. Recall that we partition at the median of a presample of size 2k + 1.
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Theorem 2. Let {Q(k)
t : 0 ≤ t ≤ 1} be the Beta(k + 1, k + 1)-split. Then, for all

0 ≤ t ≤ 1, L(n−1C
(k)
n,ln

) converges to Q
(k)
t with respect to d2 if ln/n converges to t

as n→∞.

Of particular interest is the average performance of the presample version of

Find, i.e. the expectation EC
(k)
n,l of C

(k)
n,l . Theorem 2 implies that

mk(t) := lim
n→∞

1

n
EC

(k)
n,ln

=

∫
xQ

(k)
t (dx)

if ln/n→ t. For the median-of-three version of Find we have the following explicit
result.

Theorem 3. m1(t) = 2 + 3t(1− t) for all t ∈ [0, 1].

It is known that m0(t) = 2 − 2t log t − 2(1 − t) log(1 − t) for the standard
version of Find (see e.g. Th. 11 in Grübel and Rösler [7], or the discussion following
Lem. 1.1 in Kodaj and Mori [12]). Thus, for finding the median, the asymptotic
average number of comparisons required drops from about 3.386 ·n to 2.75 ·n. The
following theorem contains some simple bounds on mk for general k.

Theorem 4. For all k ∈ N0, mk(0) = mk(1) = 2 and mk(t) > 2 for 0 < t < 1.
Moreover, for all k ∈ N0 and t ∈ [0, 1],

mk(t) ≤
2

1−
(

2k+1
k+1

)
2−2k−1

·

A standard application of Stirling’s formula shows that the upper bound is of the
form 2 + ck/

√
k with limk→∞ ck = 2/

√
π; in particular, mk tends to the constant

function 2 if k → ∞, uniformly on the unit interval. Note that this refers to
the limiting behaviour of the limits, i.e. it does not apply to the asymptotic be-
haviour of the number of comparisons in the case where the presample size k varies
with n.

Numerical experiments suggest that mk+1(t) < mk(t) for all k ∈ N0, 0 < t < 1
(see also Sect. 4), but I do not have a proof. The bounds in Theorem 4, together
with the subsequent remark, yield the weaker result that for all k ∈ N0, 0 < t < 1
there exists a j ∈ N such that mk+j(t) < mk(t). For k = 0 we can of course use
the above explicit formulae for m0 and m1, and it is indeed straightforward to
check that m1(t) < m0(t) for 0 < t < 1.

As far as the total number of comparisons is concerned the worst case arises if
in each recursion step with set S and partitioning element x from S the desired
element is in the larger one of the sets S−, S+ := S \ (S− ∪ {x}). If #S = n we
would then have the lower bound

max{#S−,#S+} ≥ min
k=0,... ,n−1

max{k, n− k − 1} =
⌊n

2

⌋



HOARE’S SELECTION ALGORITHM 181

on the number of comparisons needed by the next step. This implies

lim inf
n→∞

1

n
Wn ≥ 2 for Wn := sup

1≤l≤n
Cn,l,

whatever rule we use to select the partitioning element. This gives a very
pessimistic lower bound on the performance: if interpreted as a game between
the algorithm designer and an adversary this would model a situation where the
designer has to disclose his partitioning strategy and the adversary then determines
which element of S the program has to find. Clearly, in this situation a selection
rule that manages to split into sets of roughly equal size would be preferable, and
this leads quite naturally to the investigation of versions of Find with increasing
presample size. Such a version is specified by a sequence (kn)n∈N of integers: if, in
some recursion step, a set S of size n is under consideration, then the partitioning
element is chosen to be the median of a sample of size 2kn + 1 from S. Again,
we would have an overhead due to the additional number of comparisons needed
within the presamples (on which we could use Find recursively), and in the case
of kn → ∞ this part of the total workload may well become dominant. For this
reason we require an upper bound on the rate of increase of the presample size in
the following result.

Theorem 5. If kn → ∞ and n−1(log n) kn → 0 then n−1Wn → 2 in probability
as n→∞.

