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ON THE MULTIPLICITY OF THE MAXIMUM
IN A DISCRETE RANDOM SAMPLE

BY F. THOMAS BRUSS AND RUDOLF GRÜBEL

Université Libre de Bruxelles and Universität Hannover

Let Mn be the maximum of a sample X1, . . . ,Xn from a discrete
distribution and let Wn be the number of i’s, 1 ≤ i ≤ n, such that Xi = Mn.
We discuss the asymptotic behavior of the distribution of Wn as n → ∞. The
probability that the maximum is unique is of interest in diverse problems, for
example, in connection with an algorithm for selecting a winner, and has been
studied by several authors using mainly analytic tools. We present here an
approach based on the Sukhatme–Rényi representation of exponential order
statistics, which gives, as we think, a new insight into the problem.

1. Introduction and results. Let X1, . . . ,Xn be independent and identically
distributed integer valued random variables. Let Mn := max{X1, . . . ,Xn} be the
maximum of the sample and let Wn := #{1 ≤ i ≤ n :Xi = Mn} be the multiplicity
of the maximum, ρn := P (Wn = 1) is the probability that the maximum is
unique. An example where the multiplicity of the maximum is of interest arises
in connection with selection algorithms. If, say, a chairperson is to be determined,
the individual committee members could throw a coin repeatedly in successive
rounds and leave the competition if they obtain a head; this results in a tie if
more than one person is left and they all throw heads in the same round. In this
example, Xi corresponds to the time of first appearance of a head in the coin
tossed by the ith member of the group, that is, with p the probability for head
and q := 1 −p we have P (Xi = k) = qk−1p for all k ∈ N and ρn is the probability
that the procedure does not end in a tie. Bruss and O’Cinneide (1990) showed that
ρn does not converge as n → ∞ for such geometric distributions, but that

lim
n→∞

(
ρn − �(n)

) = 0 with �(t) := pt
∑
k∈Z

qk exp(−tqk)

[equation (13) in Bruss and O’Cinneide (1990) only deals with p = 1/2, but the
argument given there is easily extended to the case of general p]. Note that � is
logarithmically periodic: �(qt) = �(t) for all t > 0. In particular, writing {x}
for the fractional part of x ∈ R, we see from this very periodicity that �(n)

depends on n only through {logq n} which implies that (ρnk
)k∈N does converge

along specific subsequences (nk)k∈N.
This somewhat surprising result has been rediscovered several times [see the

addendum by Kirschenhofer and Prodinger (1998)]. Considering more general
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distributions, Baryshnikov, Eisenberg and Stengle (1995) show that a limiting
probability of a tie for the maximum (and hence limn→∞ ρn) exists if and only if
P (X1 = k)/P (X1 > k) → 0 as k → ∞. Eisenberg, Stengle and Strang (1993) go
beyond the study of ρn and also discuss the distribution of Wn; Brands, Steutel
and Wilms (1994) and Kirschenhofer and Prodinger (1996) obtained rates of
convergence in the geometric case. For the asymptotics of the maximum Mn itself
in the case of general discrete distributions see Athreya and Sethuraman (2001)
and the references given there. Fill, Mahmoud and Szpankowski (1996) give a
more detailed description and an analysis of the duration of a variant of the above
election algorithm, the base distribution is geometric. In these papers there is often
a first probabilistic step, resulting in some equation for the quantities of interest,
then analytic machinery is used to obtain the desired result. Kirschenhofer and
Prodinger (1996), for example, emphasize the use of complex variable techniques.
In the present paper we offer a somewhat more probabilistic approach, based
on the idea of representing the situation as a discretization of some continuous
(and well understood) background model. This is, of course, one of the standard
methods of applied probability; see, for example, Grübel and Reimers (2001b) for
a similar strategy in a record-renewal problem. The background model we use here
combines the quantile transformation and the Sukhatme–Rényi representation of
the order statistics associated with a sample from an exponential distribution.

We believe that this method can lead to a better understanding of the behavior
of maxima and their multiplicities in discrete samples, but it can also be used
to provide alternative proofs for or to improve upon existing results. From the
surprisingly numerous papers that deal with aspects of discrete maxima we have
chosen two specific questions in order to support this view, leading to the two
theorems below. However, the method should also be applicable in other situations
not considered here, for example, in connection with the joint distribution of Mn

and Wn or in an asymptotic analysis of the last k rounds for k fixed, n → ∞.
Our first theorem relates the asymptotic behavior of ρn as n → ∞ to that of

the tail ratios P (X1 ≥ k + 1)/P (X1 ≥ k) as k → ∞. We assume throughout that
P (X1 ∈ N) = 1 and that P (X1 = k) > 0 for all k ∈ N. This simplifies the notation
and the generalization to an arbitrary A ⊂ R of the form A = {ak :k ∈ N} with
some strictly increasing sequence (ak)k∈N of real numbers is trivial.

THEOREM 1. (a) lim infn→∞ ρn ≥ lim infk→∞ P (X1 > k|X1 ≥ k).
(b) If lim infk→∞ P (X1 > k|X1 ≥ k) < 1, then lim infn→∞ ρn < 1.
(c) lim supn→∞ ρn > 0.

Parts (a) and (b) imply that limn→∞ ρn = 1 is equivalent to limk→∞ P (X1 = k|
X1 ≥ k) = 0; this also follows from the above-mentioned result of Baryshnikov,
Eisenberg and Stengle (1995). For (c) we clearly need that there is no a ∈ R

with P (X1 ≤ a) = 1 and P (X1 = a) > 0, which is an immediate consequence
of our general assumptions; obviously ρn → 0 if such a point a exists. Eisenberg,
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Stengle and Strang (1993) found it “striking” that limn→∞ ρn = 0 only holds in
such degenerate cases (they also obtain the stronger result lim supn→∞ ρn > e−1

by elementary means). In this context the contribution of our method should
perhaps be seen as turning this result and others on the qualitative behavior of ρn

into something intuitively plausible.
Our second theorem deals with the distribution of Wn for large n in the

geometric case. The family {Qp,η : 0 ≤ η < 1} of distributions that arise as limit
points if the base distribution is geometric with parameter p = 1 − q is given by

Qp,η({l}) := pl

l!
∑
j∈Z

ql(j+η)e−qj+η

for all l ∈ N.

Brands, Steutel and Wilms (1994) obtained a rate of convergence result for the
individual probabilities, Kirschenhofer and Prodinger (1996) extended this to the
first two moments. Here we consider a distance measure between the distribution
of Wn and a suitable Qp,η that covers the behavior of the moment generating
functions in a fixed neighborhood of 0. Our result therefore implies convergence
with rate O(1/n) of the total variation distance and of all moments. It can also be
used to show that the approximation of the distribution L(Wn) of Wn by a member
of the Qp,·-family is precise enough to capture the fluctuations of quantities like
P (Wn ≥ log logn); see Grübel and Reimers (2001a) for a similar situation arising
in the analysis of von Neumann addition.

THEOREM 2. Suppose that Xi , i ∈ N, are independent and geometrically
distributed with parameter p = 1 − q . Let ηn := {logq n}. Then, for all γ < 1/p,

∞∑
l=1

γ l
∣∣P (Wn = l) − Qp,ηn({l})

∣∣ = O

(
1

n

)
as n → ∞.

The proofs of these theorems are given in Sections 3 and 4, respectively;
the probabilistic construction on which they are based is explained and illus-
trated in Section 2. We let Exp(λ) denote the exponential distribution with pa-
rameter λ, �(α,λ) is the gamma distribution with shape parameter α and scale
parameter λ, and U =distr V means that the random quantities U and V have the
same distribution.

2. The construction. Using the general assumptions on the distribution of X1
we see that

xk := − logP (X1 > k), k ∈ N0,

defines a sequence (xk)k∈N0 of nonnegative real numbers that strictly increase
to ∞. Let φ : [0,∞) → N be the function that takes the value k on the
interval [xk−1, xk). With this function we have X1 =distr φ(Y1) if L(Y1) = Exp(1).
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Moreover, on extending the basic probability space if necessary, we may
assume that Xi = φ(Yi) for all i ∈ N, with (Yi)i∈N a sequence of independent,
Exp(1)-distributed random variables. In particular,

(X1, . . . ,Xn)=distr
(
φ(Y1), . . . , φ(Yn)

)
.

As φ is increasing, this obviously implies(
X(n:1),X(n:2), . . . ,X(n:n)

)=distr
(
φ(Y(n:1)), φ(Y(n:2)), . . . , φ(Y(n:n))

)
,

where X(n:m), Y(n:m), m = 1, . . . , n, denote the increasing order statistics associ-
ated with X1, . . . ,Xn and Y1, . . . , Yn, respectively.