Hyafil [10] gives a more detailed analysis of lower bounds for Cnl. The versions
of Find considered in this paper essentially discard the information contained in l.
Note that the value of l changes with positive probability in each recursion step
unless l = 1 or l = n; these extreme cases correspond to finding the minimum
or maximum element of S which can easily be done with one pass through the
data. Floyd and Rivest [6] invented a selection rule that makes use of the rank of
the element to be found in each recursion step and consequently achieves a better
average performance.

3. Proofs

We recall the basic connection to Markov chains, discuss the number of
recursions and then prove the theorems.

The pairs (S, l), (S′, l′), . . . arising in the recursion steps can be regarded as the
successive states of a Markov chain, we may even reduce the sets to their respective
cardinality. This was the basic idea in Grübel [8] where the chains were rescaled
to obtain a weak convergence result in the case k = 0. We can also use this in the
present case; in particular, it enables us to analyse the overhead introduced by the
presamples.

Let I = {(n, l) : n ∈ N, l = 1, . . . , n}. Starting with a sequence (qn)n∈N of
probability distributions qn = (qn,1, . . . , qn,n) on {1, . . . , n} we define a transition
mechanism on I as follows: from (n, l) ∈ I move to (1, 1) with probability qn,l,
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move to (n− j, l− j) with probability qn,j , j = 1, . . . , l− 1, and move to (j − 1, l)
with probability qn,j , j = l + 1, . . . , n. It is easy to check that this models Find

correctly; in particular, if (Zm)m∈N0 , Zm = (Xm, Ym), is a Markov chain with this
transition mechanism and start at (n, l), then the total number of comparisons
required by the partitioning steps is given by

∑∞
m=0(Xm − 1). If presamples of

size 2k+1 are used then qn is the distribution of the median of 2k+1 independent
random variables with the uniform distribution on {1, . . . , n}. Also, the number
Rn,l of recursion steps required by Find({1, . . . , n}, l) is equal to the entry time

T := inf {m ∈ N0 : Zm = (1, 1)}

into the state (1, 1) of the chain. We have the following inequality which provides
us with the necessary tool to bound the overhead introduced by the presamples.
We write E(n,l) for expectation with respect to start at (n, l) ∈ I; for the con-
struction of Markov chains with given initial state and transition mechanism see
e.g. Section 5.2 in Neveu [13]. Note that the upper bound does not depend on k.

Lemma 6.

E(n,l)

(
4

3

)T
≤ n for all (n, l) ∈ I.

Proof. We use induction over n ∈ N; for n = 1 the assertion is trivial.
Suppose that the inequality holds for all (n′, l′) ∈ I with n′ < n for some n ≥ 2.
A decomposition with respect to the first step gives

E(n,l)

(
4

3

)T
=

l−1∑
j=1

qn,j E(n−j,l−j)

(
4

3

)T+1

+ qn,l
4

3

+
n∑

j=l+1

qn,j E(j−1,l)

(
4

3

)T+1

≤
4

3

n∑
j=1

max{n− j, j − 1} qn,j.

When applied to a random variable U which is uniformly distributed on the unit
interval, the function x → dnxe yields a random variable Ũ which is uniformly
distributed on the set {1, . . . , n}. As this function is monotone and as we consider

presamples of odd size only, we can generate the median Ṽ of a sample of size
2k+ 1 from the uniform distribution on the set {1, . . . , n} via Ṽ := dnV e, with V
the median of a sample of size 2k + 1 from the uniform distribution on the unit
interval. It is well known that such a V has distribution Beta(k + 1, k + 1); let

fk(x) = f(x|k + 1, k + 1) =
(2k + 1)!

k! k!
xk(1− x)k, 0 ≤ x ≤ 1,

be the associated density. By construction, Ṽ has distribution qn, and

n∑
j=1

max{j − 1, n− j} qn,j ≤ n ·Emax{V, 1− V }·
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Standard calculations give

Emax{V, 1− V } =

∫ 1

1/2

xfk(x) dx +

∫ 1/2

0

(1− x)fk(x) dx

= 2

∫ 1

1/2

xfk(x) dx

=
1

2
+ νk with νk :=

(
2k + 1

k + 1

)
1

22k+2
·

We have ν0 = 1/4 and it is easy to check that νk+1/νk ≤ 1 for all k ∈ N0, hence
Emax{V, 1−V } ≤ 3/4. Putting pieces together we see that the formula holds for
n too, which completes the induction step.