The quantile transformation, represented by the function φ, reduces the study
of distributions related to the order statistics of a sample from an arbitrary
distribution to the special case of exponential distributions. The Sukhatme–Rényi
representation [see, e.g., Shorack and Wellner (1986), page 721] is a structural
result for the order statistics in the exponential case; it says that(

Y(n:1), Y(n:2), . . . , Y(n:n)

)=distr (Vn,Vn + Vn−1, . . . , Vn + · · · + V1),

with V1, . . . , Vn independent and L(Vi) = Exp(i), 1 ≤ i ≤ n. Putting these two
steps together we can therefore base a construction of the sequence (Wn)n∈N on
a sequence (Vi)i∈N of independent, Exp(i)-distributed random variables Vi : For
all n ∈ N, Wn =distr W̃n, where W̃n is the maximal l with the property that

Vn + Vn−1 + · · · + Vi ∈ [xk, xk+1) for i = 1, . . . , l

for some k ∈ N0. Of course, this does not preserve the joint distribution of the
Wn’s, but joint distributions are not required for the assertions made in Section 1.

The following interpretation of the construction may be helpful: Let N(n) =
(N

(n)
t )t≥0 be a continuous time Markov chain with state space N0, transition rates

qi,i−1 = i for i > 0, absorption at 0 and start in n. Markov chains with this simple
structure are also known as pure death processes. Regarding the V -variables as
holding times we see that the above implies

(#{1 ≤ i ≤ n :Xi ≥ k})k∈N0 =distr
(
N(n)

xk

)
k∈N0

.

This sequence represents the whole selection process. Note that W̃n refers to
just one aspect of N(n), namely min{N(n)

xk :k ∈ N0,N
(n)
xk > 0}. For geometric

distributions the sequence (xk)k∈N0 is of the simple form xk = kλ for some λ > 0.
In the terminology of the selection rule mentioned in the introduction this
means that the number of candidates that survive the successive rounds can be
obtained distributionally from sampling the process N(n) at integer multiples of
λ = − log(1 − p), with p the probability for a head. Figure 1 illustrates this
with n = 20; we see that in this particular case four candidates remain in the
competition after the third round and that the sample maximum is not unique.
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FIG. 1. Sampling the death process.

For W̃n = 1 it is necessary and sufficient that the last interval

[Vn + · · · + V2,Vn + · · · + V2 + V1)

contains one of the xk’s, k ∈ N0. In our construction this interval has length V1
and hence does not depend on n, in contrast to the quantity Y(n:n) − Y(n:n−1) in
the original quantile representation. This independence from n makes the non-
convergence of ρn in the geometric case and other results intuitively obvious, but
the formal proofs may still require some care.

3. Proof of Theorem 1. For the proof of (a) we first note that

lim sup
k→∞

(xk − xk−1) = − logκ with κ := lim inf
k→∞ P (X1 > k|X1 ≥ k).

Let δ > 0 be given and let C = C(δ) < ∞ be such that xk+1 − xk < δ − log κ

whenever xk > C. In terms of the construction explained in the previous section
we then obviously have

{W̃n = 1} ⊃ {V1 ≥ δ − logκ} ∩ {V2 + · · · + Vn ≥ C}.
The sequence of events on the right-hand side is increasing; clearly, V2 + · · ·
+ Vn → ∞ almost surely as n → ∞. Hence,

lim inf
n→∞ ρn = lim inf

n→∞ P (W̃n = 1) ≥ P (V1 ≥ δ − logκ) = κe−δ,

and letting δ ↓ 0 completes the proof of part (a).
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For the proof of (b) let Zn := ∑n
k=2 Vk , an := ∑n

k=2 k−1. It is straightforward to
show that Zn − an converges in quadratic mean, and hence in probability, to some
finite random variable Z∞. Let r be an element of the support of L(Z∞) so that

P (|Z∞ − r| < δ) > 0 for all δ > 0.

If lim infk→∞ P (X1 > k|X1 ≥ k) < 1, then we can find an ε > 0 and a sub-
sequence (xkj

)j∈N of (xk)k∈N0 such that

xkj +1 − xkj
≥ 6ε for all j ∈ N.

Since xkj
↑ ∞, an ↑ ∞ and an+1 − an ↓ 0 we can further find a j0 ∈ N such that

each of the intervals (xkj
+ 2ε, xkj

+ 3ε), j ≥ j0, contains at least one member of
the sequence (r +an)n∈N. This means that there exists a subsequence (r +anj

)j∈N

such that

xkj
+ 2ε < r + anj

< xkj
+ 3ε for all j ≥ j0.