The proof of Theorem 1 is built on a contraction argument and similar to the
heuristic sketch given at the end of Section 4 in Grübel and Rösler [7] for a related
situation; it is instructive to compare the details. In particular we neither need nor
discuss the existence of a probability measure on some path space with marginals
Qt, 0 ≤ t ≤ 1.

Proof of Theorem 1. Let M2 be the set of all probability measures µ on R+ with
the property

∫
x2µ(dx) < ∞. Endowed with d2, M2 is a complete metric space.

LetM denote the set of all functions Q : [0, 1]→M2, t→ Qt, that satisfy sup0≤t≤1∫
x2Qt(dx) < ∞. Standard arguments from functional analysis such as given by

Dunford and Schwarz ([5], p. 258) can be used to show that

d(Q,Q′) := sup
0≤t≤1

d2(Qt, Q
′
t)

is a metric on M, and that (M, d) is a complete metric space.
Now let µ be as in the theorem. We define an operator T : M→M as follows:

(T (Q))t is the distribution of

Yt := 1 + 1(t,1](ξ) · ξ ·X

(
t

ξ

)
+ 1[0,t](ξ) · (1− ξ) ·X

(
t− ξ

1− ξ

)
where X = (Xt)0≤t≤1 is such that L(Xt) = Qt, 0 ≤ t ≤ 1, and ξ is independent of
(Xt)0≤t≤1 with L(ξ) = µ (note that there are no assumptions on the joint distri-
bution of the variables Xt, 0 ≤ t ≤ 1). It is easy to check that sup0≤t≤1EY

2
t <∞.

Given Q,Q′ ∈ M the quantile transformation can be used to construct families
X,X ′ such that

L(Xt) = Qt, L(X ′t) = Q′t and E(Xt −X
′
t)

2 = d2(Qt, Q
′
t)

2



184 R. GRÜBEL

for all t ∈ [0, 1]. We can further construct another random variable ξ, independent
of both these families and with distribution µ. Then the families Y, Y ′ defined by

Yt := 1 + 1(t,1](ξ) · ξ ·X

(
t

ξ

)
+ 1[0,t](ξ) · (1− ξ) ·X

(
t− ξ

1− ξ

)
,

Y ′t := 1 + 1(t,1](ξ) · ξ ·X
′

(
t

ξ

)
+ 1[0,t](ξ) · (1− ξ) ·X

′

(
t− ξ

1− ξ

)
,

have the one-dimensional marginals T (Q), T (Q′) respectively; note that we use
the same ξ in both lines. With this construction and 1[0,t]1(t,1] ≡ 0 we obtain

(d2 (T (Q)t, T (Q′)t))
2
≤ E(Yt − Y

′
t )2 = E

(
1(t,1](ξ) · ξ ·

(
X

(
t

ξ

)
−X ′

(
t

ξ

)))2

+E

(
1[0,t](ξ) · (1− ξ) ·

(
X

(
t− ξ

1− ξ

)
− X ′

(
t− ξ

1− ξ

)))2

≤
(
Eξ2 +E(1− ξ)2

)
sup

0≤s≤1
E (Xs −X

′
s)

2
.

By assumption, µ is not concentrated on the end points of the interval, which
implies that c(µ) := Eξ2 +E(1− ξ)2 is strictly smaller than 1. Taking the supre-
mum over t ∈ [0, 1] in the above bound we obtain

d (T (Q), T (Q′)) ≤ c(µ)1/2 d(Q,Q′) for all Q,Q′ ∈M,

and all assertions of the theorem now follow on using Banach’s fixed point theorem.

Proof of Theorem 2. As k is held fixed here we may neglect the additional
comparisons required by the determination of the medians of the presamples if

E(R
(k)
n,ln

)2 = o(n2) as n → ∞. This, however, is immediate from the above
lemma. Constructing the partitioning elements via beta-distributed random vari-
ables as in the proof of the lemma we can now proceed exactly as in Grübel
[8], if we replace the uniform variables U by beta variables V throughout: Let
I := {(x, y) ∈ R2

+ : 0 ≤ y ≤ x} and let P ((x, y), · ) be the distribution of ξ,

ξ :=

{
(x− V x, y − V x), if V x ≤ y,
(V x, y), if V x > y,

with V ∼ Beta(k + 1, k + 1).

Consider the Markov chains (Z
(x,y)
m )m∈N0 with state space I, transition kernel

P and start at (x, y), (x, y) ∈ I. Then we obtain as in Grübel [8] that n−1C
(k)
n,ln

converges in distribution to
∑∞
m=0X

(1,t)
m , where X

(1,t)
m denotes the first component

of Z
(1,t)
m , m ∈ N0. These chains are stochastically self-similar in the sense that

(Z
(x,tx)
m )m∈N0 is identical in distribution to (x · Z(1,t)

m )m∈N0 . A decomposition
with respect to the value of the first V -variable therefore shows that the limit
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distribution, as a function of t, satisfies condition (b) of Theorem 1 with µ = L(V ).
A simple upper bound similar to the one employed in the standard case k = 0 yields
the other condition, so that Theorem 1 can be applied.

Proof of Theorem 3. Let m(t) :=
∫
xQt(dx). As (Qt)0≤t≤1 arises as the fixed

point of a strict contraction on M, we obtain the µ-split in the limit if we apply
the contraction repeatedly to any family from M (see the proof of Th. 1). In
particular, we may start with Qt ≡ δ0. The moment functions t →

∫
xQn,t(dx)

of the successive families (Qn,t)0≤t≤1, n ∈ N, will then all be measurable functions
on the unit interval. As m is the pointwise limit of these it is measurable too, and
we obtain from property (b) of the µ-split that m satisfies the following integral
equation:

m(t) = 1 +

∫
(t,1]

xm

(
t

x

)
µ(dx) +

∫
[0,t]

(1− x)m

(
t− x

1− x

)
µ(dx).

Of course, property (a) from Theorem 1 implies that m is bounded. We may
therefore regard m as the fixed point of an operator T , where T : B → B with B
the space of bounded, measurable function f : [0, 1]→ R is given by

T (f)(t) := 1 +

∫
(t,1]

x f

(
t

x

)
µ(dx) +

∫
[0,t]

(1− x) f

(
t− x

1− x

)
µ(dx).

A straightforward generalization of the proof of Theorem 11 in Grübel and Rösler
[7] shows that with ‖f‖ := sup0≤t≤1 |f(t)| we have

‖T (f)− T (g)‖ ≤ c(µ) ‖f − g‖

where

c(µ) := sup
0≤t≤1

(∫
(t,1]

xµ(dx) +

∫
[0,t]

(1− x)µ(dx)

)
.

As c(µ) ≤
∫

[0,1] x ∨ (1− x)µ(dx) we obtain c(µ) < 1 since the µ’s considered here

are not concentrated on {0, 1} (in fact, we know from the proof of the lemma that
c(µ) ≤ 3/4). Hence T is a strict contraction on the Banach space (B, ‖ · ‖), which
implies that the solution to the above integral equation is unique. In particular,
to prove Theorem 3, it remains to check that the integral equation

m(t) = 1 + 6

∫ 1

t

x2(1− x)m

(
t

x

)
dx + 6

∫ t

0

x(1− x)2m

(
t− x

1− x

)
dx

is satisfied with m(t) := 2 + 3t(1− t). This is straightforward.
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This proof does not answer the question of how one arrives at the solution
function. One possibility is to extrapolate from the result obtained by Anderson
and Brown [1] for finite n and to guess the solution by letting n tend to infinity
in their approximation formula (19). Here is another possibility, which could also
be used, at least in principle, for k > 1: we look for the solution m1 of

m1(t) = 1 + 6

∫ 1

t

x2(1− x)m1

(
t

x

)
dx + 6

∫ t

0

x(1− x)2 m1

(
t− x

1− x

)
dx,

0 ≤ t ≤ 1. A change of variables t
x
↪→ x in the first, t−x

1−x ↪→ 1 − x in the second
integral simplifies the dependence on t of the right hand side:

m1(t) = 1 + 6t3
∫ 1

t

1

x4
m1(x) dx − 6t4

∫ 1

t

1

x5
m1(x) dx

+ 6(1− t)3

∫ 1

1−t

1

x4
m1(1− x) dx − 6(1− t)4

∫ 1

1−t

1

x5
m1(1− x) dx.