Consider now the events

A = {V1 < ε}, B = {|Z∞ − r| < ε}, Cn = {|Zn − an − Z∞| < ε}.
Using Zn = r + an + Z∞ − r + Zn − an − Z∞ we see that

xkj
< Znj

= V2 + · · · + Vnj
, V1 + · · · + Vnj

= V1 + Znj
< xkj +1

and hence W̃nj
≥ 2 on A∩B ∩Cnj

for all j ≥ j0. Since V1 and Zn are independent
we therefore obtain

1 − lim inf
n→∞ ρn = lim sup

n→∞
P (Wn ≥ 2)

≥ lim sup
j→∞

P
(
W̃nj

≥ 2
)

≥ P (A) lim sup
j→∞

P
(
B ∩ Cnj

)

≥ (1 − e−ε)
(
P (B) − lim

n→∞P (Cc
n)

)
> 0.

For the proof of (c) we can proceed as in (b), forcing Znk
into the interval

(xk − 1, xk) for k large enough and then using P (V1 > 1) > 0. Alternatively we
can find subsequences (anj

)j∈N and (xkj
)j∈N such that limj→∞(anj

− xkj
) = 0

and then use

lim sup
n→∞

ρn ≥ lim sup
j→∞

P
(
W̃nj

= 1
)

≥ lim sup
j→∞

P
(
Znj

− anj
< xkj

− anj
< Znj

− anj
+ V1

)
= P (Z∞ < 0 < Z∞ + V1),
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with the last equality following with Slutsky’s lemma and the continuity of the
distribution function of Z∞. We suspect that P (Z∞ < 0 < Z∞ + V1) = e−1, but
we do not have a proof.

4. Proof of Theorem 2. We first collect some properties of the background
construction. As in Section 2 let Y(n:l), 1 ≤ l ≤ n, be the order statistics associated
with a sample of size n from Exp(1).

LEMMA 3. (a) Y(n:n−l) and Y(n:n) − Y(n:n−l) are independent.

(b) P (Y(n:n) − Y(n:n−l) ≤ y) = (1 − e−λy)l for all y ≥ 0.

PROOF. With V1, . . . , Vn as in Section 2,

Y(n:l) = Vn + · · · + Vn−l+1, Y(n:n) − Y(n:l) = Vn−l + · · · + V1,

from which the independence follows immediately. Further, the second of these
equalities implies that Y(n:n) − Y(n:l) is equal in distribution to Y(n−l:n−l). This is
the maximum of a sample of size n − l from Exp(1), which gives (b). �

From the familiar formula for the density of order statistics [see, e.g., David
(1981), page 9] it follows easily that

fnl(z) := e−lz

(l − 1)!
n!

(n − l)!nl

(
1 − e−z

n

)n−l

, z > − logn,

is a density of Y(n:n−l+1) − logn. Further, if L(Sl) = �(l,1) then

gl(z) := e−lz

(l − 1)! exp(−e−z), z ∈ R,

is a density for − logSl . It is easy to see that fnl(z) → gl(z) for all z ∈ R as n → ∞
for each fixed l, but we need more. We require an upper bound for the L1-distance
of these functions that holds uniformly in l = O(log n).

LEMMA 4. For each C1 < ∞ there exists a C2 < ∞ such that∫
|fnl(z) − gl(z)|dz ≤ C2

l2

n
for all n ∈ N, l ≤ C1 log n.

PROOF. We split the integral and consider the intervals (−∞,−(log n)/3] and
(−(log n)/3,∞) separately. For the first of these we use the crude bound∫ −(log n)/3

−∞
|fnl(z) − gl(z)|dz ≤

∫ −(logn)/3

−∞
fnl(z) dz +

∫ −(logn)/3

−∞
gl(z) dz.