Differentiating both sides five times we arrive at the following differential equation

for φ := m
(3)
1 :

φ′′(t) = 6

(
1

t2
+

1

(1− t)2

)
φ(t)

(this is similar to Paulsen [14], but here we obtain a differential equation of higher
order). The two-dimensional solution space consists of the linear combinations

α
(5t3 − 20t2 + 28t− 14)t3

(1− t)2
+ β

2t− 1

t2(1− t)2
,

with α, β ∈ R (interestingly, with α = 0 and β = −1 this is m
(3)
0 ). It is easy to see

that the operator T in the proof of Theorem 3 preserves symmetry about 1/2 if
the distribution µ is symmetric about 1/2, hence uniqueness of the solution to the

above integral equation implies that the third derivative must satisfy m
(3)
1 (t) =

−m(3)
1 (1− t). This implies α = 0. Integrating three times we obtain

m1(t) = a0 + a1t + a2t
2 + β (t log t+ (1− t) log(1− t))

with suitable constants a0, a1, a2 and β. Now insert into the above integral
equation for m1 and compare coefficients.

For k = 2 we can proceed in a similar fashion and obtain the differential equation

φ′′′(t) = 60

(
1

(1− t)3
−

1

t3

)
φ(t)

for φ := m
(4)
2 . I have not been able to produce the relevant solution (one particular

solution is given by m
(4)
0 ). Of course, if interest is primarily in the numerical
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answer then one could simply discretize the right hand side of the original integral
equation and iterate. As in Section 4.1 of Grübel [8] this strategy can also be used
to obtain numerically the distribution functions associated with the distributions

Q
(k)
t , 0 ≤ t ≤ 1, k ∈ N0; see Section 4 below.

Proof of Theorem 4. We treat the upper bound first. Let again fk be the density
of Beta(k+ 1, k+ 1). It follows from the proof of Theorem 3 that mk satisfies the
integral equation

mk(t) = 1 +

∫ 1

t

xmk

(
t

x

)
fk(x) dx +

∫ t

0

(1− x)mk

(
t− x

1− x

)
fk(x) dx,

0 ≤ t ≤ 1. Property (a) of µ-splits implies that

γk := sup
0≤t≤1

mk(t) < ∞,

and the integral equation leads to the inequality

γk ≤ 1 + γkρk with ρk := sup
0≤t≤1

(∫ 1

t

xfk(x) dx +

∫ t

0

(1− x)fk(x) dx

)
.

It is easy to see that ρk = Emax{V, 1 − V }, which we computed in the proof of
the lemma. Solving for γk we obtain the upper bound.

We know from the proof of Theorem 3 that the operator Tk defined by

Tk(m)(t) := 1 +

∫ 1

t

xm

(
t

x

)
fk(x) dx +

∫ t

0

(1− x)m

(
t− x

1− x

)
fk(x) dx

is a strict contraction on the space of continuous functions m : [0, 1]→ R, and that
mk is the associated unique fixed point. In particular, mk arises as the uniform
pointwise limit of the sequence (mk,l)l∈N0 defined by mk,0 ≡ 2 and mk,l+1 :=
Tk(mk,l) for all l ∈ N0. As the mean associated with Beta(k + 1, k + 1) is 1/2
it is easy to see that mk,l(0) = mk,l(1) = 2 for all l ∈ N0, hence it follows that
mk(0) = mk(1) = 2. We also have

mk,1(t) = 1 + 2

(∫ t

0

(1− x) fk(x) dx +

∫ 1

t

x fk(x) dx

)
> 2

for 0 < t < 1. To see this we first note that it is enough to consider 0 < t ≤ 1/2
because of the same symmetry argument as used in the remarks following the proof
of Theorem 3, and that for such t

(1− x) 1[0,t](x) + x 1(t,1](x) ≥ x for 0 ≤ x ≤ 1,

with strict inequality for 0 ≤ x ≤ t. As the Beta(k + 1, k + 1)-probability of the
interval [0, t] is strictly greater than 0 the above strict inequality follows.
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It is easy to see that Tk is monotone, so that mk,1 ≥ mk,0 implies that (mk,l)l∈N0

is pointwise monotone increasing. In particular, mk ≥ mk,1.

Proof of Theorem 5. Applying Find recursively we see that the expected number
of comparisons needed to determine all presample medians is bounded from above
by

4 · ER[k]
n,l · max

1≤m≤n
km,

where R
[k]
n,l denotes the number of recursions required by Find({1, . . . , n}, l) if

the sequence (km)m∈N is employed. Using Jensen’s inequality with the concave
function x→ log x, x > 0, we obtain

logE

(4

3

)R[k]
n,l

 ≥ E

log

(
4

3

)R[k]
n,l

 =

(
log

4

3

)
ER

[k]
n,l,

which, together with the lemma, yields

(
4

3

)ER[k]
n,l

≤ E

(4

3

)R[k]
n,l

 ≤ n.

This shows that ER
[k]
n,l is bounded by a constant multiple of logn, where the

constant depends neither on l nor on (km)m∈N. Hence, under the conditions of the
theorem and by Markov’s inequality, the total number of comparisons required
outside the partition loops tends to 0 in probability if scaled by n−1 and may
therefore be ignored for the rest of the proof.

Let qn,j be the probability that the larger one of the sets S−, S+ has j elements
if #S = n. For any fixed n these values determine a probability distribution on
{bn/2c, . . . , n−1}. Let κn :=

∑n−1
j=bn/2c jqn,j be the associated first moment. The

basic recursion step of Find leads to

EWn = (n− 1) +
n−1∑

j=bn/2c

qn,jEWj .

With an := n−1EWn this can be rewritten as

an ≤ 1 +
1

n

n−1∑
j=bn/2c

(jqn,j) aj .

Now we bootstrap: All an’s are finite (indeed, Wn ≤ n2). If ρ := supn∈N n
−1κn

< 1, then the above inequality implies

sup
1≤m≤n+1

am ≤ 1 + ρ · sup
1≤m≤n

am,



HOARE’S SELECTION ALGORITHM 189

i.e. the sequence (an)n∈N is bounded. The same inequality further implies

lim sup
n→∞

an ≤ 1 + lim sup
n→∞

an · lim sup
n→∞

1

n
κn

as qn,j = 0 for j < bn/2c. For the partition rule based on the median of a presample
of size 2kn+1 it is easy to show that limn→∞ n−1κn = 2 if kn →∞ (see the proofs
of the lemma and of Th. 4), hence solving for a := lim supn→∞ an we obtain a ≤ 2.
This asymptotic upper bound on the expectation of n−1Wn coincides with the
lower bound on lim infn→∞ n−1Wn, hence the asserted convergence in probability
follows on using Markov’s inequality.

4. Discussion

The time required by a stochastic algorithm such as Find is a random variable
Z. Traditional analyses focus on the average performance, i.e. the associated
expectation EZ, or the worst case behaviour, i.e. deterministic upper bounds
on Z. Our main results deal with the distribution L(Z) of Z, which can be used
to obtain more detailed information. In particular, the high quantiles of this
distribution give the likelihood of excessively large running times, a performance
aspect that lies between average behaviour and worst case bounds. Of course,
Markov’s inequality can be used because of Z ≥ 0 to obtain upper bounds for the
quantiles of L(Z) from the average quantity EZ via

P (Z ≥ z) ≤
1

z
EZ for all z ≥ 0,

but these bounds are often conservative to the point of being useless; see Grübel
[8] for a discussion and numerical results for Find in the case k = 0.