The second term on the right-hand side leads to∫ −(log n)/3

−∞
gl(z) dz = P

(− logZl ≤ −(logn)/3
) = P

(
Zl ≥ n1/3)
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with L(Zl) = �(l,1) as above. The function l �→ P (Zl ≥ z) is increasing for
fixed z, a fact that follows easily from the convolution property �(α,λ)��(β,λ) =
�(α + β,λ) of the gamma family of distributions. It is therefore enough to bound
the tail for l = ln := C1 logn. For this we use a familiar argument: The moment
generating function associated with �(α,1) is given by t �→ (1 − t)−α , t < 1.
Hence with t = 1 − ln/n1/3,

P
(
Zln ≥ n1/3) ≤ e−tn1/3

(1 − t)−ln

= exp
(−n1/3 + ln − ln log ln + 1

3 ln log n
)
,

which is obviously O(1/n) as ln = O(log n). For the fnl-part we use n! ≤
(n − l)!nl and log(1 − x) ≤ −x for x > −1 to obtain, with the change of
variable y = e−z,

∫ −(log n)/3

−∞
fnl(z) dz ≤

∫ −(logn)/3

− logn

e−lz

(l − 1)!
(

1 − e−z

n

)n−l

dz

=
∫ n

n1/3

yl−1

(l − 1)! exp
(
(n − l) log

(
1 − y

n

))
dy

≤
∫ n

n1/3

1

(l − 1)! exp
(
−y + l

n
y + (l − 1) logy

)
dy

≤ exp(−n1/3) n exp
(
C1 logn + C1(logn)2)

,

where we used in the last inequality the assumption on l as specified in the lemma.
The upper bound is of order O(1/n), as required.

For the integral over the range (−(log n)/3,∞) we again use the change of
variable y = e−z to obtain

∫ ∞
−(logn)/3

|fnl(z) − gl(z)|dz =
∫ n1/3

0

1

y
|fnl(− log y) − gl(− log y)|dy

=
∫ n1/3

0

yl−1e−y

(l − 1)!
∣∣exp

(
hnl(y)

) − 1
∣∣dy

with

hnl(y) =
l−1∑
k=1

log
(

1 − k

n

)
+ (n − l) log

(
1 − y

n

)
+ y.

As ln = o(n) we can use the fact that | log(1 − x)| ≤ 2|x| in a neighborhood
of x = 0 to obtain ∣∣∣∣∣

l−1∑
k=1

log
(

1 − k

n

)∣∣∣∣∣ ≤ 2
l−1∑
k=1

k

n
= l(l − 1)

n
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for n large enough. Similarly, since | log(1 − x) + x| ≤ x2 near x = 0, for n large
enough,

∣∣∣∣(n − l) log
(

1 − y

n

)
+ y

∣∣∣∣ ≤ (n − l)

∣∣∣∣log
(

1 − y

n

)
+ y

n

∣∣∣∣ + ly

n

≤ y2

n
+ ly

n
,

uniformly over l ≤ C1 log n, 0 ≤ y ≤ n1/3. Continuing in this vein we use
that |ex − 1| ≤ 2x in a neighborhood of x = 0, which on putting pieces together
leads to

∣∣exp
(
hnl(y)

) − 1
∣∣ ≤ 2

(
l(l − 1)

n
+ y2

n
+ ly

n

)

uniformly over l ≤ C1 logn and 0 ≤ y ≤ n1/3, for n large enough. [It is here that
the exponent 1/3 is used as we need y2/n = o(1).]

We can therefore bound the remaining integral as

∫ n1/3

0

yl−1e−y

(l − 1)!
∣∣exp

(
hnl(y)

) − 1
∣∣dy

≤ 2

n

(
l(l − 1)

∫ ∞
0

yl−1e−y

(l − 1)! dy +
∫ ∞

0

yl+1e−y

(l − 1)! dy + l

∫ ∞
0

yle−y

(l − 1)! dy

)

= 2

n

(
l(l − 1) + l(l + 1) + l2)

,

which is of the desired form. �

The next lemma connects the distributions Qp,η to the functions gl . Let q =
1 − p as before and λ := − logq .

LEMMA 5. If Zl is a random variable with density gl , then

∞∑
k=l

Qp,η({k}) = E
(
1 − q exp(λ{λ−1Zl − η}))l−1

.

PROOF. If Zl+1 has density gl+1, then Sl+1 := exp(−Zl+1) has density y �→
yle−y/ l!. With bj := qj+η we have

j ≤ λ−1Zl+1 − η < j + 1 ⇐⇒ bj+1 < Sl+1 ≤ bj
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so that, for k = 1, . . . , l,

E exp
(
λk{λ−1Zl+1 − η}) = ∑

j∈Z

E1(bj+1,bj ](Sl+1) exp
(
λk(−λ−1Zl+1 − η−j)

)

= ∑
j∈Z

qk(η+j)E1(bj+1,bj ](Sl+1)S
−k
l+1

= (q−k − 1)qkη
∑
j∈Z

qkjE1(bj ,∞)(Sl+1)S
−k
l+1,

where we used partial summation for the last equality. Since

E1(b,∞)(Sl+1)S
−k
l+1 =

∫ ∞
b

yl−k

l! e−y dy = (l − k)!
l!