In our analysis the time required by the algorithm is approximated by the total

number C
(k)
n,ln

of comparisons needed in the main recursion loops, a value that
depends on the size n of the input set, the rank ln of the required element and
the presample size 2k + 1. The limit result given in Theorem 2 uses a suitable
normalization, so that n disappears and the ratio ln/n becomes a new parameter

t. On the whole, we therefore end up with a family L(Z
(k)
t ) of distributions, with

0 ≤ t ≤ 1 and k ∈ N0. While there seems to be little hope to obtain explicit
formulae for the associated mean values, let alone the distribution functions, our
results go beyond mere existence of the limit as they open up the possibility to
obtain these quantities numerically. As explained in the proof of Theorem 3 the

mean value function t → mk(t) = EZ
(k)
t associated with the resulting µ-split

satisfies the integral equation

mk(t) = 1 +

∫ 1

t

xmk

(
t

x

)
fk(x) dx +

∫ t

0

(1− x)mk

(
t− x

1− x

)
fk(x) dx,
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Figure 1. Limiting mean number of comparisons for k =
0, 1, 2, 5, 10, 20, 50 (top to bottom).

with fk(x) the density of µ = Beta(k + 1, k + 1). Similarly, we obtain an integral

equation for the family of distribution functions Fk(z|t) = P (Z
(k)
t ≤ z) associated

with the Beta(k + 1, k + 1)-split,

Fk(z|t) =

∫ t

0

Fk

(
(z − 1)+

1− u

∣∣∣ t− u
1− u

)
fk(u) du

+

∫ 1

t

Fk

(
(z − 1)+

u

∣∣∣ t
u

)
fk(u) du.

In both cases discretization of the integrals leads to a system φ = I(φ) which can
easily be treated numerically by iteration φm+1 := I(φm). Interestingly, the fact
that the underlying operators are strict contractions, which was most useful for



HOARE’S SELECTION ALGORITHM 191

1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

..............................................
..................

..............
..............

..............
.............
...........
..........
..........
...........
..........
...........
..........
.........
.........
.........
.........
........
.........
........
..........
.........
.........
........
.........
........
........
........
........
........
.........
........
........
........
........
........
.........
........
........
........
........
........
.........
........
........
........
........
........
.........
........
........
........
........
........
.........
........
........
........
........
........
.........
........
........
........
.........
..........
.........
.........
..........
........
.........
........
........
.........
........
.........
.........
..........
.........
..........
..........
..........
..........
.........
..........
..........
..........
..........
...........
...........
............
............
.............
.............
..............

............
..............

..............
................

..................
....................

......................
...........................

................................
...........................................

.......................................................

..........................................
..............

...........
.........
..........
........
..........
........
........
........
........
........
........
........
........
........
........
........
........
.......
........
........
........
........
........
.......
.......
........
........
........
.......
........
........
........
.......
........
........
........
........
.......
........
........
........
.......
.......
........
........
.......
........
........
........
........
.......
........
........
........
.......
........
........
........
........
.......
........
........
........
........
........
........
.......
........
........
........
........
........
........
........
........
........
........
........
........
........
.........
........
.........
.........
.........
........
.........
.........
..........
...........
........
..........
..........
............
...........
..............
.............
..............

..............
..................

......................
..............................

..............................................
............................................................................................................................................................

................................................................................................................

..............................................
.............
...........
........
........
........
........
........
........
........
........
........
........
......
........
........
......
........
........
.......
........
........
.......
........
.......
........
........
.......
........
.......
........
......
.......
......
........
........
.......
........
......
.......
.......
........
........
.......
........
.......
........
........
.......
.......
.......
.......
.......
.......
........
.......
........
........
......
........
........
.......
........
........
.......
........
........
.......
........
........
........
.......
........
........
........
........
......
........
........
........
........
........
........
........
........
........
........
........
........
.........
..........
........
..........
.........
...........
.........
..........
...........
.............
..............

..............
..................

......................
....................................

..................................................................................................
...........................................................................................................................................................................................................................................................................................

............................................
............
..........
........
........
........
.......
.......
........
.......
........
.......
.......
........
........
.......
.......
.......
.......
........
.......
........
.......
.......
........
.......
.......
.......
.......
........
.......
.......
........
.......
.......
........
.......
.......
........
.......
......
........
......
........
......
.......
.......
.......
.......
........
.......
.......
........
.......
.......
.......
.......
........
.......
.......
........
.......
........
......
........
.......
.......
........
......
........
.......
........
.......
........
.......
........
.......
........
........
.......
........
........
.......
........
........
.......
........
........
........
........
........
........
........
.........
..........
........
..........
..........
...........
............
.............

................
........................

...............................................
.....................................................................................................................................................................................................................................................................................................................................................................................................................................................

..........................................
..........
........
.........
.........
.......
.......
.......
........
........
......
........
........
........
......
.......
.......
.......
........
......
.......
.......
........
.......
.......
........
.......
.......
.......
.......
.......
.......
......
........
.......
.......
.......
........
.......
.......
.......
......
........
......
.......
.......
........
.......
.......
.......
........
.......
......
.......
........
.......
.......
........
.......
.......
.......
.......
.......
.......
......
........
.......
.......
........
.......
.......
.......
.......
.......
........
.......
......
........
.......
........
.......
........
.......
.......
........
........
.......
........
.......
........
........
......
........
........
........
........
..........
........
..........
..............
.................

................................
........................................

................................................................................
.....................................................................................

.....................................
..........
........
........
........
........
........
......
.......
.......
......
.......
.......
........
.......
.......
.......
.......
.......
......
........
.......
........
......
........
.......
.......
........
.......
......
........
.......
.......
........
......
.......
.......
.......
.......
.......
......
......
........
.......
.......
.......
.......
.......
........
......
.......
.......
.......
......
........
......
.......
........
.......
........
.......
......
........
.......
......
........
.......
........
.......
........
......
.......
........
.......
.......
......
........
.......
........
.......
.......
........
......
.......
......
........
........
.......
......
........
.......
........
.......
.......
........
.......
........
........
........
........
............
.....................

................................................................................
........................

.........................................
.............................

..............................
.........
.......
.......
......
........
........
.......
........
.......
.......
.......
.......
.......
........
.......
.......
........
.......
.......
......
........
......
.......
......
........
.......
.......
.......
........
.......
.......
.......
........
.......
.......
.......
.......
........
.......
.......
.......
........
......
.......
.......
.......
.......
.......
.......
.......
.......
........
.......
.......
.......
........
.......
.......
......
.......
........
.......
......
.......
........
.......
.......
......
........
......
.......
........
.......
.......
.......
.......
......
........
.......
.......
.......
......
.......
.......
.......
......
........
.......
........
.......
......
.......
........
........
.........
........
..........
................

..........................................................................................................................
...............
...............
...............

.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

Figure 2. Distribution function of Q
(k)
1/2 for k =

0, 1, 2, 5, 10, 20, 50 (right to left).

the proofs in Section 3, is also responsible for the smooth working of this numerical
approach.

Figures 1 and 2 show the numerical results obtained for various k-values.
Figure 1 shows the average values, which are seen to decrease with increasing
k. We see that a small value like k = 5 already reduces the excess over the lower
bound 2 by a considerable amount. Some relatively large k-values have been in-
cluded to show an initially unsuspected “ripple effect”, which is due to the fact that
beta distributions become very concentrated about 1/2 for large k. In particular,
for k large enough, t→ mk(t) is no longer increasing on [0, 1/2] and decreasing on
[1/2, 1].

Figure 2 gives the distribution functions Fk(· |1/2), i.e. the distribution
functions of the limiting normalized number of comparisons needed to find the

median. Again, for large k an interesting effect occurs: k → P (Z
(k)
t ≤ z) is not

increasing for all z > 2. Nevertheless, it is easy to see that values larger than
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average become more unlikely with increasing presample size. For the standard
version of Find we would have about one in ten runs needing more comparisons
than 4.72 times the size of the input set, a value that decreases to 3.63, 3.22, 2.77
if a presample of size 2k + 1 with k = 1, 2 or 5 respectively is used.

Stimulating comments from both referees have led to an improved version of this paper.
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