(
l−k∑
i=0

bi

i!
)
e−b,

we obtain

1 − E
(
1 − q exp(λ{λ−1Zl+1 − η}))l

= −
l∑

k=1

(
l

k

)
(−1)kqkE exp

(
λk{λ−1Zl+1 − η})

= − ∑
j∈Z

e−qj+η
l∑

k=1

l−k∑
i=0

(−1)k

k! i! (1 − qk)q(j+η)(k+i).

The two inner sums can be rearranged,
l∑

k=1

l−k∑
i=0

(−1)k

k! i! (1 − qk)q(j+η)(k+i) =
l∑

i=1

i∑
k=1

(−1)k

k! (i − k)! (1 − qk)q(η+j)i ,

so that

E
(
1 − q exp(λ{λ−1Zl − η}))l−1 − E

(
1 − q exp(λ{λ−1Zl+1 − η}))l

= − ∑
j∈Z

e−qj+η
l∑

k=1

(−1)k

k!(l − k)! (1 − qk)q(η+j)l

= (1 − q)l

l!
∑
j∈Z

q(η+j)le−qj+η

= Qp,η({l}). �

After these preparations the proof of Theorem 2 can now be carried out. We
prove the tail version, that is,

∞∑
l=1

γ l

∣∣∣∣∣P (Wn ≥ l) −
∞∑
k=l

Qp,η({k})
∣∣∣∣∣ = O

(
1

n

)
as n → ∞,

for all γ < 1/p; the two versions are easily seen to be equivalent.
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For Wn ≥ l it is necessary and sufficient that Y(n:n−l+1) and Y(n:n) are both
contained in the same interval [xk−1, xk) for some k ∈ N. With λ = − logq we
have xk = λk for all k ∈ N0, hence this leads to

P (Wn ≥ l) = P
(
Y(n:n) − Y(n:n−l+1) ≤ λ(1 − {λ−1Y(n:n−l+1)})).

Obviously,

{λ−1Y(n:n−l+1)} = {λ−1Y(n:n−l+1) + �logq n�}
= {

λ−1Y(n:n−l+1) + logq n − {logq n}}
= {λ−1(Y(n:n−l+1) − log n) − ηn}.

Together with Lemma 3 this implies

P (Wn ≥ l) =
∫

P
(
Y(n:1) − Y(n:n−l+1) ≤ λ(1 − y)

)
P {λ−1Y(n:n−l+1)}(dy)

=
∫ (

1 − e−λ(1−y))l−1
P {λ−1Y(n:n−l+1)}(dy)

= E
(
1 − exp

(−λ(1 − {λ−1Y(n:n−l+1)})))l−1

= E
(
1 − q exp

(
λ{λ−1(Y(n:n−l+1) − log n) − ηn}))l−1

.

As fnl is the density of Y(n:n−l+1) − log n we can rewrite this as

P (Wn ≥ l) =
∫ (

1 − ψn(z)
)l−1

fnl(z) dz

with ψn defined by

ψn(z) := q exp
(
λ{λ−1z − ηn}) for all z ∈ R.

Note that 0 ≤ 1 − ψn(z) ≤ 1 − q and that
∞∑
k=l

Qp,η({k}) =
∫ (

1 − ψn(z)
)l−1

gl(z) dz

by Lemma 5. Let ln := C1 logn with C1 := −1/ log(γp). Using Lemma 4 we
obtain

∑
l≤ln

γ l

∣∣∣∣∣P (Wn ≥ l) −
∞∑
k=l

Qp,η({k})
∣∣∣∣∣

≤ ∑
l≤ln

γ l
∫ (

1 − ψn(z)
)l−1∣∣fnl(z) − gl(z)

∣∣dz

≤ ∑
l≤ln

γ lpl
∫

|fnl(z) − gl(z)|dz ≤ ∑
l≤ln

γ lplC2
l2

n
= O

(
1

n

)
.
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The proof of Theorem 2 will therefore be complete once we have shown that

∑
l>ln

γ lP (Wn ≥ l) = O

(
1

n

)
,

∑
l>ln

γ l
∞∑
k=l

Qp,η({k}) = O

(
1

n

)
.

This, however, is obvious from the above representation of the tails as integrals of
(1 − ψn)

l−1, which is O(pl) uniformly in n ∈ N, and the definition of ln.
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